Towards Multiple Sclerosis Assessment through Advanced MRI Biomarkers and Artificial Intelligence

Pedro M. Gordalizaa,b,c, Joe Najmd, Maxence Wyenb,c,d, Nataliia Molchanovab,c,d, Francesco La Rosad,h, Jean-Philippe Thirana,b,d, Pietro Maggid, Benoit Macqa, Cristina Granziera,\textdagger, Martina Absintan,n, Meritxell Bach Cuadraa,b,c

a CIBM Center for Biomedical Imaging, Switzerland; b Radiology Department, Lausanne University and University Hospital, Switzerland; c University of Lausanne, Switzerland; d ICTeam, UCLouvain, Brussels, Belgium; e École Polytechnique Fédérative de Lausanne (EPFL), Lausanne, Switzerland; f University of Applied Sciences of Western Switzerland, Switzerland; g Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; h Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

\textdagger Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

\textbf{BACKGROUND}

- Approximately 2.3 million people worldwide live with Multiple Sclerosis (MS).1
- Autoimmune inflammatory disease of the central nervous system affecting myelin sheath damaging it and the nerves, degrading or interrupting the information flow.
- Degenerative disease, increased patient disability through time, without cureation.

- MS lesion assessment in-vivo with MRI.
- During clinical practice, monitoring White Matter Lesions (WML).
- Advanced MRI sequences allow the discovery of more informative biomarkers for research: Cortical Lesions (CL), Parametric Rims (PRL) and Central Veins Sings (CVS).2

\textbf{AIMS}

- Automated segmentation and/or detection of advanced biomarkers aligned with the MSxplain project goals:
 - Improve the automation model’s generalization capabilities by identifying existence bias.
 - Increase confidence in the clinical decision-making process through new interpretability and explainability strategies.
 - Extract measures of MS progression modelling the possible cause and effects relations underlying the disease’s biological mechanisms.

\textbf{PROJECTS}

- **CL Segmentation**
 - CL are present in all MS phenotypes and can be detected at early stages.
 - 3D-UNET:3
 - Experiment: Train = 54
 - Test = 35
 - Results:
 - Dice = 0.6039
 - True Positive Rate\textsubscript{\textdagger} = 0.710.16-0.48
 - False Positive Rate\textsubscript{\textdagger} = 0.270.13

- **PRL Detection**
 - PRL biomarker for progression. PRL burden correlates with MS aggressiveness.
 - RIMNet1
 - Allows to differentiate selected patches.
 - Experiment:
 - Rim+ = 462 patches
 - Rim- = 4857 patches
 - Results:
 - Phase input→AUC = 0.913
 - Phase+Flair→AUC = 0.943

- **Uncertainty Estimation**
 - Extended from our work in WML segmentation2 (Check @NM poster!)
 - Deep Causal Models
 - To deal with Domain Adaptation issues and improve explainability2.

- **Fully automated PRL detection**
 - SSD model learning is based on cheaper annotations, lesions localization, than Retina UNet3.

3Financial support: Novartis Research Foundation, CH Excellence Fellowship, HAsler-Stiftung, CoWT Bi.

\textdaggerhttps://wp.unil.ch/mial/research/projects/msxplain/