

CIBM Annual Symposium 2022 Campus Biotech, Geneva | 30th November

Synthetic magnetic resonance images to support quantitative fetal brain analysis

Hélène Lajous^{1,2,*}, Priscille de Dumast^{1,2,*}, Andrés le Boeuf Fló^{1,2}, Miguel Díaz-Cacho Dafonte^{1,2}, Thomas Sanchez^{1,2}, Hamza Kebiri^{1,2}, Arrate Muñoz-Barrutia³, Ferran Marques⁴, Vincent Dunet¹, Mériam Koob¹, Meritxell Bach Cuadra^{2,1}

¹ Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland ² CIBM Center for Biomedical Imaging, Switzerland ³ Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain

⁴ Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain * Equal contribution

Background & Motivation

- Magnetic resonance imaging (MRI) is a key technique for the early diagnosis of fetal brain abnormalities.
- Orthogonal T2-weighted series of 2D thick slices are acquired.
- Super-resolution (SR) techniques ¹ allow to reconstruct an isotropic high-resolution (HR) 3D volume of the fetal brain.
- Challenges for the development of automated and generalized post-processing methods:
 - scarcity of exploitable data
 - domain gaps between MR scanners and reconstruction techniques

FaBiAN, a Fetal Brain magnetic resonance Acquisition Numerical phantom ^{2,3}

Application 1: Domain adaptation for tissue segmentation ⁴

- Support data augmentation strategies
- Bridge the **domain gap** between different datasets
 - accuracy of fetal brain tissue segmentation

Application 2: SR optimization ⁵

- Simulate 3D high-resolution ground truth images
- Optimize post-processing algorithms

Source domain

Application 3: Evaluation of new T2 mapping strategies

• Realistic model in a motion-controlled environment

References: ¹ Tourbier et al., NeuroImage (2015); ² Lajous et al., Scientific Reports (2022); ³ Lajous et al., Zenodo (2021); ⁴ de Dumast et al., ISBI (2022); ⁵ de Dumast et al., submitted to ISBI 2023

