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a b s t r a c t 

Biophysical models of diffusion in white matter have been center-stage over the past two decades and are essen- 

tially based on what is now commonly referred to as the “Standard Model ” (SM) of non-exchanging anisotropic 

compartments with Gaussian diffusion. In this work, we focus on diffusion MRI in gray matter, which requires 

rethinking basic microstructure modeling blocks. In particular, at least three contributions beyond the SM need to 

be considered for gray matter: water exchange across the cell membrane – between neurites and the extracellular 

space; non-Gaussian diffusion along neuronal and glial processes – resulting from structural disorder; and signal 

contribution from soma. For the first contribution, we propose Neurite Exchange Imaging (NEXI) as an extension 

of the SM of diffusion, which builds on the anisotropic Kärger model of two exchanging compartments. Using 

datasets acquired at multiple diffusion weightings ( b ) and diffusion times ( t ) in the rat brain in vivo , we investigate 

the suitability of NEXI to describe the diffusion signal in the gray matter, compared to the other two possible 

contributions. Our results for the diffusion time window 20–45 ms show minimal diffusivity time-dependence 

and more pronounced kurtosis decay with time, which is well fit by the exchange model. Moreover, we observe 

lower signal for longer diffusion times at high b. In light of these observations, we identify exchange as the 

mechanism that best explains these signal signatures in both low- b and high- b regime, and thereby propose NEXI 

as the minimal model for gray matter microstructure mapping. We finally highlight multi- b multi- t acquisition 

protocols as being best suited to estimate NEXI model parameters reliably. Using this approach, we estimate the 

inter-compartment water exchange time to be 15 – 60 ms in the rat cortex and hippocampus in vivo , which is 

of the same order or shorter than the diffusion time in typical diffusion MRI acquisitions. This suggests water 

exchange as an essential component for interpreting diffusion MRI measurements in gray matter. 
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. Introduction 

The bedrock of biophysical models of diffusion MRI is water com-

artmentalization. Morphologically, there are at least three compart-

ents in brain tissue that are essential for interpreting an MRI mea-

urement. The first one is a collection of micron-thin long and often

ranch-like cellular structures, referred to “cellular processes or pro-

ections ” – either axons, dendrites or glial cell processes. There, water

iffusion is locally unidirectional, and is typically modeled in terms of
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he so-called “sticks ”, i.e., zero-radius cylinders ( Jespersen et al., 2007 ;

roenke et al., 2004 ). The second compartment is cell bodies (soma),

hich are roughly spherical and of ∼15μm in diameter ( Palombo et al.,

021 ). Their size is generally comparable with the typical mean squared

isplacement (the diffusion length) of a water molecule during measure-

ents. The third compartment is the extra-cellular space in which the

rst two are embedded. 

In the white matter (WM), soma are typically neglected due to

heir relatively small density (5–10% ex vivo ) ( Andersson et al., 2020 ;
d. 
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eraart et al., 2020 ). Furthermore, the myelin sheath around axons

ontributes to impermeability (i.e., negligible exchange with the extra-

xonal water) over the diffusion MRI-relevant timescales, and thus

he sought compartmentalization. Biophysical models of diffusion in

M have therefore gained a lot of traction and are essentially based

n what is now commonly referred to as the “Standard Model ” (SM)

 Novikov et al., 2018a , 2019 ) of non-exchanging compartments with

aussian diffusion: a collection of sticks (axons) with some orienta-

ion distribution function (ODF); an anisotropic extra-axonal space sur-

ounding each local fascicle (a bundle of sticks) aligned in a given

irection; and, if relevant, the “free water ” compartment describing

he partial volume contribution of the cerebrospinal fluid (CSF), free

rom the hindrances of the extra-axonal space. Within the SM fam-

ly, a constellation of implementations has been proposed, each with

ts own acronym and its own further simplifying assumptions, e.g., on

he shape of the ODF for fiber fascicles, or on the relations between

he compartmental diffusivities and volume fractions ( Fieremans et al.,

011 ; Jespersen et al., 2010 ; Novikov et al., 2018b ; Reisert et al., 2017 ;

ang et al., 2011 ; Zhang et al., 2012 ). These models are widely used to

haracterize WM microstructure, and are occasionally applied in gray

atter (GM). Physics beyond SM has been revealed in WM, such as the

esidual non-Gaussian diffusion along sticks (axons) ( Arbabi et al., 2020 ;

ieremans et al., 2016 ; Lee et al., 2020a ). 

In this work, we focus on diffusion MRI in GM, which is suffi-

iently distinct from WM morphologically. This implies rethinking ba-

ic microstructure modeling blocks, leading to a different simplified

icture of diffusion MRI-relevant microgeometry ( Jelescu et al., 2020 ;

ovikov, 2021 ; Palombo et al., 2020 ). In particular, at least three con-

ributions beyond the SM need to be considered: 

i) Exchange across the membrane of cellular processes. 

ii) Non-Gaussian diffusion along cellular processes – resulting from

structural disorder. 

ii) Signal contribution from cell bodies (soma). 

For (i), as myelin content is limited in GM, there is growing evi-

ence that water exchange across the neurite membrane cannot be ne-

lected for typical clinical diffusion times (20 < t < 80 ms). Evidence

or the deviation from the impermeable stick model for neurites in GM

nd its relationship to exchange has been highlighted in human cor-

ex, with an estimated characteristic in vivo exchange time of 10–30 ms

 Veraart et al., 2018a , 2020 ). Similar exchange time ranges have been

eported for perfused neonatal mouse spinal cords ( Williamson et al.,

019 ), while other groups have reported longer exchange times of 100–

50 ms in astrocyte and neuron cultures ( Yang et al., 2018 ), rat brain

 Quirk et al., 2003 ) and rat brain cortical cultures ( Bai et al., 2018 ).

uch shorter exchange times (3–5 ms) have been recently reported in

he rat brain ex vivo ( Olesen et al., 2022 ). 

For (ii), the intra-compartment structural disorder along the effec-

ively one-dimensional neurite has been suggested in the rat brain in

ivo based on the power law exponent 𝜗 = 

1 ∕ 2 ( Novikov et al., 2014 ) in

scillating-gradient diffusion MRI data of ( Does et al., 2003 ), at time

cales (0.4–10 ms) long relative to the correlation length, but shorter

han typical PGSE (Pulsed Gradient Spin Echo) diffusion times. Re-

ently, a related kurtosis time-dependence with the same exponent,

( 𝑡 ) ∝ 𝑡 −1∕2 , was found in the human cortex at long t ( Lee et al., 2020b ).

owever, in that work, the inter-compartment exchange could not be

uled out (generating the sub-leading, faster kurtosis decay 𝐾( 𝑡 ) ∝ 𝑡 −1 at

ong t ), especially in the face of weak-to-absent time-dependent diffu-

ivity within the diffusion time range accessible with PGSE on a clin-

cal scanner (20–100 ms). Notably, structural disorder in the extra-

ellular space is naturally provided by the embedded neurites, which,

iven the three-dimensional nature of diffusion in this compartment,

ould lead to diffusion and kurtosis time-dependence as (ln t )/ t at long

 ( Novikov et al., 2014 ). 

Finally, for (iii), cell bodies (soma) occupy ∼10–20% of gray

atter by volume ( Bondareff and Pysh, 1968 ; Motta et al., 2019 ;
2 
hapson-Coe et al., 2021 ; Spocter et al., 2012 ) and may need to be

odeled, as proposed in a recent three-compartment model (SANDI)

hat accounted for this tissue component by representing soma as im-

ermeable spheres ( Palombo et al., 2020 ). The potential issue of inter-

ompartment exchange was partially circumvented by the use of short

iffusion times ( t < 20 ms). Diffusion in soma was modeled in the Gaus-

ian phase approximation, whereby diffusivity time-dependence in this

ompartment was retained, but higher-order terms (kurtosis and above)

ere neglected. 

Fig. 1 summarizes the picture underlying each model, the expected

unctional forms of time-dependent diffusion and kurtosis in the long-

ime limit as well as the functional form of the powder-averaged signal

t high b . Model details and full expressions of the functional forms are

rovided in the Theory Section. 

This work is organized in two main parts. 

First, we examine the diffusion and kurtosis time-dependence as well

s powder-average signal signature at high b -value in the rat brain in vivo

n order to assess the importance of the effects (i)–(iii) above. Within the

anges of diffusion weightings ( b ) and diffusion times ( t ) explored, we

ighlight negligible diffusivity time-dependence and a time-dependent

urtosis which can be consistent with the t -1 power-law. The two trends

ombined are compatible with exchange, whereby structural disorder

ay be less relevant in modeling rat cortex in this diffusion time range.

ignal decay curves at high b -values and for different diffusion times

re also better accounted for by an exchange term as compared with

dding the soma compartment, as also recently shown in ex vivo rat

ortex ( Olesen et al., 2022 ). 

Second, we therefore propose NEXI (Neurite Exchange Imaging), an

mplementation of the anisotropic Kärger model of exchange accounting

nly for the effect (i) above, as the minimal model suitable for gray mat-

er. We show in simulations that the availability of multi- b multi- t data

s critical for the reliable estimation of model parameters, in particular

f the exchange time. We further demonstrate NEXI performance in ex-

erimental data. Fit stability permitting, the model could be extended to

ccount for a soma fraction as well ( Olesen et al., 2022 ; Palombo et al.,

020 ). 

