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BACKGROUND

Hepatocellular Carcinoma (HCC) screening standard Deep learning for HCC detection in 4D MRI

* Patients considered at-risk of HCC undergo ultrasound (US) every 6 months . Dynamic Contrast-Enhanced (DCE) MRI allows to diagnose HCC without the need for biopsy
 US has limited SenSitiVity for HCC detection (47% for patientS with Iarge bOdy or cirrhosis [1,2]) e A deep |earning a|gorithm can support experts in that Screening task
* MRI screening is time consuming
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CT/MRI Diagnostic Table % US

Arterial phase hyperenhancement (APHE) No APHE Nonrim APHE
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Training of a deep learning model to
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Lesion characteristics from [3]

METHODS RESULTS

DiffErentiable Temporal (DETECT) Loss Datasets

The lesion characteristics Nonrim APHE and Nonperipheral «washout» can be translated into arterial and Data split Training and Internal screening Internal pre-surgery

delayed contrasts functions C, and Cy: validation sets test set test set
HCC positive patients 65 14 39
HCC negative patients : 82 :
Number of lesions 139 24 71
Lesions diameter (mm) 20.5+-11.8 23.5+-16.3 26.8+-14.0
LR-5 88 16 58
LR-4 23 4 4
LR-3 22 2 8
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- 1. nnU-Net 3. U-Net (DETECT)
Use of sigmoids to bound ¢, and €, between 0 and 1: The nnU-Net [5] is an automated deep learning  Attention U-Net pre-trained with a Tversky loss

framework for medical image segmentation  and fine-tuned with our DETECT loss function
offering state of the art performance with limited with parameters 8=0.5, y=0.5 and A=0.
manual intervention needed.

2. U-Net (Tversky) 4. U-Net (LiTS)
Attention U-Net [6] trained with a Tversky 10Ss  attention U-Net pre-trained with a Tversky loss
function. Penalty of false negatives and false at the detection of lesions in CT imaging (LiTS

positives are governed Dby the o and B gaiaset with 1022 annotated lesions [7]) and
parameters and were set to 0.1 and 0.9 for the fine-tuned with our internal MR dataset.
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Arterial contrast Delayed contrast
Atemporal loss Ly is created by a weighted sum of the contrast losses L, and L, : TI = TP
L L 5 L TP + aFN + BFP
T = - Lig -+ 0 -
7 d Results
The final DETECT loss consists in the combination of the temporal loss Ly and a Tversky loss Lg,, - ., Internal Screening Test Set FROC Curves (LR-5) . Internal Pre-Surgery Test Set FROC Curves (LR-5)
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The Lg., loss part helps the model to generate candidate lesion, and the Ly loss is used to detect temporal € e §Mﬂ
malignancy patterns, with a balance governed by A. = = 1
Model 1: Baseline nnU-Net o Model 1: Baseline nnU-Net
- 0.2 I Model 2: Pre-trained U-Net (Tversky) 0-2 [ Model 2: Pre-trained U-Net (Tversky)
PO St_ P r O C eS S I n g ) Model 3: Pre-trained U-Net (DETECT) Model 3: Pre-trained U-Net (DETECT)
Model 4: Pre-trained U-Net (LIiTS) Model 4: Pre-trained U-Net (LiTS)
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. G_aus_,3|an qurrlng of probablllty_maps « Test-time augmentatlon to Improve prediction .r_ellablllty 0 ! Mean False positive per threshold > ° ' Mean False Positive per threshold :
« Dilation and erosion of probability maps « Local temperature scaling to calibrate probability maps
« Gaussian weighting of patch predictions « Ensembling for test dataset predictions

CONCLUSION
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