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- Complex acquisition and
processing pipeline in
fetal brain MRI

reliability at every step of
the pipeline?
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1. Quality control
2. Analysis of biases and

- Heterogeneous data and
reproducibility

domain shifts

Stack #N

Tackling domain shifts with FetMRQC [2]

Site 1: CHUV Siemens Aera (1.5T)

o e aomey | | The problem. How reproducible are
ML G ' ' quality annotations from different
raters? Can we make the quality
rating depend on specific criteria
rather than subjective assessment?

The problem.Heterogeneity across scanners
and sites — Machine learning models fail to
generalize [1].

Our solution

Step 1. Standardized ratings.

Annotation interface and multiple raters [3]

Result. Two experts annotated more than 1600 LR T2w scans
from 13 scanners across 4 hospitals.

. Step 1. A taxonomy of quality.
Super-resolution reconstruction can
lead to various data quality.

Step 2. Automated prediction of quality.
Insight. Use a simple model. More complex models using nested
cross validation and more sophisticated predictors failed to
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et s Step 2. Multi-annotator rating.
Step 3. Robust evaluation. 105 reconstructions annotated twice by four raters.
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