

CIBM Annual Symposium 2022 Campus Biotech, Geneva | 30th November

Wideband bright- and black-blood late gadolinium enhancement imaging for patients with cardiac implantable electronic devices

Pauline Gut^{1,2}, Hubert Cochet^{1,3}, Frederic Sacher^{1,4}, Pierre Jaïs^{1,4}, Matthias Stuber^{1,2,5}, Aurélien Bustin^{1,2,3}

¹IHU LIRYC, Université de Bordeaux, INSERM U1045, Pessac, France; ²Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; ³Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Pessac, France; ⁴Department of Cardiac Pacing and Electrophysiology, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Pessac, France ⁵CIBM, Lausanne, Switzerland

Introduction

- PSIR LGE: good contrast between healthy myocardium and scar tissue, but poor scar-to-blood contrast¹
- SPOT: joint bright- and black-blood imaging to provide detailed cardiac anatomy and improved scar contrast²
- Cardiac implantable electronic device (CIED): severe hyperintensity & banding artefacts on MRI³
 - **Objective:** Wideband SPOT to allow unprecedented scar localization and detection in patients with CIED.

Methods

SPOT

- Even heartbeats: non-selective adiabatic hyperbolic secant (HS) 180° inversion recovery (IR) pulse + adiabatic T2 preparation module (T2p) \rightarrow black-blood (BL) contrast
- Odd heartbeats: only T2p \rightarrow bright-blood (BR) contrast Wideband SPOT
- Wideband IR: IR bandwidth (BW) increased from 0.8 to 9.2kHz
- Wideband T2p: T2p refocusing BW increased from 1.6 to 5kHz

Results

Phantom experiments

Black-blood

20

Standard SPOT

Standard SPOT

Wideband IR SPOT Wideband IR+T2 SPOT

In vivo experiments: scar shown by the two arrows

Black-blood

Conclusion

Wideband IR+T2 SPOT

- Hyperintensity and banding artefacts suppressed
- Higher CNR on BR and BL images and higher SNR on BR

UNIL l'Université de Lausanr

images compared with conventional PSIR Promising technique for scar assessment in patients with CIED, in vivo clinical testing is now warranted

References

1. Kellman et al., Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med. 2002.

2. Sridi S et al., Improved myocardial scar visualization with fast free-breathing motioncompensated black-blood T1-rho-prepared late gadolinium enhancement MRI. Diagnostic and Interventional Imaging. 2022.

3. Rashid S et al., Improved Late Gadolinium Enhancement MR Imaging for Patients with Implanted Cardiac Devices. Radiological Society of North America. 2014.

4. Rashid S et al., Modified wideband three-dimensional late gadolinium enhancement MRI for patients with implantable cardiac devices. Magn Reson Med. 2016.

5. Nezafat R et al., B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn Reson Med. 2006.

