

CIBM Annual Symposium 2024

Forum Rolex Learning Center, EPFL, Lausanne Switzerland | 7th November 2024 20th Anniversary

Sex Differences In Alzheimer's Disease Using PET Molecular Imaging

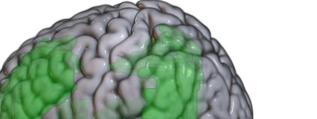
Ghazal Hamidi Madani^{a,b}, Cecilia Boccalini^{a,b}, Débora Elisa Peretti^{a,b}, Max Scheffler^c, John Prior^d, Alessandra Griffa^e, Gilles Allali^e, Giovanni B. Frisoni^f, Valentina Garibotto^{a,b,g,h}

^aFaculty of Medecine, University of Geneva, Geneva, Switzerland, ^bLaboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), University of Geneva, Geneva, Switzerland, ^cDivision of Radiology, Geneva University Hospitals, Geneva, Switzerland, ^dNuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland, ^eLeenaards Memory Center, Lausanne University Hospital, Lausanne, Switzerland, ^fGeneva Memory Center, Geneva University Hospitals, Geneva, Switzerland, ^gDivision of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland, ^gDivision of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland, ^hCIBM Center for Biomedical Imaging, Geneva University Hospitals, Geneva, Switzerland, ^hCIBM Center for Biomedical Imaging, Geneva University Hospitals, Geneva, Switzerland, ^hCIBM Center for Biomedical Imaging, Geneva University Hospitals, Geneva, Switzerland, ^hCIBM Center for Biomedical Imaging, Geneva University Hospitals, Geneva, Switzerland, ^hCIBM Center for Biomedical Imaging, Geneva University Hospitals, Geneva, Switzerland, ^hCIBM Center for Biomedical Imaging, Geneva University Hospitals, Geneva, Switzerland, ^hCIBM Center for Biomedical Imaging, Geneva University Hospitals, Geneva, Switzerland, ^hCIBM Center for Biomedical Imaging, Geneva University Hospitals, Geneva, Switzerland, ^hCIBM Center for Biomedical Imaging, Geneva University Hospitals, Geneva, Switzerland

BACKGROUND

Alzheimer's Disease (AD) is characterized by the development of amyloid plaques (A), tau tangles (T), and neurodegeneration (N), which

- can be assessed by Positron Emission Tomography (PET).
- Sex differences and hormonal status contribute to biological variations in AD expression, and has been shown to modulate risk factors and potential disease-causing mechanisms.
- Greater burden of AD neuropathology in females is more consistently reported by PET for tau than amyloid plaques.