For our experiments, we exploit the potential of strong preclin-

cal gradients (1 T/m) to probe a range of short to intermediate

iffusion times (10–45 ms) with strong diffusion-weighting (up to

 = 10 ms/μm 

2 ). The GM regions of interest (ROIs) are cortex and hip-

ocampus, with corpus callosum, internal capsule and cingulum serv-

ng as reference WM ROIs. We take advantage of the rat brain anatomy

here cortex is much less affected by partial volume effects with neigh-

oring white matter or CSF than its human counterpart. 

. Methods 

.1. Theory 

Let us first provide a theoretical description of the models sketched

n Fig. 1 , that will be compared throughout this work. 

.1.1. Standard model 

To build a GM model, we begin with the Standard Model

 Novikov et al., 2019 ) of brain tissue composed of two compartments

we will neglect the CSF contribution in what follows, assuming voxels

re devoid of the CSF contamination). In SM, the intra-neurite compart-

ent – occupying a relative signal fraction f – is modeled as a collection

f “sticks ” (zero-radius cylinders) where diffusion is unidirectional with

iffusivity 𝐷 𝑖, ∥. The extra-neurite compartment – the immediate envi-

onment of sticks – is modeled as a Gaussian anisotropic medium with

haracteristic diffusivities 𝐷 𝑒, ∥ and 𝐷 𝑒,⊥ parallel and perpendicular to

he local orientation of neurites, respectively. For a neurite ensemble

oherently oriented along the unit direction n , its signal (response) in

he unit direction g is: 
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Fig. 1. Sketch of relevant features and parameters in the Standard Model, NEXI, SANDI and structural disorder models, along with the associated functional form 

for time-dependence in diffusivity D and kurtosis K , as well as the functional form of the signal decay in the high- b regime. Note that parameters A and B stand for 

constants that are different in each instance. The Standard Model considers a collection of impermeable sticks – occupying a relative signal fraction f – where diffusion 

is Gaussian and unidirectional with diffusivity 𝑫 𝒊 , ∥ and an extra-neurite Gaussian anisotropic compartment with characteristic diffusivities 𝑫 𝒆 , ∥ and 𝑫 𝒆 ,⊥ parallel and 

perpendicular to the local neurite orientation, respectively. ODF anisotropy can be characterized by the 𝒍 = 2 order rotational invariant p 2 or its derived dispersion 

angle 𝒄 2 ≡ ⟨𝒄 𝒐 𝒔 2 𝝍 ⟩ = 2 𝒑 2 +1 
3 

. NEXI considers a collection of randomly-oriented sticks – occupying a relative signal fraction f – where diffusion is unidirectional with 

diffusivity 𝑫 𝒊 , ∥ and an extra-neurite Gaussian isotropic compartment with characteristic diffusivity 𝑫 𝒆 . The two compartments exchange with a characteristic time 

t ex . SANDI considers a similar picture as NEXI, but accounts for a third compartment of spheres of radius R s (occupying a relative fraction f s ) and neglects inter- 

compartment exchange. The structural disorder model assumes a certain type of disorder (here short-range disorder) and its signature in diffusion and kurtosis 

time-dependence, also as a function of the spatial dimensionality in which the disorder is manifest (1D for intra-neurite water, 2D or 3D for extracellular water). 

 

i  |  

r

𝑆  

 

n  

t  

e

2

 

w  

c  

p  

(  

t  

2  

c  

r  

t  

d

  

𝐷

𝑓  

w  

1  

E  

f  

a  

𝑡  

w  

𝑡

 

G  

S  

t  

t  

w  

t  

t  

t  

f  

b

𝑆  

 

i  

f  

s  

t

 

a  

i  

𝐾  

w  

i  
 𝑆𝑀 

(
𝑞, 𝑡, 𝐠 ⋅ 𝐧 ; 𝑓, 𝐷 𝑖, ∥, 𝐷 𝑒, ∥, 𝐷 𝑒,⊥

)
= 𝑓 𝑒 − 𝑞 

2 𝑡 𝐷 𝑖, ∥( 𝐠 ⋅𝐧 ) 2 + ( 1 − 𝑓 ) 𝑒 − 𝑞 
2 𝑡 
(
𝐷 𝑒, ∥( 𝐠 ⋅𝐧 ) 2 + 𝐷 𝑒,⊥

(
1− ( 𝐠 ⋅𝐧 ) 2 

))
(1) 

The signal attenuation (1) for the elementary neurite ensemble and

ts immediate extracellular space is then convolved on the unit sphere

𝐧 | = 1 with the orientation distribution function (ODF) 𝑃 ( 𝐧 ) for the neu-

ites to give the overall SM signal 

 𝑆𝑀 

( 𝑞, 𝐠 , 𝑡 ) = ∫  𝑆𝑀 

(
𝑞, 𝑡, 𝐠 ⋅ 𝐧 ; 𝑓, 𝐷 𝑖, ∥, 𝐷 𝑒, ∥, 𝐷 𝑒,⊥

)
𝑃 ( 𝐧 ) d 𝐧 . (2)

The SM is suitable for white matter, where neurites – mainly myeli-

ated axons – are the dominant structure (vs negligible soma), and

he accepted assumption is to neglect the exchange between intra- and

xtra-neurite spaces due to the myelin sheath. 

.1.2. NEXI: adding exchange to SM 

In the GM, most neurites are unmyelinated and inter-compartment

ater exchange across the cell membrane may be non-negligible for

linical diffusion times ( t > 20 ms). A model of two exchanging com-

artments, one being the collection of isotropically oriented neurites

sticks) and the other being the extra-neurite space, is built based on

he anisotropic Kärger model for a coherent fiber tract ( Fieremans et al.,

010 ; Kärger, 1985 ). Namely, the signal (response) from an elementary

oherent ensemble of “neurite + its proximal extracellular space ” is the

esult of mixing two anisotropic Gaussian compartments in Eq. (1) by

he barrier-limited exchange, with the rates 𝑟 𝑖𝑒 and 𝑟 𝑒𝑖 related by the

etailed balance condition 𝑓 𝑟 𝑖𝑒 = ( 1 − 𝑓 ) 𝑟 𝑒𝑖 : 

 

(
𝑞, 𝑡, 𝐠 ⋅ 𝐧 ; 𝑓, 𝐷 𝑖, ∥, 𝐷 𝑒, ∥, 𝐷 𝑒,⊥, 𝑡 𝑒𝑥 

)
= 𝑓 ′𝑒 − 𝑞 

2 𝑡𝐷 ′
𝑖 + 

(
1 − 𝑓 ′

)
𝑒 − 𝑞 

2 𝑡𝐷 ′𝑒 (3)

 

′
𝑖 ∕ 𝑒 

= 

1 
2 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝐷 𝑖 + 𝐷 𝑒 + 

1 
𝑞 2 𝑡 𝑒𝑥 

∓ 

[ [ 
𝐷 𝑒 − 𝐷 𝑖 + 

2 𝑓 − 1 
𝑞 2 𝑡 𝑒𝑥 

] 2 
+ 

4 𝑓 ( 1 − 𝑓 ) 
𝑞 4 𝑡 2 

𝑒𝑥 

] 

1 
2 
⎫ ⎪ ⎬ ⎪ ⎭ 

(4) 

 

′ = 

1 
𝐷 

′ − 𝐷 

′

[
𝑓 𝐷 𝑖 + ( 1 − 𝑓 ) 𝐷 𝑒 − 𝐷 

′
𝑒 

]
(5)
𝑖 𝑒 

3 
here 𝐷 𝑖 ≡ 𝐷 𝑖, ∥( 𝐠 ⋅ 𝐧 ) 2 , 𝐷 𝑒 ≡ 𝐷 𝑒, ∥( 𝐠 ⋅ 𝐧 ) 2 + 𝐷 𝑒,⊥( 1 − ( 𝐠 ⋅ 𝐧 ) 2 ) and 𝑡 𝑒𝑥 =
∕ 𝑟 , with 𝑟 = 𝑟 𝑖𝑒 + 𝑟 𝑒𝑖 . In other words, the bi-exponential expression in

q. (3) is reminiscent of the SM expression in Eq. (1) , but with apparent

ractions and diffusivities that depend on all model parameters as well

s on diffusion wavenumber q and on the characteristic exchange time

 𝑒𝑥 . Eqs. (3) –(5) are valid in the narrow pulse approximation. In this

ork this approximation is a posteriori justified with estimated values of

 𝑒𝑥 notably exceeding pulse width 𝛿. 

In principle, the response function (3) should be convolved with the

M neurite ODF to get the overall signal in direction 𝐠 , as in Eq. (2) .

ince diffusion anisotropy in GM can be variable across cortical layers,

hough overall negligible (FA~0.15), we choose to consider the orien-

ational average (the so-called powder average) of the signal instead,

hich is independent of the ODF. By the same token, we further assume

he extra-neurite space to be isotropic 𝐷 𝑒, ∥ = 𝐷 𝑒,⊥ ≡ 𝐷 𝑒 . This approxima-

ion helps reduce the number of parameters to be estimated and raises

he precision on the remaining ones. The model parameters are there-

ore 𝐩 = [ 𝑓, 𝐷 𝑖, ∥, 𝐷 𝑒 , 𝑡 𝑒𝑥 ] ( Fig. 1 ). Hence, the model signal equation, to

e fit to the powder-averaged measured signal 𝑆̄ , is: 

̄
 ( 𝑞, 𝑡 ) = 𝑆 |𝑞=0 ⋅ 1 

∫
0 
 ( 𝑞, 𝑡, 𝐠 ⋅ 𝐧 ; 𝐩 ) 𝑑 ( 𝐠 ⋅ 𝐧 ) (6)

Technically, this means that we are only using the 𝑙 = 0 rotational

nvariant of the overall directional signal, and discarding potential in-

ormation residing in 𝑙 = 2 , 4 , … invariants. Nonetheless, the latter are

mall in GM, and are not expected to contribute much information to

he original directional signal. 

