

CIBM Annual Symposium 2022 Campus Biotech, Geneva | 30th November

Towards Development of 3D Self-Navigated Respiratory Motion-Compensated Radial Cardiac T1 Rho Mapping

Jana Huiyue Zhang¹, Aurélien Bustin^{1,2,3}, Gabriele Bonnano^{5,6,7}, Davide Piccini^{1,8}, Matthias Stuber^{1,2,4}, Jérôme Yerly^{1,4}

¹Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland, ²IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Pessac, France, ³Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Pessac, France, ⁴Center for Biomedical Imaging (CIBM), Lausanne, Switzerland, ⁵Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Bern, Switzerland, ⁶Translational Imaging Center, siteminsel, Bern, Switzerland, ⁷Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland, ⁸Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland

BACKGROUND

- T1 Rho Imaging can be used to study biological processes occurring at lower frequencies while maintaining high signal-to-noise radio (SNR).
- T1 Rho Mapping provides quantitative information about the tissue and has the potential to replace late-gadolinium-enhanced imaging (LGE) as a contrast-agent free method to evaluate diseased cardiac tissue. [1]
- 3D radial spiral phyllotaxis trajectories are well suited for selfnavigated motion-compensated acquisitions with isotropic spatial resolution. [2]

AIMS

The aim of this research is to develop a respiratory motioncompensated self-navigated 3D whole-heart myocardial T1 rho mapping technique using electrocardiagram (ECG)-triggering.

FIRST PRELIMINARY RESULTS

Figure 2: T1 rho maps of phantom for 2D reference method (left) and the proposed 3D method at the same location (right).

METHODS

Figure 1: Illustration of T1 rho mapping principle.T1 rho magnetization evolution (left) and data fitting (right).

- Data acquisition: 3D radial spiral phyllotaxis sampling at 1.5 T, bSSFP sequence, 70° RF flip angle, TR/TE = 2.79/1.35 ms, 83 readouts per spiral, FOV = (220mm)², acquisition matrix (160)², ECG-triggered with 3 recovery heartbeats.
- Spin lock durations: 0, 10, 20, 35, 50 ms (phantom); 0, 5, 20, 35, 50 ms (knee)
 Spin lock scheme: 90_x | SL_y | 180_y | SL_y | 180_{-y} | SL_y | 90_{-x}
 Analysis: The 3D T1 rho values were compared in an agar-NiCl₂-gel-phantom and the knee of a healthy volunteer (m/26y) to a previously published 2D single-shot T1 rho mapping method. [1]

Figure 3: *In-vivo* 11 rho maps of a knee at two different slice positions using the 2D reference and the 3D method.

A significant bias was observed between the 3D and the reference 2D T1 rho maps.

DISCUSSION

- The number of readouts per spiral was probably set too high allowing the magnetization of different tissues to approach a steady state during T1 recovery.
- An adjustment of spatial resolution is needed to visualize and quantify the knee cartilage.

NEXT STEPS

- Optimize number of readouts per spiral during acquisition
- Design and implement dictionary mapping to improve the fitting of T1 rho maps by simulating longitudinal magnetization recovery during acquisition
 Apply this technique in the heart using ECG-triggering approach and by adding respiratory motion-compensation to the reconstruction.

References: [1] Bustin A., JCMR 2021, 23(1):119. [2] Di Sopra L., MRM 2019.

