Brain signatures: the relationship between brain function and structure is unique to individuals and tasks

Alessandra Griffab,c, Enrico Amicob,c, Raphaël Liégeoisb,c, Dimitri Van De Villea,b,c, Maria Giulia Pretia,b,c

(a) CIBM Center for Biomedical Imaging, Switzerland; (b) Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; (c) Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland;

BACKGROUND & AIM

- The relationship between functional activity and the underlying structural wiring has been shown to vary along a specific behaviorally relevant cortical gradient during resting-state1.
- But how does the brain structure-function coupling change in different tasks and individuals?
- Here2, we quantify this relationship using a recent graph signal processing (GSP) framework1 and we investigate for the first time its task-decoding and individual fingerprinting performances.

METHODS

Graph Signal Processing (GSP) framework

![Graph Signal Processing](image)

Projection of fMRI signals into structural bases & filtering

RESULTS

- Structure-function coupling predicts task-related brain states (SVM 100-fold CV) and represents an individual fingerprint of brain organization (near-perfect accuracy in subject classification, SVM 8-fold CV, Table 1).
- Structure-function decoupling explains inter-individual variations of cognitive traits, particularly sustained attention and fluid intelligence scores (Partial Least Square analysis, brain-cognition r^2 higher for decoupled FC, Table 1).
- Brain networks associated with decoding and fingerprinting are spatially distinct, involving unimodal vs transmodal regions, respectively (2-factor ANOVAs of SDI, c-FC and d-FC in different tasks or subjects respectively).

Two-factor ANOVA

<table>
<thead>
<tr>
<th>Task decoding</th>
<th>Subject fingerprinting</th>
<th>Brain-Cognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDI</td>
<td>c-FC</td>
<td>d-FC</td>
</tr>
<tr>
<td>100%</td>
<td>99%</td>
<td>29%</td>
</tr>
</tbody>
</table>

Significant F-values, $p < .05$ Bonferroni corrected

CONCLUSIONS

- Structure-function coupling quantified with GSP is a prominent signature of both individuals and tasks.
- Decoupled pathways contain key information for fingerprinting and correlate with individual cognitive traits.