We call this implementation, Eqs. (3) –(6) , NEXI. 

NEXI kurtosis. One of the assumptions behind the Kärger model,

nd thus behind NEXI, is time-independent diffusivity. If this condition

s met, the NEXI kurtosis of Eq. (6) (see Appendix for the derivation) is:

 ( 𝑡 ) = 𝐾 0 ⋅
2 𝑡 𝑒𝑥 
𝑡 

[ 
1 − 

𝑡 𝑒𝑥 

𝑡 

(
1 − 𝑒 − 𝑡 ∕ 𝑡 𝑒𝑥 

)] 
+ 𝐾 ∞. (7)

It has two contributions: the inter-compartment heterogeneity ∼ 𝐾 0 
hich decays to zero as 1/ t at long times 𝑡 ≫ 𝑡 𝑒𝑥 as a result of exchange,

dentical to that found in Fieremans et al. (2010) , Jensen et al. (2005) ;
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p

nd the constant offset 𝐾 ∞ that captures potential residual sources of

urtosis in the limit 𝑡 ≫ 𝑡 𝑒𝑥 . Residual kurtosis could stem from partial

olume (macroscopic heterogeneity) within a voxel (in our experiment,

his is deemed small due to homogeneity of rat GM at our imaging reso-

ution) and, in the case of powder-averaged signal, from non-exchanging

icroscopic anisotropic structures ( Szczepankiewicz et al., 2016 ). In-

eed, the powder-averaged signal, Eq. (6) , has residual kurtosis, as de-

ived in the Appendix; it originates from the assumption that exchange

appens only within a local neighborhood, between a single stick (neu-

ite) and its accompanying extracellular space. The actual tissue ge-

metry may differ from this latter assumption. If multiple sub-units of

neurite + extracellular space ” with different orientations fall within the

ame volume ∼ 𝐿 

3 ( 𝑡 ) , where 𝐿 ∼
√
6 𝐷 𝑒 𝑡 is the diffusion length, then ex-

hange can occur across multiple neurites. Since the extra-cellular space

s a connected medium, at long times 𝑡 ≫ 𝑡 𝑒𝑥 , exchange would coarse-

rain the medium fully, yielding 𝐾 ∞ = 0 . 
We note that the absence of exchange across multiple neurites is a

athematical construct to make the problem solvable from an analyt-

cal point of view. A plausible picture is naturally one with exchange

cross multiple neurites, given the random orientations of neurites and

he tight network they constitute. This plausible picture led us to assume

sotropic ECS diffusion and 𝐾 ∞ = 0 . At reasonably short diffusion times

s the ones used here, the two pictures are compatible, but for longer

iffusion times, exchange across multiple neurites is of course expected.

Finally, we also note that even for anisotropically oriented neurites,

he kurtosis of the non-powder-averaged signal will have the functional

orm of Eq. (7) , with the parameters 𝐾 0 and 𝐾 ∞ depending on the

DF but the exchange time being ODF-independent. Hence, we will use

q. (7) to analyze mean kurtosis. Fitting Eq. (7) to the measured mean

urtosis can provide a complementary estimate of 𝑡 𝑒𝑥 stemming from

he low- b regime (within the convergence radius of the cumulant ex-

ansion), to be compared to the one from the full NEXI model Eq. (6).

e label this estimate 𝑡 𝐾( 𝑡 ) 
𝑒𝑥 . 

High- b scaling. An independent hallmark of the model (3)–(6) is the

unctional form 

̄
 |𝑏 →∞ = 

√ 

𝜋

4 
𝑓 √
𝑏 𝐷 𝑖, ∥

𝑒 
− 𝑡 ( 1− 𝑓 ) 

𝑡 𝑒𝑥 

×

[ 

1 + 

2 ( 1 − 𝑓 ) 𝑡 ∕ 𝑡 𝑒𝑥 + 𝑓 ( 1 − 𝑓 ) 
(
𝑡 ∕ 𝑡 𝑒𝑥 

)2 
𝑏 𝐷 𝑒,⊥

+ 𝑂 

( 

1 
𝑏 2 

) 

] 

(8) 

f its expansion in the inverse powers of the diffusion weighting param-

ter 𝑏 = 𝑞 2 𝑡 . The first term in the square brackets, corresponding to 𝑏 −1∕2 

ecrease, is the signature of impermeable sticks ( Callaghan et al., 1979 ;

cKinnon et al., 2017 ; Veraart et al., 2019 ). The subsequent 𝑏 −3∕2 term

rises due to slow exchange, such that 𝑡 ∕ 𝑡 𝑒𝑥 ≪ 𝑏𝐷, where 𝐷 is the small-

st of the compartment diffusivities; the lower bound is practically set

y 𝐷 𝑒,⊥ = 𝐷 𝑒 . The ∼ 𝑡 ∕ 𝑡 𝑒𝑥 term was obtained by Veraart et al. (2020) ,

nd the ∼ ( 𝑡 ∕ 𝑡 𝑒𝑥 ) 2 term by Olesen et al. (2022) . 

We note that the Kärger Model is treated in the narrow pulse ap-

roximation regime. This condition translates into 𝛿 ≪ 𝑡 𝑒𝑥 , which will be

ustified a posteriori by comparing experimental values of 𝛿 = 4 − 4 . 5 ms
nd 𝑡 𝑒𝑥 = 20 − 40 ms . However, a numerical solution to the Kärger model

n the finite pulse regime ( Olesen et al., 2022 ) could be implemented in

he case of longer diffusion pulses (or shorter exchange times). 

.1.3. Structural disorder 

The assumption of Gaussian compartments may break in the pres-

nce of irregularities on length scales similar to the diffusion length,

uch as dendritic spines and neurite beading. While there is no analyt-

cal formula to describe the signal in this case exactly, the relative im-

ortance of non-Gaussian effects can be determined by examining the

𝐴̄ 𝑠 

(
𝑏, 𝐷 𝑠 , 𝑅 𝑠 

)
≈ exp 

{ 

− 

2 𝑔 2 𝑅 

4 
𝑠 

𝐷 𝑠 

∞∑
𝑚 =1 

𝛼−4 
𝑚 

𝛼2 
𝑚 
− 2 

⋅

[ 

2 𝛿 −
4 
iffusivity and kurtosis time-dependence at diffusion times 𝑡 ≫ 𝑡 𝑐 , the

ime 𝑡 𝑐 to diffuse past the disorder correlation length ( Novikov et al.,

014 ). In particular, kurtosis should follow a 𝑡 −1∕2 functional form in the

ase of 1-dimensional disorder ( Dhital et al., 2018 ; Lee et al., 2020b ): 

 ( 𝑡 ) |𝑡≫𝑡 𝑐 
≃ 𝐴 ⋅ 𝑡 − 𝜗 + 𝐾 ∞, 𝜗 = 1∕2 (9)

r ( ln 𝑡 )∕ 𝑡 in the case of 2-dimensional disorder ( Burcaw et al., 2015 ;

ee et al., 2020b ). The offset 𝐾 ∞ arises in the case of residual voxel het-

rogeneity in the long-time limit, similar to that in Eq. (7) . If the relevant

orrelation time 𝑡 𝑐 for diffusion across these structural irregularities is

f the order of 𝑡 𝑒𝑥 , the competing effects of coarse-graining over the

tructural disorder and of exchange are both contributing significantly

o the time-dependence of the measured 𝐾( 𝑡 ) , which complicates the

nterpretation ( Lee et al., 2020b ). 

.1.4. SANDI: adding soma 

A three-compartment model (SANDI) was proposed as an extension

f the SM that models the total direction-averaged signal as the sum

f three non-exchanging compartments ( Palombo et al., 2020 ): (i) ran-

omly oriented sticks with intra-stick axial diffusivity 𝐷 𝑖, ∥ and relative

ignal fraction f ; (ii) restriction in sphere of apparent radius 𝑅 𝑠 , fixed

ntra-sphere diffusivity 𝐷 𝑠 = 3 μm 
2 

ms and relative signal fraction 𝑓 𝑠 (mod-

led in the Gaussian phase approximation); (iii) Gaussian isotropic dif-

usion in the extracellular space with diffusivity 𝐷 𝑒 and relative signal

raction 𝑓 𝑒 = 1 − 𝑓 − 𝑓 𝑠 . SANDI provides estimates for the five model

arameters: [ f , 𝑓 𝑠 , 𝐷 𝑖, ∥, 𝐷 𝑒 , 𝑅 𝑠 ] which by design should be independent

f diffusion time. The direction-averaged SANDI signal is: 

𝑆̄ ( 𝑏 ) 
𝑆 ( 0 ) 

= 𝑓 ⋅

√ 

𝜋

4 
1 √
𝑏 𝐷 𝑖, ∥

erf 
(√ 

𝑏 𝐷 𝑖, ∥

)
+ 𝑓 𝑠 ⋅ 𝐴̄ 𝑠 

(
𝑏, 𝐷 𝑠 , 𝑅 𝑠 

)
+ 𝑓 𝑒 ⋅ 𝑒 

− 𝑏 𝐷 𝑒 

(10) 

here 

 𝑠 

(
2 + 𝑒 − 𝛼

2 
𝑚 𝐷 𝑠 ( Δ− 𝛿) ∕ 𝑅 

2 
𝑠 − 2 𝑒 − 𝛼2 𝑚 𝐷 𝑠 𝛿∕ 𝑅 2 𝑠 − 2 𝑒 − 𝛼2 𝑚 𝐷 𝑠 Δ∕ 𝑅 2 𝑠 + 𝑒 − 𝛼

2 
𝑚 𝐷 𝑠 ( Δ+ 𝛿) ∕ 𝑅 

2 
𝑠 

)] } 

ith 𝛿 and Δ the diffusion gradient pulse duration and separation, re-

pectively, g the product of diffusion gradient amplitude and gyromag-

etic ratio, 𝛼m 

the m-th root of 1 2 𝐽 3 2 
( 𝛼) = 𝛼𝐽 ′3 

2 

( 𝛼) , and J n (x) the Bessel

unction of the first kind. In practice, summation up to m = 20 roots is

ufficient for a good approximation. 

