CIBM Center for Biomedical Imaging

CIBM Annual Symposium 2024

Forum Rolex Learning Center, EPFL, Lausanne Switzerland | 7th November 2024 **20th Anniversary**

Assessment of LR-TGV reconstruction on preclinical compressed sensing ¹H-FID-MRSI at 14.1T

Brayan Alves^{1,2}, Jessie Mosso^{1,2}, Thanh Phong Lê³, Antoine Klauser⁴, Bernard Lanz^{1,2}, Cristina Cudalbu^{1,2}

¹CIBM Center for Biomedical Imaging, Switzerland; ²Animal Imaging and Technology, EPFL, Lausanne, Switzerland; ³LIFMET, EPFL, Lausanne, Switzerland; ⁴Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland

BACKGROUND & AIMS

¹H-FID-MRSI is subject to limitations with regards to low signal-

Ins MAP

CS LR-TGV RECON

to-noise ratio (SNR), resolution and long acquisition times, especially for whole brain MRSI where acceleration strategies are necessary. Compressed sensing (CS) is a common acceleration technique^{1,2,3} and has recently found application in the preclinical realm⁴. **CS** can be combined with spatial-spectral encoding techniques for increased acceleration⁵ and/or with reconstruction algorithms such as Low Rank Total **Generalized Variation (LR-TGV)** for an SNR increase².

The purpose of the present study is to compare two independent reconstruction techniques applied for CS (LR-TGV and Bruker built-in Image Reconstruction) in their ability to generate reproducible metabolic maps from in vivo preclinical ¹H-FID-MRSI dataset acquired at UHF. We believe that this study will be of benefit for the MRSI community, more specifically for those who focus on accelerated acquisition and reconstruction.

METHODS

Acquisition Parameters :

2D FID ¹**H-MRSI** (31x31 / FOV : 24x24 mm / VAPOR Water

suppression / TR = 813ms / TE = 1.3ms / Hamming filter applied)

- Under-sampling : 50% (with 20% of volume sampled at the center)
- 13min/acq. (RAW) \rightarrow 6.5min/acq. (CS)

Processing done with the MRS4Brain Toolbox (HSVD water sup., with LipSup. for LR-TGV only, LCModel quantification & Atlas-based segmentation)

Image Reconstruction⁶ : $\min_{S} ||\mathcal{F}_{u}S - y_{kk}||_{2}^{2} + \lambda ||\Psi S||_{1}$

Each time point treated as an image (y_{kk}) , regularization by wavelet transform ($\lambda = 10^{-3}$)

LR-TGV Reconstruction²: $\min_{U,V} ||\mathcal{FB}(UV) - y||_2^2 + \lambda \sum_{n=1}^{K} TGV^2 \{U_n\}$

- Signal $\rho = UV$, Rank : K = 20
- Total Generalized Variation Regularization ($\lambda = 10^{-3}$)

- **Difference** in concentration estimates **below 10%** for both reconstructions (over the slice)
- Increased coverage for LR-TGV Recon (denoising)
- No significant differences between reconstructions for tNAA, Ins & Glu
- Increase in concentration estimate SD for IMAGE Recon, decrease in SD for LR-TGV

CONCLUSION

Both reconstruction managed to recover metabolite maps and estimates comparable to the RAW set. IMAGE Recon allowed for a more consistent coverage, while LR-TGV Recon decreased N_Y the SD. Both allowed sub-10 minutes acquisition, enabling higher averages & resolution.

MRSI k-space

References:

 y_{kk}

Sharma SD et al. Invest Radiol. 2013 Sep;48(9):638-45. doi: 10.1097/RLI.0b013e31828a012d.

- Klauser A et al. J Magn Reson. 2021 Oct;331:107048. doi: 10.1016/j.jmr.2021.107048.
- Hatay GH et al. Med Biol Eng Comput. 2017 Aug;55(8):1303-1315. doi: 10.1007/s11517-016-1591-
- Alves B et al. NMR Biomed. 2024 Jul 23:e5211. doi: 10.1002/nbm.5211.
- Klauser A et al. ArXiv [Preprint]. 2023 Dec 21:arXiv:2305.13822v2. PMID: 37292485; PMCID: PMC10246065.
- Lustig M et al. Magn Reson Med. 2007;58(6):1182-1195. doi:10.1002/mrm.21391

SIEMENS Healthineers EPFL Swiss National **Science Foundation**

Financial support: SNSF no 310030_201218, EU H2020-MSCA-ITN-2018 grant agreement No 813120 (INSPIRE-MED)

