CIBM Center for Biomedical Imaging

CIBM Annual Symposium 2024

Forum Rolex Learning Center, EPFL, Lausanne Switzerland | 7th November 2024 **20th Anniversary**

DiffErentiable TEmporal (DETECT) Loss for Liver Cancer Screening in 4D Dynamic Contrast-Enhanced MRI

Killian Monnin^{1, 2}, Patrick Jeltsch¹, Mario Jreige¹, Lucia Fernandes Mendes¹, Clarisse Dromain¹, Naïk Vietti-Violi¹, Jonas Richiardi^{1,2,3}

¹ Radiology CHUV ² FBM UNIL ³ CIBM DS CHUV-HUG Imaging for Precision Medicine section

BACKGROUND

Hepatocellular Carcinoma (HCC) screening standard

- Patients considered at-risk of HCC undergo ultrasound (US) every 6 months
- US has limited sensitivity for HCC detection (47% for patients with large body or cirrhosis [1,2])

AIMS

Deep learning for HCC detection in 4D MRI

- Dynamic Contrast-Enhanced (DCE) MRI allows to diagnose HCC without the need for biopsy
- A deep learning algorithm can **support experts** in that screening task

METHODS

DiffErentiable Temporal (DETECT) Loss

The lesion characteristics Nonrim APHE and Nonperipheral «washout» can be translated into arterial and delayed contrasts functions C_a and C_d :

Datasets

Data split	Training and validation sets	Internal screening test set	Internal pre-surgery test set
HCC positive patients	65	14	39
HCC negative patients	-	82	-
Number of lesions	139	24	71
Lesions diameter (mm)	20.5+-11.8	23.5+-16.3	26.8+-14.0
LR-5	88	16	58

Use of **sigmoids** to bound C_a and C_d between 0 and 1:

A **temporal loss** L_T is created by a weighted sum of the contrast losses L_a and L_d :

$$L_T = \gamma \cdot L_a + \delta \cdot L_d$$

The final **DETECT** loss consists in the combination of the temporal loss L_T and a Tversky loss L_{Seq} :

$$L_{\text{DETECT}} = \frac{1}{Z} \sum_{b=1}^{B} \sum_{i=1}^{N} (1-\lambda) \cdot L_{\text{T,b}}(I, K_{\hat{M}_i}) + \lambda \cdot L_{Seg,b}$$

The L_{Seq} loss part helps the model to generate candidate lesion, and the L_T loss is used to detect temporal **malignancy** patterns, with a balance governed by λ .

Post-Processing

- **Gaussian blurring** of probability maps
- **Dilation and erosion** of probability maps
- Test-time augmentation to improve prediction reliability
- Local temperature scaling to calibrate probability maps

LR-3 22	2	8

Experiments

1. nnU-Net

The nnU-Net [5] is an **automated** deep learning framework for medical image segmentation offering state of the art performance with **limited** manual intervention needed.

2. U-Net (Tversky)

Attention U-Net [6] trained with a Tversky loss function. Penalty of false negatives and false **positives** are governed by the α and β parameters and were set to 0.1 and 0.9 for the experiment.

$$TI = \frac{TP}{TP + \alpha FN + \beta FP}$$

Results

3. U-Net (DETECT)

Attention U-Net pre-trained with a Tversky loss and fine-tuned with our **DETECT** loss function with parameters δ =0.5, γ =0.5 and λ =0.

4. U-Net (LiTS)

Attention U-Net pre-trained with a Tversky loss at the detection of lesions in CT imaging (LiTS dataset with 1022 annotated lesions [7]) and fine-tuned with our internal MRI dataset.

- Gaussian weighting of patch predictions
- **Ensembling** for test dataset predictions

REFERENCES

References: [1] Tzartzeva K et al., Gastroenterology 2018, [2] Kim SY, JAMA Oncol. 2017, [3] Chernyak V et al., Radiology, 2018, [4] Virmani J, Kumar V et al., J Digit Imaging 2013, [5] Isensee et al., Nat Methods 18 2021, [6] Oktay et al., 2018, [7] Patrick et al., Medical Image Analysis 2023

CONCLUSION

• The use of the **DETECT** loss fonction can improve the detection of **HCC lesions** • When external data is available and a higher number of false positives is acceptable, a pre-trained model such as U-Net (LiTS) may be a more suitable option

UNIL | Université de Lausanne

Translational **Machine Learning**

Radiodiagnostics and interventional radiology service

Financial support: Swiss National Science Foundation, grant number 207944