.2. Experimental 

Animal experiments were approved by the Service for Veterinary

ffairs of the canton of Vaud. Six Wistar rats (Charles River) weigh-

ng 250–300 g were scanned on a 14 T Bruker system equipped with

 T/m gradients (Resonance Research Inc.) using a home-built surface

uadrature transceiver. Rats were set up and maintained under isoflu-

ane anesthesia, and body temperature was monitored and maintained

round 38 °C for the duration of the experiment. Diffusion MRI data

ere acquired using a PGSE EPI sequence, with parameters provided

n Table 1 . All six datasets were used to assess the behavior of time-

ependent diffusion and kurtosis, while four datasets (labeled 1–4) were

sed for high- b signal analysis, SANDI and NEXI estimations. In datasets

 and 6 we prioritized a larger number of diffusion times over b -values

o capture trends in D ( t ) and K ( t ). 

Images were denoised using MP-PCA and corrected for Rician bias

 Veraart et al., 2016b , 2016a ), for Gibbs ringing ( Kellner et al., 2016 )

nd for motion ( Jenkinson et al., 2002 ). No strong distortions due to

ddy currents were observed. 

ROIs in both white matter – internal capsule (IC), corpus callosum

CC) and cingulum (Cg) – and gray matter – cortex (CTX) and hippocam-

us (HPC) – were manually drawn. 
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Table 1 

Acquisition parameters for the six datasets included in this study. 

# Datasets 3 1 1 1 

Dataset label 1–3 4 5 6 

TE (ms) 50 58 52 58 

𝛿 (ms) 4.5 4.5 4 4 

Δ (ms) 12, 20, 30, 40 11, 25, 45 10, 15, 20, 25, 30, 40 10, 15, 20, 25, 30, 35, 40, 45 

b -values (ms/um 

2 ) 1, 2.5, 4, 5.5, 7, 8.5, 10 1, 2.5, 5, 6, 7, 8, 9, 10 1, 1.8, 2.5 1, 1.4, 2.5 

Dirs. per shell 24 24 24 24 

TR (ms) 2500 3000 2500 3000 

In-plane res (mm 

2 ) 0.2 × 0.2 0.25 × 0.25 0.2 × 0.2 0.25 × 0.25 

Slice thickness (mm) 0.5 0.8 0.5 0.8 
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.3. Impact of each contribution (i)–(iii): exchange, structural disorder & 

oma 

Standard Model : To examine potential time-dependence and b -

ange dependence of SM estimates in various brain regions, for the four

atasets with b max = 10 ms/μm 

2 , the SM parameters were estimated for

ach diffusion time using likelihood maximization in the rotational in-

ariant framework RotInv using up to 𝑙 = 4 ( Novikov et al., 2018b ) on

arious data subsets ( b max = 2.5, 6 or 10). RotInv was implemented in

atlab using non-linear least-squares minimization with a trust-region-

eflective algorithm (‘lsqnonlin’ function). The 𝐷 𝑖, ∥ > 𝐷 𝑒, ∥ solution was

avored by choosing a random algorithm initialization that met this in-

quality. The time- and b max - dependence of model parameters were

valuated in the various brain ROIs. Notable time-dependence of SM

arameter estimates was tested via the slope – and its uncertainty – of

 simple linear regression. 

Time-dependent diffusion and kurtosis : To determine the extent

o which inter-compartment exchange and/or structural disorder are

elevant in various brain regions, diffusion and kurtosis tensors were

stimated for each diffusion time using shells up to b = 2.5 ms/μm 

2 

nd a weighted linear least-squares algorithm custom-written in Matlab

 Veraart et al., 2013 ), from which mean diffusivity and kurtosis were

erived. The time-dependence of these metrics was evaluated in the

arious brain ROIs. Notable time-dependence of diffusivities was first

ested via the slope – and its uncertainty – of a simple linear regression.

o establish the dominant power-law of 𝐾( 𝑡 ) decay, Eq. (9) with vari-

ble 𝜗 was fit to the experimental 𝐾( 𝑡 ) using the ‘lsqnonlin’ function a

rust-region reflective algorithm in Matlab. The Kärger time-dependent

urtosis, Eq. (7) , was also fit to the experimental 𝐾( 𝑡 ) , either allowing

or nonzero 𝐾 ∞ or setting it to zero. The 1D structural disorder func-

ional form ( Eq. (9) with 𝜗 = 1∕2 ) was also fit to the measured 𝐾( 𝑡 ) for

omparison. 

For SM estimates, as well as for 𝐷( 𝑡 ) and 𝐾( 𝑡 ) , the uncertainty on fit

arameters was estimated using a bootstrapping method where random

oise with variance equal to the residual variance was added to the

atapoints for N = 1000 realizations, from which mean and standard

eviation of the estimated parameters were extracted. 

Soma vs exchange : The signal was averaged over each shell 𝑆̄ ( 𝑏, 𝑡 )
o fit either the SANDI model, Eq. (10) ( Palombo et al., 2020 ), for each

iffusion time t separately, or the NEXI model, for all diffusion times t

ointly (see Section 2.4 on NEXI parameter estimation below). 

The SANDI fit was performed using its implementation in the accel-

rated microstructure imaging via convex optimization (AMICO) frame-

ork in Python 3.5 ( Daducci et al., 2015 ), publicly available at : https:

/github.com/daducci/AMICO/wiki/Fitting- the- SANDI- model . Briefly,

MICO ( Daducci et al., 2015 ) rewrites Eq. (10) as a linear system A x = y ,

here A = [ A stick , A sphere , A extra ] is a matrix whose columns contain sim-

lated signals of each compartment (stick, sphere or isotropic Gaussian),

 is the vector of measured signals, and x the unknown contributions.

o build A , we used a dictionary of signals simulated using: 5 values

f 𝐷 𝑖, ∥ linearly spaced within the interval [0.25, 3] μm 

2 /ms (namely

 stick ) for A stick ; 5 values of 𝑅 𝑠 linearly spaced within the interval [1,

2] μm (namely p sphere ) for A sphere ; and 5 values of 𝐷 𝑒 linearly spaced
5 
ithin the interval [0.25, 3] μm 

2 /ms (namely p extra ) for A extra . The el-

ments of x are then estimated using non-negative least squares with

ikhonov regularization ( Efron et al., 2004 ) (regularization parame-

er 𝜆2 = 0.005) using the Lasso function implemented in the SPAMS

ptimization toolbox ( http://spams-devel.gforge.inria.fr ). From x , we

hen computed the SANDI model parameters as: 𝑓 = 

∑5 
𝑖 =1 𝑥 𝑖 ∑15 
𝑖 =1 𝑥 𝑖 

; 𝑓 𝑠 = 

∑10 
𝑖 =6 𝑥 𝑖 ∑15 
𝑖 =1 𝑥 𝑖 

;

 𝑖, ∥ = 

∑5 
𝑖 =1 𝑥 𝑖 𝑝 𝑠𝑡𝑖𝑐𝑘, 𝑖 ∑5 

𝑖 =1 𝑥 𝑖 
; 𝑅 𝑠 = 

∑10 
𝑖 =6 𝑥 𝑖 𝑝 𝑠𝑝ℎ𝑒𝑟𝑒, 𝑖 ∑10 

𝑖 =6 𝑥 𝑖 
; 𝐷 𝑒 = 

∑15 
𝑖 =11 𝑥 𝑖 𝑝 𝑒𝑥𝑡𝑟𝑎, 𝑖 ∑15 

𝑖 =11 𝑥 𝑖 
. The fit pro-

ided estimates for the five model parameters: [ 𝑓 , 𝑓 𝑠 , 𝐷 𝑖, ∥, 𝑅 𝑠 , 𝐷 𝑒 ] in

he cortex and hippocampus at each investigated diffusion time. The de-

endence of SANDI model parameters on diffusion time was quantified

y computing the mean percentage difference of parameter estimates at

ach time with respect to the shortest diffusion time ( t = 12 ms), and,

n parallel, by performing one-way ANOVA as a function of time and re-

orting the significant differences pairwise for available diffusion times.

inally, the significance of a linear trend of model parameters over time

as also calculated. 

The SANDI parameter estimates at the shortest diffusion time were

lso used to predict the signal decay in the cortex at longer diffu-

ion times, and compared to experimental outcomes, as suggested in

lesen et al. (2022) . 

