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BACKGROUND AIMS

• Analysis of sufficient conditions for stability in abstract
optimization problems that depend on the measurements
and the reconstructed image.

• Gradient of the data-fidelity term w.r.t. f has to be
Lipschitz w.r.t. y

• Regularizer has to be 𝛼-uniform convex

• Analysis of the growth of the gradient of the

METHODS

RESULTS

• Traditional image-reconstruction methods do provide concrete 
stability guarantees, if properly used. 

• Improved insight into the workings of                      linear 
inverse problems

CONCLUSION
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STABILITY OF IMAGE-RECONSTRUCTION 
ALGORITHMS
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• Dangerous NN-based image-
reconstruction methods (e.g.,
Zhu 2018). 

• Stability problems (e.g.,
Antun 2020).

• Questioning traditional 
methods (e.g., Genzel 2022).
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• Towards the objective, quantitative comparison of
stability in image-reconstruction methods.

• Obtain (computable) bounds of the form:

• Focus on

kfy1 � fy2k`p  K(Y ) ky1 � y2k�2 ,
where fy is the reconstruction for a measurement
vector y 2 RM

`p-regularized linear inverse problems
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• For Tikhonov-regularized least-squares (Lipschitz stability,
i.e., 𝛽 = 1)

�m: eigenvalues of the Gram matrix Hm,n = h⌫n, ⌫mi
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RESULTS for p = 1
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• Unique, sparse solution
• Lipschitz stability, i.e.,
𝛽 = 1, but unknown 𝐾.
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• Infinite set of solutions, 
sparse extremes

• Stability not even defined

RESULTS for other p

• For , local Lipschitz stability

• For , Hölder stability
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`p-regularized linear inverse problems

See more at: arXiv paper
(under review)
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