

CIBM Annual Symposium 2024

Forum Rolex Learning Center, EPFL, Lausanne Switzerland | 7th November 2024 **20th Anniversary**

Validation of EEG source reconstruction with simultaneous intracranial EEG in patients with epilepsy

Chondrou Maria¹, Pigorini Andrea², Mikulan Ezequiel², Spinelli Laurent¹, Momjian Shahan³, Seeck Margitta¹, Vulliemoz Serge¹, Roehri Nicolas¹

1 EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland

2 Department of Biomedical and clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan, Italy

3 Department of Neurosurgery, University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland

METHODS

BACKGROUND

- Over 30% of the patients with epilepsy are drug-resistant.
- Epilepsy surgery is key treatment for drugresistant cases, yet 30% of the patients still experience seizures post-surgery.
- Electroencephalogram (EEG) and intracranial EEG (iEEG) are crucial for evaluating epilepsy and for pinpointing seizure-prone areas in candidates of epilepsy surgery.
- Various inverse solution methods are used with EEG or high-density EEG (hdEEG) to detect the underlying neural activity through source reconstruction.

AIMS

- To validate hdEEG source reconstructed time-course using the gold standard of simultaneous iEEG recordings.
- To examine the effect of different inverse solution methods (eLORETA, sLORETA, wMNE) on the source reconstruction.

Validation pipeline for EEG source reconstruction

Bottom channel: better reconstruction

RESULTS

Sampling of iEEG electrodes in regions of interest

Data duration: 13 minutes (IQR: 7 minutes)

- 9 patients (Geneva dataset [2])
- 24 patients (Milan dataset [3])
- Good brain sampling

Correlation between broadband iEEG and virtual iEEG timeseries for different patients

Median correlation (all patients): 0.07, $[\min, \max] =$ $[2.17*10^{-5}, 0.72]$

#electrodes

Relationship between reconstruction metrics and iEEG-virtual iEEG correlation (generalized linear mixed-effects models)

COFLE regression coefficient: -0.19 (p-value < 0.001), R²: 0.36 SD regression coefficient: -0.23 $(p-value < 0.001), R^2: 0.35$

GLME model fit & post-hoc comparisons of inverse methods per electrodes

Reconstruction performance after post-hoc analysis (Bonferroni-corrected):

CIBM.CH

• *iEEG-virtual iEEG correlation:*

CONCLUSION

- EEG source reconstruction yields low iEEG-virtual iEEG correlation, independently of the method (eLORETA, sLORETA, wMNE), which indicates poor source reconstruction, likely due to localization errors and activity spread.
- We designed metrics to assess the reconstruction quality in terms of localization errors and activity spread, which help us compare various inverse solution methods.
- The reconstruction quality measured by the iEEG-virtual iEEG correlation is significantly better with sLORETA, while eLORETA shows significantly better performance in terms of localization errors and activity spread.
- We also intend to characterize the effects of depth, frequency and the regularization parameter on the reconstruction quality, and we will evaluate this quality using beamformers as well.

References:

[1] Grova et al., Human Brain Mapping, 2016 [2] De Stefano et al., European Journal of Neurology, 2022 [3] Mikulan et al., Scientific Data, 2020

Swiss National Science Foundation Ambizione grant 209120