The NEXI fit was performed using a non-linear least-squares (NLLS)

ptimization based on a quasi-Newton algorithm without constraints,

mplemented as ‘fminunc’ function in Matlab. 

The performance of SANDI and NEXI to capture the deviation from

he stick model at high b -values and the qualitative signal decay curves

cross multiple diffusion times was evaluated and compared. 

.4. NEXI parameter estimation 

Simulations: Synthetic signals ( N = 10 4 ) were generated based on

qs. (3) –(6) assuming a protocol of b = 0 and seven shells at b = 1,

.5, 4, 5.5, 7, 8.5 and 10 ms/μm 

2 , four diffusion times ( t = 12, 20, 30,

0 ms) and a realistic SNR level of 100 – as estimated from experimen-

al data in cortex following MP-PCA denoising and powder-averaging

see Experimental paragraph below. The ground truth was either fixed

o [ 𝑡 ex , 𝐷 i , ∥, 𝐷 e , 𝑓 ] = [ 20 , 2 . 5 , 0 . 75 , 0 . 34 ] with only the noise realization

hanging for each iteration, or randomly chosen within physical ranges,

hat is 𝑡 𝑒𝑥 ∈ [ 5 , 120 ] , 𝐷 i , ∥ ∈ [ 1 . 5 , 3 ] , 𝐷 𝑒 ∈ [ 0 , 1 . 5 ] and 𝑓 ∈ [ 0 . 1 , 0 . 9 ] , thus

nforcing the 𝐷 𝑖, ∥ > 𝐷 𝑒 solution of the NEXI model. The exploration of

isjoint intervals with 𝐷 𝑖, ∥ > 𝐷 𝑒 was supported by experimental data

here, when repeating the NEXI estimation by varying the algorithm

nitialization (within full ranges 𝐷 i , ∥, 𝐷 𝑒 ∈ [ 0 , 3 ] ) the mode of the out-

ome distribution yielded 𝐷 𝑖, ∥ > 𝐷 𝑒 in both cortex and hippocampus

see Results and Fig. S9). 

Parameter estimation was done either based on the signals for each

iffusion time separately (as in standard multi-shell datasets) or jointly.

LLS used a trust-region-reflective algorithm with box constraints for

ulti-shell data and quasi-Newton algorithm without constraints for

ulti-shell multi- t data. We also tested the performance of a deep learn-

ng (DL) algorithm for parameter estimation, in terms of precision and

ccuracy with respect to the more widespread NLLS approach, in the

https://github.com/daducci/AMICO/wiki/Fitting-the-SANDI-model
http://spams-devel.gforge.inria.fr
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Fig. 2. Time-dependence of SM parameters, also as a function of maximum b -value available, in two GM ROIs: cortex and hippocampus. Symbols: mean ± std across 

rats. Solid line: linear fits. 
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erspective of providing a fast implementation of NEXI with on-the-fly

stimation of model parameter maps (Supplementary Methods). 

Impact of b range . In the case of the joint diffusion times fit, we

urther evaluated the impact of the maximum b -value on NEXI estimates

y retaining only subsets of the data for the estimation: b max = 2.5 (2

hells), 5.5 (4 shells), or 10 ms/μm 

2 (7 shells). For completeness, we also

ompared the performance of the estimation for datasets with variable

 max but same number of equally spaced shells (N shells = 7). 

Experimental : The signal was averaged over each shell 𝑆̄ ( 𝑏, 𝑡 ) to be

sed for NEXI parameter estimation. All four model parameters were

stimated with NLLS (and DL) by using all shells and diffusion times

ointly. This joint fit was performed on a voxel-wise basis to generate

arametric maps. The 𝑡 𝑒𝑥 estimate from NEXI was also compared to 𝑡 𝐾( 𝑡 ) 
𝑒𝑥 .

The NLLS fit was unconstrained. To test the impact of algorithm

nitialization on the outcome, NEXI was fit to the average signal in

ortex and hippocampus (separately) using N = 100 random initial-

zations covering the entire range of physical values for each param-

ter ( 𝐷 i , ∥, 𝐷 𝑒 ∈ [ 0 , 3 ] , 𝑓 ∈ [ 0 , 1 ] , 𝑡 𝑒𝑥 ∈ [ 0 , 100 ] ). Based on this outcome,

he range of NLLS fit initializations was further reduced to ( 𝐷 i , ∥ ∈
 1 . 5 , 3 ] , 𝐷 𝑒 ∈ [ 0 . 5 , 1 . 5 ] , 𝑓 ∈ [ 0 . 1 , 0 . 9 ] , 𝑡 𝑒𝑥 ∈ [ 5 , 60 ] ) to limit the impact

f spurious noise-driven minima in voxel-wise fits. 

The agreement between membrane permeability estimates derived

rom the experimental t ex values and existing literature for physiologi-

ally relevant membrane permeability values in healthy cells were com-

ared. 

.5. Histology 

A fixed brain sample from a 6 month-old rat was cut into 30 μm-

hick slices using a cryomicrotome, and positioned on glass slides. Then,

mmunohistochemical stainings were performed to label various mi-

rostructure features. After a step of blocking non-specific antigens with

onkey serum 5% buffer, with detergent (Triton, Sigma Aldrich, X-100,

% 2 h incubation), a quadruple staining was prepared. It included la-

eling for microglial cells (anti-Iba 1, AbCam ab5076, 1/500 dilution),

strocytes (anti-GFAP, AbCam, ab7260, 1/500 dilution), neuron micro-

laments (anti-NF, AbCam ab4680, 1/2000 dilution) and neuron nuclei

anti-NeuN, Millipore, MAB377X Alexa488, 1/100 dilution). Each an-

ibody was incubated for one hour, followed by two steps of washing

ith PBS. Secondary antibodies were incubated at the same time, with

nti-NeuN already coupled with Alexa488. We used donkey anti-chicken

y5 (Millipore, AP194C), donkey anti-rabbit Alexa350 (ThermoFisher,

710039) and donkey anti-goat Alexa647 (AbCam, ab150135). 

Slices were mounted with Permafluor (ThermoFisher, TA-030-Fr),

hen fluorescence microscopy images acquired with an Axio Vision Ob-

erver microscope at x20 magnification (Carl Zeiss). 
6 
The patterns of staining intensity across the brain (mainly cortex and

ippocampus) were compared to patterns of NEXI model parameters, in

articular neurite density f . 

. Results 

.1. Impact of exchange, structural disorder and soma 

.1.1. Time-dependent standard model parameters in GM and WM 

To underline the limits of applicability of the Standard Model,

qs. (1) and (2) , we evaluated SM parameter estimates in GM vs WM

OIs at different diffusion times and b -value ranges. 

Geometric parameters f and c 2 . The apparent intra-neurite water

raction f decreased with increasing diffusion time irrespective of b max 

n both GM ( Fig. 2 ) and WM ( Fig. S1 ). The decrease had a slow rate of

2 – 3) ⋅10 − 3 ms − 1 for all ROIs ( Table S1 ), which would translate into

n underestimation of the fraction by 0.2 points for a diffusion time

f 100 ms. Neurite alignment c 2 increased with diffusion time, most

arkedly in GM. 

Compartment diffusivities. The trends for compartment diffusivi-

ies as a function of diffusion time and b max were more complex. Signifi-

ant decreases in parallel diffusivities (both intra- 𝐷 𝑖, ∥ and extra-neurite

 𝑒, ∥) with longer times were found in GM, but much more markedly

eyond the second-order cumulant expansion regime ( b max ≥ 6 ( Fig. 2 ,

able S1 ). The extra-axonal radial diffusivity 𝐷 𝑒,⊥ increased with longer

imes only for b max ≥ 6. Time-dependence of compartment diffusivities

as less pronounced in WM ROIs than GM ROIs, with only cingulum

howing a reliable trend ( Fig. S1, Table S1 ). 

.1.2. Exchange vs structural disorder: time-dependent diffusion and 

urtosis 

As all SM parameter estimates significantly depended on diffusion

ime in GM ROIs, we explored whether inter-compartment exchange

nd/or intra-compartment non-Gaussian diffusion were relevant mech-

nisms in GM. To this end, we examined the time-dependence of mean

iffusivity and kurtosis. 

All tensor estimates were consistent across animals and displayed a

eproducible ordering of rat brain structures from most coherent to least

oherent: internal capsule had highest anisotropy and kurtosis, followed

y corpus callosum, cingulum, cortex and finally hippocampus. 

