A-Eye: Towards a large-scale MRI-based model of the eye

Jaime Barranco1,2, Hamza Kebir1,2, Óscar Esteban2, Raphael Szmitan4, Oliver Stach5,6, Philipp Stach6, Sönke Langner5,6, Benedetta Franceschiello7,8,*, Meritxell Bach Cuadra1,2,*

1 CIBM Center for Biomedical Imaging, Lausanne, Switzerland; 2 Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; 3 ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland; 4 Institute for Diagnostic and Interventional Radiology, Pediatric and Neuroradiology, Rostock University Medical Center, Rostock, Germany; 5 Department of Diagnostic Radiology and Neuroradiology, University of Greifswald, Germany; 6 Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany; 7 School of Engineering, Institute of Systems Engineering, HES-SO Valais-Wallis, Sion, Switzerland; 8 The Sense Innovation and Research Center, Lausanne and Sion, Switzerland. * These authors provided equal last-authorship contributions.

BACKGROUND

Why Magnetic Resonance Imaging (MRI) of the eye (MReye)?

- Superior soft tissue contrast penetration
- 3D image acquisition of the entire eye
- Useful in some pathologies and future treatment planning

Improvement with respect to previous work1-7:

- More ocular structures: lens, globe, optic nerve, fats, and muscles
- Large-scale
 - 1,200 non annotated subjects
 - 35 manually annotated subjects

METHODS

ATLAS-based registration

Deep Learning (DL) approach8-11

RESULTS

ATLAS vs DL: Similarity on 1200 subs

ATLAS vs DL: DSC on 4 same subjects with Ground Truth

ATLAS vs DL: Axial length

CONCLUSIONS

- First large-scale 3D MRI segmentation of lens, globe, optic nerve, fats, and muscles
- Key ophthalmic biomarkers can be automatically extracted

FUTURE WORK

- Deep learning accuracy improvement and baseline development (nnUNet13)
- Web interface design and development
- Automatic extraction of more biomarkers, and correlation with age, gender, BMI

Supported by: