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1. Newborn network (DLn)
‣ Trained on 163 patches of spherical harmonics (SH) representation of 6 b0-normalized uniform3 diffusion

samples to predict 45 SH FOD coefficients from multi-shell multi-tissue constrained spherical
deconvolution (MSMT-CSD)1 using 300 multi-shell measurements

‣ Trained on 109 dHCP subjects and tested on 320 dHCP quantitatively and 15 BCH qualitatively ([27-45]
weeks of b=1000 s/mm2).

2. Preterm network (DLf)

‣ Similar to DLn in training but using 12 b0-normalized directions
‣ Trained on 58 pre-term ([27, 38] weeks, b=400 s/mm2) dHCP subjects
‣ Tested on 11 BCH fetal subjects ([24,39] gestational weeks, b=500 s/mm2)

Materials & Methods

1. Newborns of dHCP
‣ Low agreement rate within the ground truth for multiple fibers
‣ Levels on par or superior performance of DLn to state-of-the-art classical methods using significantly

less (~21-43 times) measurements
‣ Lowest error for our method in approximating the apparent fiber density (AFD)
‣ No notable improvement above 28 directions

2. Clinical newborns and fetuses of BCH

‣ The model DLn generalized to clinical newborns’ data despite the scanner and protocol
domain shifts. Similarly to DLf  to the clinical fetal data despite the anatomy, scanner and
protocol domain shifts

‣ Compared to CSD, low amplitude FODs for the deep learning models in isotropic regions,
where white matter fiber bundles are not expected

‣ Deep learning can successfully predict FODs using a small number of measurements by leveraging neighbouring information and high quality datasets. This has the potential of contributing to scanning time
reduction with more than an order of magnitude and can highly benefit anatomical reconstruction of non-cooperative cohorts such as neonates or fetuses 10.

Context & Summary

• Diffusion MRI (dMRI) is the tool of reference for studying brain white matter in vivo and non-
invasively:

o Large number of measurements required for state-of-the-art models1 to estimate
microstructure with fiber orientation distribution functions (FODs)

o Few measurements available for newborn and fetal populations because of acquisition
time constraints

• Aim: Circumvent the problem using deep learning on high quality datasets (i.e.
developing human connectome project, dHCP2) with few samples (6-12)

• Validated results on research (dHCP) and clinical datasets (Boston Children’s Hospital) of
newborns and fetuses, with histology.

3. Evaluation
‣ Comparison with three classical methods (Constrained spherical Deconvolution, CSD4,

Constrained Solid Angle, CSA5 and Sparse Fascicle Model, SFM6) and two deep learning
methods (Multilayer Perceptron, MLP; CTtrack)7,8 in the agreement rate in the number of
estimated fibers, the angular error and the apparent fiber density9

‣ Splitting the ground truth into two disjoint gold standard subsets of 150 measurements and
computing within-ground truth consistency (ΔGS)

‣ DLn outperformance over the
voxel-wise baseline deep learning
methods 7,8
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Qualitative comparison 
between the deep learning 
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CSD ground truth and CSD 

in two brain regions of a 
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The deep learning method compared to CSD in different brain regions for newborn and 
fetal subjects. FODs are superimposed to the first SH coefficient of the method used. 
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