No significant time-dependence of diffusivities could be measured

ver the 10–45 ms range, based on slopes of linear fits ( Table S2 ). Fitting

he generic power-law formula ( Eq. (9) with the exponent 𝜗 as a free

arameter) to MD( t ) yielded unreliable estimates with the exception of

 ( Fig. 3 A for GM and Fig. S2 for WM). 
∞
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Fig. 3. Mean diffusivity and kurtosis as a function of diffusion time, in the cortex (Ctx) and hippocampus (Hpc), averaged across animals. Fit parameters (mean ± std) 

for each functional form are collected in the tables. A: Fitting the power-law to MD yielded very large exponent 𝜗 (with high variability), mainly driven by the 

diffusion times 10–20 ms. B: The behavior of MK was markedly different, with a decay throughout the 10–45 ms span. As a result, the power-law fit to MK yielded 

exponent 𝜗 close to 1 (and with reduced variability). C-D: The direct fitting to either the KM kurtosis (imposing 𝑲 ∞ = 0 ) or the 1D structural disorder form ( 𝜗 = 1∕2 ) 
showed both approaches fit the data similarly, though KM kurtosis captures the curve at the longest times (leftmost of x-axis) better. Releasing 𝑲 ∞ = 0 in the KM 

results in a similar curve to 1D disorder but with poorer parameter estimates (3 free parameters instead of 2). [The number of datasets N averaged for each diffusion 

time t is variable: t(N) = 10(2), 11(1), 12(3), 15(2), 20(5), 25(3), 30(5), 35(1), 40(5), 45(2), see also Table 1 ]. 
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Mean kurtosis on the other hand showed marked time dependence

ver the 10–45 ms range ( Fig. 3 for GM and Fig. S2 for WM). The im-

ortant observation is that the exponents of decay of MD(t) and MK(t)

t long times are very different from each other, with MD at a plateau

nd MK still decreasing markedly. While MD(t) may still exhibit some

ime-dependence due to structural disorder at short times ( t < 20 ms),

his effect is practically fully coarse-grained at t > 20 ms such that each

ompartment can be approximated as Gaussian. In contrast, MK(t) has

ustained sources of time-dependence throughout the 20–45 ms interval

uggesting an additional mechanism: inter-compartment exchange. 

We note however that the fit of a three-parameter power-law to the

verage MK(t) from all datasets yielded an exponent between 0.5 and 1,

ith large uncertainty for all three parameters ( Fig. 3 B). Presumably,

 direct comparison of the two possible power laws governing MK( t ) in

he GM, between exchange ( ∼1/ t ) and 1D structural disorder ( ∼1∕ 
√
𝑡 ),

as not conclusive as the long-time limit was likely not reached at the

ongest diffusion time (45 ms); e.g., in the Kärger model the sub-leading

egative 1∕ 𝑡 2 term in Eq. (7) still weighed in significantly (with a numer-

cal value of 0.2–0.3 vs 0.5–0.7 for the leading term, at t = 45 ms and as-

uming 𝑡 𝑒𝑥 ∼ 20 ms), which may explain the curvature for KM kurtosis in

ig. 3 C. Remarkably, fitting MK(t) in each dataset individually yielded

 dominant apparent exponent of 0.3 for the large majority of datasets,

hich was further accompanied by a 𝐾 ∞ = 0 estimate. Simulating time-

ependent MK(t) in the diffusion time range 20 – 45 ms based on the

ärger model of exchange (with 𝐾 0 = 0 . 75; 𝑡 𝑒𝑥 = 25; 𝐾 ∞ = 0 as ground

ruth) and fitting a generic power-law to it also yielded an apparent ex-

onent of 0.3, therefore consistent with our data and the exploration of

n intermediate time regime (Supplementary Fig. S3 ). 

In that regard, the Kärger kurtosis enforcing 𝐾 ∞ = 0 was the func-

ional form that captured best the decay of 𝐾( 𝑡 ) at the longest diffu-

ion times available (leftmost on the plots, Fig. 3 C and D ). Allow-

ng for nonzero 𝐾 ∞ when fitting the NEXI kurtosis ( Eq. (7) ) to the

easured 𝐾( 𝑡 ) yielded extremely large uncertainty on both 𝐾 0 and

 𝑒𝑥 estimates – up to 1800% – obscuring their interpretation com-

letely ( Fig. 3 ). A finite 𝐾 ∞ ∼ 0 . 3 is associated with very short exchange

ime estimates (1 – 3 ms) which (i) are too short to be reliably esti-

ated from our diffusion time range and (ii) correspond to a timescale

here different mechanisms may also come into play, such as structural

isorder. 
d

7 
Setting 𝐾 ∞ = 0 enabled a more robust fit. The 𝐾 ∞ = 0 approxima-

ion is justified in the context of the reasonable picture of a fully mixed

Gaussian) medium in a rat GM voxel at infinitely long diffusion times,

ue to intra-/extracellular exchange and a fully connected extracellular

pace. The GM yielded exchange times in the same range as the diffusion

imes explored and thus with better precision, e.g., 𝑡 𝑒𝑥 = 21 ± 4 ms in

ortex and 𝑡 𝑒𝑥 = 16 ± 3 ms in hippocampus. Estimated exchange times

ere longer ( 𝑡 𝑒𝑥 > 80 ms) in the internal capsule and the corpus callosum

ut were also associated with a fairly large uncertainty ( ∼35%) likely

elated to the inappropriate diffusion time range (10 – 45 ms) to esti-

ate long exchange times. The cingulum (WM) displayed an intermedi-

te behavior between GM and WM, with 𝑡 𝑒𝑥 = 43 ± 24 ms. This suggests

hat the myelin sheath plays a significant role in slowing down inter-

ompartment water exchange – the IC and CC are most myelinated, the

M the least, while CG may be affected by partial volume effects with

eighboring GM due to its thinner structure. 

In light of the possible MD(t) time-dependence for t < 20 ms, we

urther estimated the exchange time by fitting the Kärger kurtosis to

K(t) using t ≥ 20 ms data only, which yielded longer yet consistent

xchange times of 𝑡 𝑒𝑥 = 41 ± 18 ms in cortex and 𝑡 𝑒𝑥 = 28 ± 15 ms in

ippocampus (Supplementary Fig. S3 ). As expected, the diffusion time

ange affects the exchange time estimation and excluding short diffusion

imes yields a longer exchange time estimate. 

.1.3. Exchange vs soma 

To explore whether soma and/or exchange are relevant features to

xplain the diffusion signal in GM, we assessed whether the estimated

ANDI model parameters showed any significant time dependence, and

hen compared the quality of fit and predictions of the SANDI and NEXI

odels at high b -values. 

The SANDI model was applied to GM ROIs at different diffusion times

 Fig. 4 ). We overall observed statistically significant time dependence

f all SANDI model parameters, based on slopes of linear fits ( Table

3 ). However, for all parameters except 𝑅 𝑠 and f , the mean absolute

ercentage differences of the values at each time point with respect to

he first time point at t = 12 ms were within 10% at t = 20 ms, suggesting

hat estimates of those SANDI parameters are stable for t ≤ 20 ms (see

ig. S4 ). In particular, for 𝐷 𝑖, ∥ and 𝐷 𝑒 , this variability drops further

own to within ± 5% for t ≤ 20 ms. 
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Fig. 4. Time-dependence of SANDI model parameters for the ROI in the cortex and hippocampus. Open symbols: mean value; error bars: standard deviation over all 

the voxels within the ROI for each investigated rat. Note that data from Rat #1–3 were acquired at higher resolution (blue, red, yellow – voxel size 0.2 × 0.2 × 0.5 mm 

3 ) 

and different diffusion times than Rat #4 (purple – voxel size 0.25 × 0.25 × 0.8 mm 

3 ). See Table 1 for further details on the acquisition. 

Fig. 5. A. Various models were fit to the average signal in the cortex (Rat #2) at t = 12 ms: SANDI, Eq. (10) , and NEXI, Eq. (6) , covering the full b -value range; the 

impermeable stick approximation (Callaghan’s model); NEXI approximation at high b, Eq. (8) ; and the NEXI-derived diffusivity + kurtosis approximation at low b 

(Appendix). B. Zoom-in of the black framed region in panel A. Both SANDI and NEXI explain the data at a single diffusion time well. Callaghan’s model does not describe 

diffusion signal decay in the cortex appropriately due to the signal’s notable curvature with respect to 𝒃 −1∕2 , cf Eq. (8) . The NEXI low-b and high-b approximations are 

reasonable in their respective regimes. It should be noted the low-b approximation is derived from NEXI parameter estimates obtained over the entire b -value range 

available hence some mismatch with the experimental datapoints. The mismatch is reduced for longer diffusion times, where the Gaussian compartment approximation 

may be more suitable (Fig. S10). Estimated model parameters, underlying the plotted curves: SANDI: 𝒇 = 0 . 22; 𝒇 𝒔 = 0 . 41; 𝑫 𝒊 , ∥ = 2 . 3; 𝑹 𝒔 = 9 . 3; 𝑫 𝒆 = 0 . 54 ; NEXI: 

𝒇 = 0 . 35; 𝑫 𝒊 , ∥ = 3; 𝑫 𝒆 = 0 . 73; 𝒕 𝒆 𝒙 = 20 ; Sticks: 𝒇 = 0 . 25; 𝑫 𝒊 , ∥ = 2 . 4 ; High b NEXI approx.: 𝒇 = 0 . 29; 𝑫 𝒊 , ∥ = 1 . 9; 𝑫 𝒆 = 0 . 35; 𝒕 𝒆 𝒙 = 12 . 
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A one-way ANOVA analysis with Bonferroni correction for multiple

omparison further showed that the estimates of all SANDI model pa-

ameters (except 𝑅 𝑠 ) were not statistically different between t = 12 and

0 ms (see Fig. S5 ). In contrast, 𝑅 𝑠 estimates showed significant in-

rease with increasing diffusion times. This is to some extent expected:

 𝑠 is an MR apparent estimate of the sphere radius, weighted by the tail

f the distribution, and such weighting depends on the pulse timings

 Alexander et al., 2010 ). Therefore, our findings suggest limited bias

ue to exchange at t < ~20 ms for all SANDI model parameters, except

 𝑠 , in vivo in rat. 

Accounting for either a soma compartment or exchange between

eurites and the extracellular space captures well the curvature of the

ignal decay as function of 𝑏 − 
1 
2 , which distinguishes the diffusion be-

avior in gray matter from that in white matter, where 𝑆̄ |𝑏 →∞ ∝ 𝑏 
− 1 2 (an
8 
symptotically straight line). The quality of the fit for SANDI, NEXI and

ther signal approximations at a single diffusion time is shown in an

xample dataset ( Fig. 5 ). 

Remarkably though, a SANDI fit at short diffusion time predicted a

ualitative trend of higher diffusion signals at longer diffusion times,

hile the experimental trend was the opposite. In this respect, the NEXI

odel of exchange explained signal decay curves for multiple diffusion

imes better than SANDI ( Fig. 6 ). 

.2. NEXI parameter estimation 

Since inter-compartment exchange appears to be a relevant mecha-

ism to explain the diffusion signal both in the low-order approximation

nd at high b -values, we assess the performance of NEXI – a biophysi-
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Fig. 6. A. The SANDI model was fit to the average signal in the cortex (Rat #2) at t = 12 ms. Estimated model parameters [ 𝒇 = 0 . 22; 𝒇 𝒔 = 0 . 41; 𝑫 𝒊 , ∥ = 2 . 3; 𝑹 𝒔 = 
9 . 3; 𝑫 𝒆 = 0 . 54 ] were used to predict the signal for longer diffusion times (solid lines), as suggested by Olesen et al. (2021) . Qualitatively, SANDI predicted higher 

signal at longer diffusion times, which was opposite to the experimental pattern of increasingly reduced signal with longer diffusion time (dots). B. The NEXI model 

of exchange was fit to data from all diffusion times jointly (solid lines). The estimated model parameters were [ 𝒇 = 0 . 29; 𝑫 𝒊 , ∥ = 2 . 5; 𝑫 𝒆 = 0 . 74; 𝒕 𝒆 𝒙 = 44 ]. This model 

explained decay curves at different diffusion times well, though the agreement was poorer at the highest b -values, potentially due to an imperfect correction for 

Rician noise floor or to soma. All units in μm, ms and μm 

2 /ms. 

Fig. 7. Simulation results fitting multi-shell data for each diffusion time separately using NLLS, without noise (A) or with SNR = 100 (B). Displayed is the ground 

truth (GT) vs estimation for 10 4 set of random parameters. Markers correspond to the median & IQR in the corresponding intervals. Black lines are the ideal 

estimation ± 10% error. In all cases, the precision is good on 𝑫 𝒆 and acceptable on f. However, in a finite SNR case, 𝑫 𝒊 , ∥ and 𝒕 𝒆 𝒙 cannot be estimated, irrespective 

of the diffusion time. 
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al model of two compartments with exchange – in terms of accuracy

nd precision in simulations, as well as feasibility and sensibility of es-

imated microstructure parameters in experimental rat data in vivo . 

.2.1. Simulations 

We first present the performance of NEXI in simulations, using

qs. (3) –(6) to generate ground truth signal, and estimating the four

odel parameters using conventional NLLS (see Supplementary Mate-

ial for DL-based fitting, Figs. S6 and S7 ). 

Scenario a: Fitting the four model parameters for each diffusion time

eparately. The precision was good on 𝐷 e and acceptable on f . However,

n a finite SNR case, 𝐷 𝑖, ∥ and 𝑡 ex could not be estimated, irrespective of

he diffusion time ( Fig. 7 ). 

Scenario b: Fitting the four model parameters using all diffusion

imes jointly. In all cases, this approach significantly improved the pre-

ision on f and 𝑡 ex compared to Scenario a. Some sensitivity to 𝐷 𝑖, ∥ was

lso restored ( Fig. 8 ). 

Varying b max showed that b -values larger than 2.5 ms/μm 

2 are

eeded for accuracy ( Fig. S8 ). Both accuracy and precision were fur-
9 
her improved for b max = 10 vs 6 ms/μm 

2 but the benefits were less

ubstantial. When inspecting the impact of b max given a constant num-

er of shells, the performance of b max = 10 was still superior to that

f b max = 2.5 in terms of accuracy and precision, confirming it is the

 -value range that is critical for sensitivity to model parameters. 

.2.2. Experimental: in vivo rat GM 

The time-dependence analysis of diffusion, kurtosis and SM metrics

ighlighted the sharp difference in behavior between highly myelinated

hite matter fibers such as the internal capsule and the corpus callosum,

nd GM. Results from the previous sections suggest non-negligible inter-

ompartment water exchange in GM, which should be accounted for by

iophysical models of this type of tissue when working at relatively long

iffusion times ( t > 20 ms). 

Simulation results for NEXI performance in turn suggested the use of

ulti-shell multi- t data was crucial for the reliable estimation of model

arameters, and of the exchange time in particular, for a broad range of

round truth values. 
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Fig. 8. Simulation results fitting multi-shell multi-t d data jointly using NLLS, for random GT (A) or fixed to [ 𝒕 𝒕 𝒉 
𝒆 𝒙 
, 𝑫 

𝒕 𝒉 
𝒊 , ∥, 𝑫 

𝒕 𝒉 
𝒆 
, 𝒇 𝒕 𝒉 ] = [ 20 , 2 . 5 , 0 . 75 , 0 . 34 ] (B). A: Displayed 

are the medians & IQR in each bin. Black lines: ideal estimation ± 10% error. Without noise, NLLS fits all parameters with high accuracy and precision. At SNR = 100, 

uncertainty increases primarily for 𝑫 𝒊 , ∥ and t ex and sensitivity to high t ex values is lost but the performance is much improved compared to single t d fits ( Fig. 7 ). B: 

At SNR = 100, good accuracy is achieved for all NEXI parameters. For 𝑫 𝒊 , ∥ the precision is poor. Black solid line: ground truth. 

Fig. 9. A–D: Four coronal slices of NEXI parametric maps calculated using NLLS from a multi-shell multi- 𝒕 dataset. The maps enable a good differentiation between 

GM & WM as well as between different cortical layers (white arrows) or hippocampal subfields (black arrow). E: Median & IQR of model parameters in the cortex 

and hippocampus ROIs across the four datasets. The exchange time estimate is also compared with 𝒕 𝑲 ( 𝒕 ) 𝒆 𝒙 , Eq. (7) . Experimental trends agree with the simulations. 

Regarding 𝒕 𝑲 ( 𝒕 ) 𝒆 𝒙 , the estimation agrees with 𝒕 𝒆 𝒙 very well for Dataset #4, which had the highest SNR (larger voxels), and is otherwise shorter. 
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Given a dataset comprised of b -values up to 10 ms/μm 

2 and three

o four diffusion times, all NEXI model parameters could be estimated

oth at the ROI and at the single voxel level in the rat GM. 

Testing 100 random initializations on ROI-averaged signal showed

hat the overwhelming mode of the distribution of outcomes corre-

ponded to a solution where 𝐷 i , ∥ > 2 and 𝐷 e < 1 ( Fig. S9 ). 

Parametric maps of NEXI estimates were consistent with expected

euroanatomy of the rat brain ( Fig. 9 A–D ). Simulations predicted the

ariability was largest for 𝑡 ex and 𝐷 i , ∥. ROI-based analysis in the cor-

ex and hippocampus confirmed these trends and also revealed good
10 
etween-subject consistency ( Fig. 9 E ). On average, the intra-neurite dif-

usivity was 2.5 μm 

2 /ms, the extra-neurite diffusivity was 0.75 μm 

2 /ms

nd the neurite fraction was around 0.3. 

For Datasets 1–3, the estimated exchange time 𝑡 ex was higher with

EXI than with 𝑡 𝐾( 𝑡 ) 
𝑒𝑥 : 30–60 ms vs 10–40 ms, respectively, in cortex and

5–65 ms vs 10–25 ms, respectively, in hippocampus. Remarkably, for

ataset 4 (x2.5 voxel volume compared to Datasets 1–3), the two ap-

roaches displayed better agreement and estimates for t ex ranged 10–

0 ms. This comparison is based on fits using the entire diffusion time

ange available. As shown for MK(t), excluding t < 20 ms datapoints
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Fig. 10. Features of NEXI neurite density map features as compared to cellular components obtained from histological stainings: neurofilaments (orange), astrocytes 

(blue), neuron nuclei (green) and microglia (red). The WM is outlined in fine dotted lines for legibility; cortex lies above, hippocampus below. Higher NEXI neurite 

density in central cortical layers agrees with higher density of neurofilament staining (dashed lines). Higher NEXI neurite density in the central part of the hippocampus 

(dorsal dendate gyrus) agrees especially with higher density of astrocytes but also neurofilaments (long-dashed contour). Neuron soma and microglia do not seem 

to contribute to NEXI neurite density contrast. 
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t  
ielded longer exchange times. This can also be expected for NEXI but

as not implemented here for concerns of fit stability and precision. 

The exchange time can be related to the cell membrane permeabil-

ty of a cylinder via 𝑃 = 

𝑑 

4( 𝑡 𝑒𝑥 − 
𝑑 2 

32 𝐷 𝑖, ∥
) 
, where d is the diameter of the

ylinder (neurite) and P is the diffusional water membrane permeability

affected by the properties of the lipids in the membrane and by water-

hannel proteins embedded in the membrane and different from the

smotic permeability, generally larger and measured in the presence of

n osmotic pressure gradient over the membrane) ( Meier et al., 2003 ;

ilsson et al., 2013 ). Given the typical diameter and diffusivity values,

he relationship between exchange time and permeability is very well

pproximated as 𝑃 ≅ 𝑑 

4 𝑡 𝑒𝑥 
. Assuming d ~ [0.5–2] μm, a characteristic

xchange time 𝑡 𝑒𝑥 = [15–60] ms, as estimated here using NEXI, yields P

[2.1–33] x 10 − 3 μm/ms. 

