

CIBM Annual Symposium 2022 Campus Biotech, Geneva | 30th November

Brain signatures: the relationship between brain function and structure is unique to individuals and tasks

Alessandra Griffa^{b,c}, Enrico Amico^{b,c}, Raphaël Liégeois^{b,c}, Dimitri Van De Ville^{a,b,c}, Maria Giulia Preti^{a,b,c}

(a) CIBM Center for Biomedical Imaging, Switzerland; (b) Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; (c) Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland;

BACKGROUND & AIM

The relationship between functional activity and the underlying structural wiring has been shown to vary along a specific behaviorally relevant cortical gradient during resting-state¹.

METHODS

- But how does the brain structure-function coupling change in different tasks and individuals?
- Here², we quantify this relationship using a recent graph signal processing (GSP) framework¹ and we investigate for the first time its task-decoding and individual fingerprinting performances.

Projection of fMRI signals into structural bases & filtering

RESULTS

- Structure-function coupling predicts task-related **brain states** (SVM 100-fold CV) and represents an individual fingerprint of brain organization (nearperfect accuracy in subject classification, SVM 8-fold CV, Table 1).
- Structure-function *decoupling* explains inter-individual variations of cognitive traits, particularly sustained attention and fluid intelligence scores (Partial Least Square analysis, brain-cognition r² higher for decoupled FC, Table 1).
- **Brain networks** associated with decoding and fingerprinting are spatially distinct, involving unimodal vs transmodal regions, respectively (2-factor ANOVAs of SDI, c-FC and d-FC in different tasks or subjects respectively).

GSP measures of structure-function coupling SVM classification

Table 1	Task Decoding accuracy	Subject Fingerprinting accuracy	Brain-Cognition r^2
FC nodal strength	0.544	0.984	0.211
nodal SDI	0.756	0.997	0.180
FC	0.919	0.964	0.224
c-FC	0.893	0.972	0.209
d-FC	0.873	1.000	0.654

Subject fingerprinting

95 percentile

CONCLUSIONS

- **Structure-function coupling** quantified with GSP is a prominent signature of both **individuals** and **tasks**.
- **Decoupled** pathways contain key information for fingerprinting and correlate with individual cognitive traits.

(1) Preti & Van De Ville (2019), 'Decoupling of brain structure from function reveals regional behavioral specialization in humans', Nature Communications 10:4747. (2) Griffa A, Amico E, Liégeois R, Van De Ville D, Preti MG (2022), 'Brain structure-function coupling provides signatures for task decoding and individual fingerprinting', Neuroimage, 250:118970.

