

CIBM Annual Symposium 2024

Forum Rolex Learning Center, EPFL, Lausanne Switzerland | 7th November 2024 20th Anniversary

Towards Longitudinal Characterization of Multiple Sclerosis Atrophy Employing SynthSeg Framework and Normative Modeling

Pedro M. Gordaliza^{1,2,3}, Nataliia Molchanova^{2,3,4,} Maxence Wynen^{5,6}, Pietro Maggi^{6,7}, Jaume Banus², Joost Janssen⁸, Alessandro Cagol⁹, Cristina Granziera⁹, Meritxell Bach Cuadra^{1,2,3}

¹CIBM Center for Biomedical Imaging, Switzerland, ²Radiology Department, Lausanne University and University Hospital, Switzerland, ³University of Lausanne, Switzerland, ⁴ University of Applied Sciences of Western Switzerland, ⁵ICTeam, UCLouvain, Louvain-la-Neuve, Belgium, ⁶Louvain Inflammation Imaging Lab (NIL), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium,⁷Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium, ⁸Department of Child and Adolescent Psychiatry, Institute of Psychiatry (HGUGM-IiSGM) and CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain,⁹Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Switzerland

BACKGROUND

- Multiple Sclerosis (MS) is an autoimmune disease with unknown cause^G.
- MS is always progressive beyond MRI & clinical measures^{L,F}.
- MRI essential for Disease Progression Modeling (DPM).
- Lesion quantification alone misses MS progression.
- MS-accelerated subcortical atrophy enables continuous DPM

CHALLENGES & AIMS

- Challenge 1: Need for robust clinical segmentation of T1w and FLAIR in MS.
 - SynthSeg+ and SynthSeg-WMH provide DL-based subcortical segmentation.
- Challenge 2: Small samples fail to capture MS evolution heterogeneity.
 - \circ Normative modeling^M on large healthy populations enables comparison

[F] Filippi et al. Nature. 2018. [G]Granziera et al. Brain. 2021. [L]Lublin et al. Brain. 2022 [B] Bermel et al. Lancet. 2010, [M] Marquand et al. Nature Molecular Psychiatry. 2019

METHODS

• Processing workflow for heterogeneous dataset: 326 MS patients, 460

FLAIR/T1w scans from 5 sources

[B]Billiot et al. PNAS 2023. [L] Laso et al. ISBI. 2024, [F] Fortin et al. Neurolm. 2017. [P] Pomponio et al. Neurolm. 2021, [Ge] Ge et al. Lancet 2024.

- 1. To obtain the estimations of counterfactual healthy subcortical volumes from CentileBrain Model^G
- 2. To obtain surrogate truth volumes by employing SynthSeg⁺ and SynthSeg-WMH on T1w and FLAIR

RESULTS

- Experiment 1: Reliability of Subcortical Segmentations:
 - Comparing (K-S) literature-reported^P subcortical volumes with SynthSeg.
 - SynthSeg-WMH closer to reference values.
 - Modality independence. Except for the thalamus

- Experiment 2: Volumetric Deviations from Normative Trajectories:
 - Consistent trend of increasing deviation with age.
 - SynthSeg⁺ showing more extreme values \bigcirc

CONCLUSIONS

- Methodological Advances:
 - Novel DL integration with normative modeling.
 - Multi-modal analysis framework.
- Key Implications:
 - FLAIR sequences highly relevant.
 - Reliable lesion-aware processing.
- Future Directions:
 - Lesion load analysis integration.
 - Confirm findings and establish clinical relevance.

CIBM.CH