PET CMR$_\text{glic}$ mapping and 1H MRS show altered glucose uptake and neurometabolic profiles in a rat model of type C hepatic encephalopathy

J. Mosso1,2,3, T. Yin1,2, C. Poiry-Yamate1, D. Simici1,2, M. Lepore1,2, V. A. McLin4, O. Braissant5, C. Cudalbu1,2, B. Lanz1,2

1CIBM Center for Biomedical Imaging, Switzerland, 2Animal Imaging and Technology (AIT), EPFL, Lausanne, Switzerland, 3Laboratory for Functional and Metabolic Imaging (LIFMET), EPFL, Lausanne, Switzerland, 4Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals Geneva, And University of Geneva, Geneva, Switzerland, 5Service of Clinical Chemistry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland

INTRODUCTION

- Type C hepatic encephalopathy (HE): severe neuropsychiatric decline following chronic liver disease
- Poor ammonia detoxification by the liver \rightarrow toxin accumulation in the brain and a cascade of metabolic alterations$^{1-4}$

AIMS

A - Investigate brain energy metabolism in a rat model of type C HE using PET and MR spectroscopy (MRS)
B - Implement quantitative glucose cerebral metabolic rate (CMR$_\text{glic}$) map with an image-derived input function for minimal invasiveness and register the PET image to an atlas for ROI-based analysis

METHODS

- Bile duct-ligated (BDL) male Wistar rats, model of type C HE
- 1H MRS: 9.4 T Varian scanner, SPECIAL8 sequence (TE=2.8ms), 2 brain regions (voxel sizes – cerebellum: 2.53 mm$,^3$, hippocampus: 2.8x2x2 mm$,^3$), 2 time points: week 0 as control (n\in3,4) and 6 post-surgery (n\in4,9)
- 18F-FDG PET: Avalanche photodiode LabPET 4 scanner (1)-Image derived input function (IDIF): 45min dynamic acquisition on the vena cava6
 (2)-Quantitative 3D brain maps: 15min static acquisition on the brain (nominal resolution: 0.5x0.5x1.18 mm3)
 CMR$_\text{glic}$7 maps with LC 0.71, PET-atlas registration, 1 time point: week 6 post surgery (n$_\text{SHAM}=8$, n$_\text{BDL}=10$)

DISCUSSION

- IDIF (1) performs as well as manual blood samplings and external blood counters, is non-invasive, and allows for longitudinal studies
- 2-fold lower CMR$_\text{glic}$ in BDL rats \rightarrow energy metabolism alterations in BDL rats

CONCLUSIONS

Pathophysiology in a rat model of type C HE: increased brain glutamine and decreased osmolytes in the cerebellum and the hippocampus measured by 1H MRS, 2-fold lower glucose cerebral metabolic rate measured by 18F-FDG PET

Methodology: minimally invasive, quantitative and spatial mapping of CMR$_\text{glic}$ using an image-derived IF and an atlas registration, limitations of the SUV when systemic metabolic effects occur

RESULTS - PET

- IDIF (1) performs as well as manual blood samplings and external blood counters, is non-invasive, and allows for longitudinal studies
- 2-fold lower CMR$_\text{glic}$ in BDL rats \rightarrow energy metabolism alterations in BDL rats

RESULTS - MRS

Issues with the standardized uptake value (SUV):
- The dose does not reflect the tracer availability for the brain when systemic effects occur, but the IF does
- The weight does not inform on Glc/FDG competitive uptake and glycemia is not taken into account

CONCLUSIONS

In BDL rats:
- Increase in Gin (stronger in the cerebellum)
- Decrease in Glu, sum of osmolytes (Ins, Tau, tCr, tCho)
\rightarrow Alterations in diverse brain functions: Gin metabolism and osmoregulation, neurotransmission, energy metabolism