

CIBM Annual Symposium 2022 Campus Biotech, Geneva | 30th November

Central Nervous System Oxidative Stress interplay with inflammation in a rat model of Type C Hepatic Encephalopathy – brothers in arms?

K. Pierzchala^{1 2 3}, D. Simicic^{1 2}, A. Sienkiewicz^{4 5}, D. Sessa⁶, S. Mitrea^{1 2}, O. Braissan⁷, V. McLin⁶, C. Cudalbu^{1 2}

¹CIBM Center for Biomedical Imaging, Lausanne,²Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, ³Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, ⁴Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, ⁵ADSresonances Sàrl, Préverenges, ⁶Swiss Center for Liver Disease in Children, University Hospitals Geneva,⁷Neurometabolic Unit, Service of Clinical Chemistry, University Hospital of Lausanne, VD

BACKGROUND		AIMS
 Although oxidative-stress (OS) and neuroinflammation play a role in type C encephalopathy (C HE), their involvement and synergistic action is not well understood¹ Under normal conditions the physiological levels of intracellular reactive oxygen species are controlled by the counteracting antioxidant response to maintain redox homeostasis ROS are acknowledged for defense mechanisms - signaling messengers in system, ROS are critical for hippocampal long-term potentiation (LTP) / long term dementia Excess of ROS exceeds the capacity of natural cellular antioxidant mechanisms, rettine pathological modification of proteins, lipids, and nucleic acids. 	es (ROS) ¹ immune (LTD),	 Multidisciplinary approach implementation Longitudinal tracking of CNS OS in a rat model of type C HE using <i>in-vivo-</i>¹H-MRS and <i>ex-vivo-</i>EPR spin-probing combined with UV-Vis spectroscopy and histological assessments (IHC). Analyzing synergistic participation of CNS OS and inflammation in the progression of type C HE.
METHODS	NBT	– qualitative 0 ₂ detection by histochemical staining
 In-vivo-¹H-MRS indirect OS detection – ascorbate and glutathione concentrations: adult rats were scanned before and after BDL surgery (n=18) at 9.4T-MR (Varian/Magnex- Scientific) using SPECIAL-sequence² (TE=2.8ms). Ex-vivo ESR direct and quantitative detection of OS (0⁻₂) with CMH spin-probe: X-band ESR, Model ESP300E with TE₁₀₂ cavity (Bruker-BioSpin, Germany). Histology: BDL rats at 4 and 8-weeks post BDL (n=3 per group) and SHAM rats (n=3) NBT: histo-enzymatic technique for ROS visualization SOD1/SOD2: to differentiate between Cu/ZnSOD (SOD1) and MnSOD (SOD2) activity, GPX1: glutathione peroxidase (intracellular antioxidant enzyme) activity, Oxo-8-dG: to determine the presence of DNA/RNA oxidation, IL-6: to determine the presence of neuroinflammation. UV-Vis spectroscopy: for quantitative evaluation of brain inflammation. 	tetrazolium $R \rightarrow N \rightarrow R$ $R \rightarrow N \rightarrow R$ $R \rightarrow N \rightarrow R$ $R \rightarrow 0^{+}_{2}$ NBT specifically with 0^{-}_{2} NBT specifically with 0^{-}_{2} and for purple / blue formazan prect	v reacts orms a

OS - evolution of Asc and GSH

ESR: ex-vivo direct detection of the presence of OS - qualitative 0^{-2}_{2}

References

¹Pierzchala K., et al., Free Radic Biol Med, 2022; ²Mlynárik et al., Magn Reson Med 2006; ³Braissant, O., et al., J Hepatol, 2019; ⁴Simicic D, Cudalbu C, Pierzchala K., Anal Biochem. 2022.

Financial support: SNSF 310030_173222/1

SODs, GPX-1, and Oxo-8-dG ¹ in several brain regions of BDL rats¹.

* SOD1 relocation into the nucleus - genomic DNA protection in the presence intracellular 0^{-}_{2} elevated levels ¹. Lipofuscin aggregates encourage the Fenton reaction and HO⁻production, one of the most potent ROS, which

can lead to lipids, proteins, and RNA/DNA oxidation ⁴.

CONCLUSION

- For the first time, longitudinal presence of CNS OS together with inflammation in a rat model of type C HE.
- OS increase is not due the declined antioxidants activity but rather a response to ROS increase.
- OS is one of the major pathways driving neurodegeneration. Therefore, CNS OS, together with inflammation, may strongly contribute to HE pathogenesis.

LEENAARD

FONDATION

SNSF