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Quantitative magnetic resonance imaging (qMRI) can increase the

specificity and sensitivity of conventional weighted MRI to underlying

pathology. However, estimation methods are limited by their sensitivity to

the underlying noise. Moreover, estimating the model's parameters is

challenging because the resulting inverse problem is ill-posed, requiring

advanced numerical regularization techniques. As a result, the estimates

from distinct regularization strategies are different. This study focuses on

multi-echo T2 relaxometry, which probes the tissue microstructure by

differentiating compartment-specific T2 relaxation times.

In this work, we aimed to investigate the variability and

reproducibility of different techniques for estimating the transverse

relaxation time of the intra- and extra-cellular space (T2
IE) in gray

(GM) and white matter (WM) tissue in a clinical setting, using a

multi-site, multi-session and multi-run T2 relaxometry dataset

BACKGROUND AIMS

MRI protocol: 3D multi-echo gradient and spin-echo (GRASE) prototype

w/ CAIPIRINHA [1]: minTE= 10.68ms; #echoes = 32; ΔTE=10.68ms;

TR=1s; prescribed FA= 180°; res=1.6mm3 iso #slices=84; AF=3x2(1);

#averages =1;AT=10:30min. 144×126×134; 3D MPRAGE: TR =

2300ms; TI=7.1ms; TE=2.96ms; FA=9°; res=1mm3 iso; #slices=192;

FoV=256×256mm2.

Population and scanning design: 20 healthy subjects (11M, 9F,

age=27+/-3 years [24-33]). Each subject was scanned in two MRI

scanners (MAGNETOM Prisma, Siemens) at Geneva University Hospital

and Sion Hospital (sites) at two different time points (sessions). At each

session, each subject was scanned twice (runs). Between runs, subjects

were repositioned, followed by a new shimming. Eight scans were

obtained per subject, for a total of N=160 scans.

T2 estimation: 3 different techniques for T2 spectra estimation were

used: two regularized non-negative least squares methods (X2-I and L-

Curve-I) and a machine learning approach (MIML) [2].

Analysis: Two independent analyses were performed to study the effect

of different reconstruction methods using both raw and denoised data:

• Variability analysis: 4 effects were studied by means of the coefficient

of variation (CoV) for WM and GM: inter-run (same session, same

subject, same scanner), inter-session (different sessions, same

subject, same scanner), inter-site (different sessions, same subject,

different sites) and inter-subject (different subjects, different sessions,

same scanner)

• Reproducibility analysis: For each reconstruction method the

agreement of multiple assessments of the same subjects was

computed via the Intraclass Correlation Coefficient (ICC)

METHODS

RESULTS

We have acquired a unique multi-echo T2 MRI dataset to characterize the variability and reproducibility of the intra- and extra-cellular T2 relaxation

time. We compared the estimates from three different reconstruction methods, including two classical algorithms based on regularized NNLS and a

novel ML approach trained with synthetic data. The smallest source of variance is the run, followed by inter-session, inter-scanner, and inter-subject

effects. Notably, there were no statistical differences between the inter-session and inter-scanner effects for any of the evaluated reconstruction

techniques, suggesting that the acquisition sequence and employed methodology may be used in multi-site neuroimaging studies. This work has

been published in [3].

CONCLUSION
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Variabilty and reproducibility of multi-echo T2 reproducibility: Insights 
from multi-site, multi-session and multi-subject MRI acquisitions 

Figure 2: Voxel-wise regional variability: Whole-brain voxelwise T2
IE mean maps for the

three reconstruction methods: X2-I, L-curve-I, and MIML. All methods showed consistent

results, although MIML method displayed higher mean T2
IE values. The values obtained

with the NNLS methods were almost identical, with only slight differences mostly related to

the smoothness of the solution.
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Figure 3: Regional ICC 

of mean T2
IE for all 

three reconstruction 

methods for GM (A) 

and WM (B). In each 

panel, from left to right: 

whole-brain (GM/WM), 

prefrontal, frontal, 

parietal and temporal 

regions. Color bars 

indicate different 

reconstruction 

methods: Red: L-

curve-I, Green: X2-I, 

Blue: MIML.
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