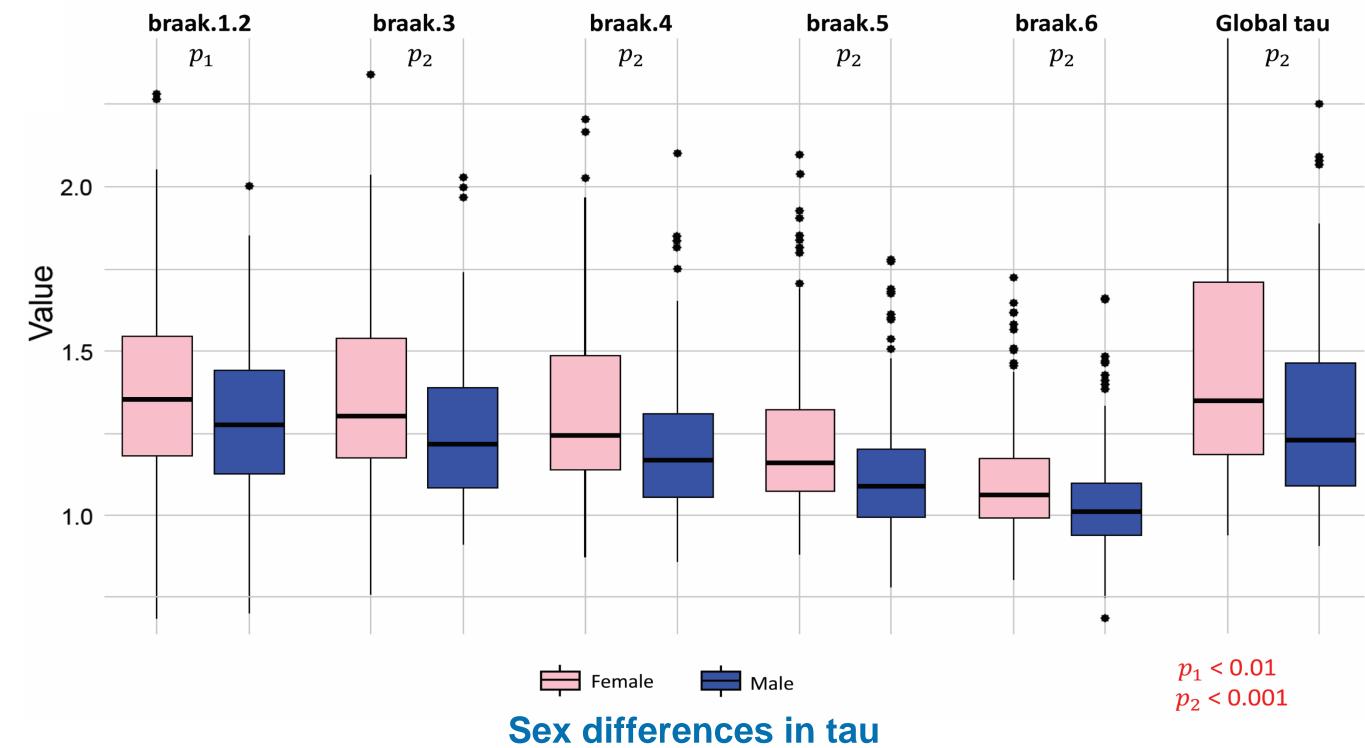

AIMS


To explore differences between sexes and within females in memory clinic cohorts using in-vivo molecular biomarkers demonstrated by PET.

METHODS

- **Sample:** 315 subjects (246 from HUG and 69 from CHUV).
- **Cognitive measures:** Mini Mental State Examination (MMSE)
- **Neuroimaging measures:** florbetapir (18F) or flutametamol (18F) for Aβ-PET; flortaucipir (18F) for tau-PET
- Blood measure: Glial Fibrillary acidic protein (GFAP) for astrocyte reactivity.
- **Statistical analyses:** t-tests and chi-square tests for sex differences, and female differences in pathological markers including Centiloid, global tau, and tau in Braak stages.

	Female	Male	P-value
Total Participants	156	159	
Age (mean ± std)	69.65 ± 9.38	70.08 ± 8.59	0.67
Education Years (mean \pm std)	13.27 ± 3.82	14.07 ± 4.15	0.084
MMSE Score (mean ± std)	24.90 ± 4.46	25.04 ± 4.92	0.79
Diagnosis Stage (CU/MCI/DEM)	45/70/41	29/86/44	0.33
APOE4 (carriers/non carriers) [NA]	39/51 [66]	24/59 [76]	0.07
Global tau (mean \pm std)	1.45 ± 0.34	1.29 ± 0.27	<0.001
Centiloid (mean \pm std)	44.7 ± 48.5	40.8 ± 48.1	0.571
Hippocampal Volume (mean ± std)	0.0021 ± 0.0006	0.0021 ± 0.0005	0.39
Blood GFAP (mean \pm std)	202 ± 116	170 ± 112	0.097



Linear regression models to assess the correlation between age at menopause and number of children and biomarkers

Centiloid Global tau

RESULTS

- No significant differences were found in Aβ Centiloid between females and males.
- Females showed higher tau load than males.

- No significant association were found between age at menopause and biomarkers.
- No significant association were found between number of children and biomarkers except for the blood GFAP that was negatively correlated (p= 0.014).

	Age at Menopause ≥ 45	Age at Menopause < 45	P-value
Total Participants	41	11	
Age (mean \pm std)	69.73 ± 7.68	69.36 ± 4.75	0.36
Education Years (mean \pm std)	13.3 ± 4.47	15.8 ± 3.95	0.039
MMSE Score (mean \pm std)	24.8 ± 4.29	26.6 ± 3.07	0.20
Diagnosis Stage (CU/MCI/DEM)	14/19/8	5/3/3	<0.001
APOE4 (carriers/non-carriers) [NA]	19/15 [7]	3/5 [3]	<0.001
Global tau (mean \pm std)	1.41 ± 0.36	1.38 ± 0.43	0.86
Centiloid (mean \pm std)	44.6 ± 45.4	68.3 ± 54.9	0.32
Hippocampal Volume (mean \pm std)	0.0021 ± 0.0006	0.0025 ± 0.0005	0.076
Blood GFAP (mean \pm std)	227 ± 145	174 ± 57.3	0.17

Exploratory differences in females by age at menopause

CONCLUSION

- Females exhibit higher tau deposition compared to males at the same disease stage suggesting a potential sex-specific vulnerability to tau
 pathology in AD.
- We did not find significant associations between age at menopause and number of children with AD biomarkers, possibly because this
 information was only available in a smaller sample.
- Further investigations exploring hormonal factors are required to understand the mechanisms underlying females' vulnerability.

FACULTÉ DE MÉDECINE

