

CIBM Annual Symposium 2022 **30th November** Campus Biotech, Geneva

PET CMR_{glc} mapping and ¹H MRS show altered glucose uptake and neurometabolic profiles in a rat model of type C hepatic encephalopathy

J. Mosso^{1,2,3}, T. Yin^{1,2}, C. Poitry-Yamate¹, D. Simicic^{1,2}, M. Lepore^{1,2}, V. A. McLin⁴, O. Braissant⁵, C. Cudalbu^{1,2}, **B.** $Lanz^{1,2}$

1 CIBM Center for Biomedical Imaging, Switzerland, 2 Animal Imaging and Technology (AIT), EPFL, Lausanne, Switzerland, 3 Laboratory for Functional and Metabolic Imaging (LIFMET), EPFL, Lausanne, Switzerland, 4 Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals Geneva, And University of Geneva, Geneva, Switzerland, 5 Service of Clinical Chemistry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland

INTRODUCTION

RESULTS - PET

- Type C hepatic encephalopathy (HE): severe neuropsychiatric decline following chronic liver disease
- Poor ammonia detoxification by the liver \rightarrow toxin accumulation in the brain and a cascade of metabolic alterations¹⁻⁴

AIMS

A- Investigate brain energy metabolism in a rat model of type C HE using PET and MR spectroscopy (MRS)

B- Implement quantitative glucose cerebral metabolic rate (CMR_{alc}) map with an image-derived input function for minimal invasiveness and register the PET image to an atlas for ROI-based analysis

METHODS

- Bile duct-ligated (BDL) male Wistar rats, model of type C HE
- <u>¹H MRS</u>: 9.4 T Varian scanner, SPECIAL⁵ sequence (TE=2.8ms), 2 brain regions (voxel sizes – cerebellum: 2.5³ mm³, hippocampus: 2.8x2x2 mm³), 2 time points: week 0 as control ($n \in \{3,4\}$) and 6 postsurgery ($n \in \{4, 9\}$)
- ¹⁸F-FDG PET: Avalanche photodiode LabPET 4 scanner

(1)-Image derived input function (IDIF): 45min dynamic acquisition on the vena cava⁶

- IDIF (1) performs as well as manual blood samplings and external blood counters, is non-invasive, and allows for longitudinal studies
- 2-fold lower CMR_{alc} in BDL rats

(2)-Quantitative 3D brain maps: 15min static acquisition on the brain (nominal resolution: 0.5x0.5x1.18 mm³) CMR_{alc}⁷ maps with LC 0.71⁸, PET-atlas registration, 1 time point: week

6 post surgery (n_{SHAM} =8, n_{BDI} =10)

CONCLUSIONS

Issues with the standardized uptake value (SUV):

The dose does not reflect the tracer availability for the brain when systemic effects occur, but the IF does The weight does not inform on Glc/FDG competitive uptake and

Pathophysiology in a rat model of type C HE: increased brain

glutamine and decreased osmolytes in the cerebellum and the hippocampus measured by ¹H MRS, 2-fold lower glucose cerebral metabolic rate measured by ¹⁸F-FDG PET Methodology: minimally invasive, quantitative and spatial mapping of CMR_{alc} using an image-derived IF and an atlas registration, limitations

of the SUV when systemic metabolic effects occur

Frequency (ppm) Frequency (ppm)

2.5

CIBM.CH

In BDL rats:

3.5

Increase in Gln (stronger in the cerebellum)

2

2.5

Decrease in Glu, sum of osmolytes (Ins, Tau, tCr, tCho)

1.5

 \rightarrow Alterations in diverse brain functions: Gln metabolism and osmoregulation, neurotransmission, energy metabolism

References: 1 Braissant et al., J. Hepatol., 2019, 2 Jayakumar et al., J. Clin. Exp. Hepatol., 2015, 3 Pierzchala et al., J. Nucl. Med., 2014, 7 Sokoloff et al., J. N Neurochem., 1977, 8 Tokugawa et al., J Nucl Med., 2007

Financial support: : this project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 813120 (INSPiRE-MED), the SNSF projects no 310030_173222, 310030_201218, the CIBM (UNIL, UNIGE, HUG, CHUV, EPFL) and the Leenaards and Jeantet Foundations