

CIBM Annual Symposium 2024

Forum Rolex Learning Center, EPFL, Lausanne Switzerland | 7th November 2024 20th Anniversary

Resting breathing contribution to the BOLD- and ADC-fMRI signals

Inès de Riedmatten^{1,2}, Arthur Spencer^{1,2}, Jasmine Nguyen-Duc^{1,2}, Jean-Baptiste Perot^{1,2}, Ileana Jelescu^{1,2}

¹Dept. Of Radiology, Lausanne University Hospital (CHUV), Lausanne, ²University of Lausanne, Lausanne

BACKGROUND

- BOLD-fMRI is an indirect measure of neuronal activity (neurovascular coupling), but can also be influenced by other components such as respiration, as shown in breath-hold tasks¹⁻³.
- Spontaneous changes in depth and/or rate of breathing happening during resting breathing can also cause significant changes in the BOLD signal^{1,2}.
- This can be related to variations in arterial CO₂ (vasodilator)^{1,2} (as well as voluntary changes in breathing or chest motion induced B₀ inhomogeneities) and obscure true neuronal signals⁴.

ADC-fMRI is a neuromorphological contrast sensitive to transient alteration of the apparent diffusion coefficient (ADC) resulting from changes in tissue microstructure induced by brain activity.

• We showed that the ADC-fMRI is less sensitive to respiratory fluctuations, and therefore more specific to neuronal activity.

METHODS

Acquisition:

- 2 sequences:
 - Isotropic ADC-fMRI (n=8), alternating b=200 (dfMRI-200) & b=1000 s mm⁻² (dfMRI-1000)
 - Multi-echo GE BOLD-fMRI (n=10)
- Parameters: TE=[12.6, 33.22, 53.84, 74.46] ms (BOLD)/105 ms (ADC), TR=1.1s, Matrix 82x82, 21 slices, resolution 2.8 mm isotropic, 40% slice gap, 192 s scan time
- Respiration (CO₂) recordings. End-tidal CO₂ (P_{ET}CO₂): interpolated signal from peaks detected at the end of exhaled breaths.

Processing:

- Pre-processing as described in ref. 5
- MRI images: spatial filtering with Gaussian kernel (4 mm), high-pass temporal filter (4th order Butterworth, cut-off=0.01Hz)
- Physio time series: polynomial detrending (up to & including 3rd order polynomials), convolving with HRF³

Analysis:

- Cross-correlation (Pearson) $P_{ET}CO_2$ vs fMRI, lags= -24 to 0 s (steps of 1s).
- Significance threshold determination: null distribution approximation using surrogate analysis. For all subjects, generate 5000 surrogate $P_{ET}CO_2$ traces by shuffling the phases of the Fourier transformed

 $P_{ET}CO_2$, and run cross-correlation analysis with 5000 randomly selected voxels from the other subjects. The final null distribution pools all the subjects together.

RESULTS

Fig. 1. Null distribution generated from surrogate signals, for BOLD, dfMRI-200, dfMRI-1000 and ADC signals.

- BOLD is heavily T₂*-weighted
- dfMRI-200 suppresses blood water (small diffusion weighting) but is T₂-weighted dfMRI-1000 similar to dfMRI-200 but more heavily diffusion-weighted
- ADC suppresses both blood contribution and attenuates T₂-weighting
- GM vs WM (Fig. 2): despite reduced vasculature (\searrow blood flow & volume) in WM^{6,7}, P_{ET}CO₂ is still strongly associated with BOLD-fMRI.
- Time lag maps (Fig. 3):
 - BOLD: delayed response in the WM, as already shown in ref. 8 with breath-hold. This

Fig. 2. Summary statistics of significant association between $P_{ET}CO_2$ **and MRI signals**, for BOLD, dfMRI-200, dfMRI-1000 and ADC signals. The statistics are shown in gray matter (GM) or white matter (WM) voxels which are above the significance thresholds derived in Figure 1.

is consistent with the heterogeneity of BOLD response as derived in ref. 9, which prevents the simultaneous mapping of GM & WM activity.

 Diffusion-weighted: lags are mostly non-significant (no P_{ET}CO₂ vs fMRI association) & no pattern is visible.

CONCLUSION

- A clear association is found between resting breathing & BOLD
- Using diffusion-weighted signal decreases drastically this association

 — neuromorphological contrast is closer to neuronal activity than neurovascular contrast
- ADC-fMRI is robust to respiration-induced vascular changes and is therefore a promising tool to investigate neuronal activity in task-^{5,10} or rs-fMRI¹¹

Financial support: This work was supported by ERC Starting Grant 'FIREPATH', SERI no. MB22.00032.

Ines.de-riedmatten@chuv.ch

Fig. 3. Group-averaged time lag & z-score maps, for BOLD, dfMRI-200, dfMRI-1000 and ADC signals.

References:

¹Birn et al., NeuroImage, 2008, ²Chang and Glover, NeuroImage, 2009, ³Murphy et al., NeuroImage, 2011, ⁴Birn et al., NeuroImage, 2006, ⁵Spencer et al., bioRxiv, 2024, ⁶Biswal et al., Magn Reson Med, 1995, ⁷Gore et al., Magn Reson Imaging, 2019, ⁸Zvolanek et al., NeuroImage, 2023, ⁹Li et al., Nat Commun, 2019, ¹⁰Nguyen-Duc et al, bioRxiv, 2024, ¹¹de Riedmatten et al., bioRxiv, 2024

stablished by the European Commission

CIBM.CH