Title: Central Nervous System Oxidative Stress interplay with inflammation in a rat model of Type C Hepatic Encephalopathy – brothers in arms?

Authors: K. Pierzchala, D. Simicic, A. Sienkiewicz, D. Sessa, S. Mitrea, O. Braissant, V. McLin, C. Cudalbu

Institutions: CIBM Center for Biomedical Imaging, Lausanne, Animal Imaging and Technology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Swiss Center for Liver Disease in Children, University Hospitals Geneva, Neurometabolic Unit, Service of Clinical Chemistry, University Hospital of Lausanne, VD

Content:

BACKGROUND

- Although oxidative-stress (OS) and neuroinflammation play a role in type C hepatic encephalopathy (C HE), their involvement and synergistic action is not well understood.
- Under normal conditions the physiological levels of intracellular reactive oxygen species (ROS) are controlled by the counteracting antioxidant response to maintain redox homeostasis.

AIMS

- Longitudinal tracking of CNS OS in a rat model of type C HE using in-vivo-1H-MRS and ex-vivo-ESR spin-probing combined with UV-Vis spectroscopy and histological assessments (IHC).

METHODS

- **In-vivo-1H-MRS** indirect OS detection – ascorbate and glutathione concentrations.
- **Ex-vivo ESR** direct and quantitative detection of OS (O2−) with CMH spin-probe.
- **Histology**: BDL rats at 4 and 8-weeks post BDL (n=3 per group) and SHAM rats (n=3).
- **NBT**: histo-enzymatic technique for ROS visualization.

CONCLUSION

- For the first time, longitudinal presence of CNS OS together with inflammation in a rat model of type C HE.
- OS increase is not due the declined antioxidants activity but rather a response to ROS increase.
- OS is one of the major pathways driving neurodegeneration. Therefore, CNS OS, together with inflammation, may strongly contribute to HE pathogenesis.

References