The intra-neurite fraction map displayed substantially larger values

n white matter than gray matter though the model does not in principle

upport white matter (the extra-neurite space cannot be assumed to be

sotropic). This can be explained by the fact that myelin is MR-invisible

n our diffusion MRI measurements (due to the long TE) and the physical

pace occupied by myelin is therefore not considered. Assuming neurite

hysical occupancy fractions are similar in GM and WM, the relative

eurite fraction we estimate is higher in WM because the myelin space

educes the extracellular space. Different T 2 relaxation times in com-

artments between GM and WM could also account for the difference.

he other NEXI parameters were also higher in WM, which is in good

greement with more aligned structures (enabling faster diffusivity) and

onger exchange times in highly myelinated axons. 

All NEXI parameters also showed contrast within GM structures, such

s across cortical layers and hippocampal subfields. Notably, the neurite

raction was higher in central cortical layers, consistent with neurofila-

ent staining in ex vivo rat cortex slices ( Fig. 10 ). A higher NEXI neu-

ite fraction in the central section of the hippocampus (dorsal dendate
11 
yrus) agreed especially with higher astrocyte density in that region,

hich suggests astrocytic processes also contribute to this parameter

ia their similar geometry to neurites, i.e., long, thin structures. 

. Discussion 

In this work, we propose NEXI as an extension of the SM of dif-

usion suitable for GM. NEXI accounts for inter-compartment exchange

etween neurites and the extracellular space, building on the anisotropic

ärger model of two exchanging compartments. Using multi-shell multi-

 datasets acquired in the rat brain in vivo , we investigate the suitability

f NEXI to describe diffusion in the GM, compared to other approaches

uch as SM, structural disorder, or the addition of a soma compartment.

e identify exchange as the mechanism that best explains diffusion-

ime-dependence of signal in both low- b and high- b regime, and thereby

ropose NEXI as the minimal model for GM microstructure mapping.

e finally propose multi- b multi- t acquisitions schemes as best suited to

stimate NEXI model parameters [ 𝑓, 𝐷 𝑖, ∥, 𝐷 𝑒 , 𝑡 𝑒𝑥 ] reliably. 

SM applicability. The presence of exchange yields a spurious time-

ependence of SM parameters. Unsurprisingly, the time-dependence of

eometric parameters for the SM was most marked in GM and cingulum.

he apparent intra-neurite fraction decreased with increasing diffusion

ime. Qualitatively, this can be interpreted as water molecules that leave

he intra-neurite space developing a diffusion signature closer to hin-

ered diffusion – as the extracellular space or large soma – rather than

estricted and unidirectional along the neurite. The neurite alignment

lso increased with longer times. These results suggest that in the SM

he diffusion time acts as a filter that attributes to the intra-neurite space

nly cellular processes (axons, dendrites and glial processes) that can be

onsidered impermeable over that time scale. Arguably, only the more

yelinated and aligned neurites are retained at longer times. 

The time-dependence of SM compartment apparent diffusivi-

ies varied with b -value regime, with more pronounced trends for
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2 and for GM than for WM ROIs. A trend of apparent dif-

usivity decreasing with time can be a signature of either non-Gaussian

iffusion, exchange with a slower compartment or both. A trend of ap-

arent diffusivity increasing with time is a sign of model failure or in-

ufficiency. Essentially, in GM the SM parameters become ill-defined

nd their interpretation in terms of microstructure becomes challeng-

ng. Since exchange is not accounted for, compartment diffusivities 𝐷 𝑖 

nd 𝐷 𝑒 should be interpreted as “apparent ” compartment diffusivities

 

′
𝑖 

and 𝐷 

′
𝑒 
. At 𝑡 → 0 , the two compartments have not mixed at all, a

tandard model fit would yield apparent 𝐷 

′
𝑖 
= 𝐷 𝑖 and 𝐷 

′
𝑒 
= 𝐷 𝑒 , while

̄
 = 𝑓 𝐷 𝑖 + ( 1 − 𝑓 ) 𝐷 𝑒 . In the long-time limit 𝑡 → ∞, the mean diffusiv-

ty 𝐷̄ is unchanged but the compartments are well-mixed. It is unlikely

hat the mixture effect can be absorbed entirely by a decrease in f , and

pparent compartment diffusivities will also be affected: they will each

end to converge towards 𝐷̄ , hence, assuming without loss of generality

hat 𝐷 𝑖 > 𝐷 𝑒 , 𝐷 

′
𝑖 
( 𝑡 → 0 ) > 𝐷 

′
𝑖 
( 𝑡 → ∞) while 𝐷 

′
𝑒 
( 𝑡 → 0 ) < 𝐷 

′
𝑖 
( 𝑡 → ∞) . 

Our analysis confirms that the SM is applicable in thick WM bun-

les. The quantitative estimate of compartment diffusivities may how-

ver depend on the b -value range (the anisotropy of the extra-neurite

ompartment in particular may be exacerbated) and the intra-neurite

raction may decrease with longer times likely by dropping unmyeli-

ated axons in WM. The latter are more numerous in the rodent than in

he human brain ( Wang et al., 2008 ) so this effect may not impact hu-

an brain estimates as much. However, the SM assumptions are likely

ot met in GM and this could also impact WM bundles that have sub-

tantial partial volume with cortex, such as the cingulum. In particular,

hile in the cumulant regime ( 𝑏 < ∼ 2 . 5) 𝑏 ≤ 2 . 5) only a progressive filter-

ng of neurites with increasing time was observed, for higher b -values

pparent compartment diffusivities were also affected, particularly in

he intra-neurite space. 

Exchange vs structural disorder in cortex. Our data show neg-

igible time-dependence of mean diffusivity, over the range of diffu-

ion times 20–45 ms, in the rat GM. This is consistent with previous

eports for the in vivo rat brain by Pyatigorskaya et al. (2014) and ex

ivo mouse brain by Aggarwal et al. (2020) . We note however that pro-

ounced OGSE frequency dependence of diffusivities has been reported

t shorter time scales in rat and mouse cortex ( Aggarwal et al., 2020 ;

oes et al., 2003 ; Pyatigorskaya et al., 2014 ), and, in the case of the

ork by Does et al. (2003) , has been attributed to the neurites based on

he exponent 𝜗 = 1∕2 by Novikov et al. (2014) . 

Weak diffusivity time-dependence has also been highlighted in hu-

an cortical gray matter for diffusion times 21 – 100 ms ( Lee et al.,

020b ). The human brain presents the additional challenge of thin cor-

ical ribbons and thereby relatively strong partial volume with white

atter and CSF in “cortical voxels ”. The rat brain is, from this perspec-

ive, a well-suited model system for exploring cortical properties. We

ote however the weak time-dependence of diffusion is not necessarily

ransposable to other organs, ex vivo conditions and different diffusion

ime ranges. For example, ( Jespersen et al., 2018 ) have shown signif-

cant time-dependence of the diffusion coefficient in fixed pig spinal

ord, for diffusion times 6–350 ms. The negligible time-dependence of

 in our context suggests/validates that, within the cumulant expansion

egime, the tissue can be considered as a collection of Gaussian compart-

ents, one of the main assumptions behind multi-compartment models

f diffusion, and that structural disorder is therefore negligible at our

iffusion time scales. A larger dynamic range of diffusion times, cover-

ng at least a logarithmic decade, may be necessary to detect diffusivity

ime-dependence. 

On the other hand, kurtosis displayed marked time-dependence,

lso in agreement with findings of all afore-mentioned studies

 Aggarwal et al., 2020 ; Jespersen et al., 2018 ; Lee et al., 2020b ;

yatigorskaya et al., 2014 ). Together with the absence of marked time-

ependence of D , the decrease in 𝐾( 𝑡 ) with 𝑡 can be attributed to inter-

ompartment exchange, Eq. (7) ( Fieremans et al., 2010 ; Jensen et al.,

005 ; Kärger, 1985 ) rather than structural disorder, with kurtosis decay-

ng to zero at very long times when compartments are fully mixed and
12 
ppear as a single Gaussian compartment. The confirmation of dominant

xchange by the analysis of the power-law exponent of the K ( t ) decay

as challenged by the fact that the long-time limit has not been reached

n order to yield either a decay as 1/ t which would support exchange,

r a 1∕ 
√
𝑡 functional form, which would favor structural disorder as in

ee et al. (2020b ). Nevertheless, simulations of exchange-driven K ( t ) in

ur experimental time range yielded an apparent power-law exponent of

.3, which agreed with the experimental exponents estimated from K ( t )

ower law fits on each animal and GM ROI. The exploration of a broader

ange of diffusion times in future work may enable a more definite as-

essment of the most relevant power law of 𝐾( 𝑡 ) decay and of the relative

ontribution of the competing effects of incomplete coarse-graining over

he structural disorder, and inter-compartmental exchange. 

It should be underlined that the functional form for structural disor-

er as 1∕ 
√
𝑡 corresponds to one-dimensional short-range disorder which

s potentially suited for intra-neurite diffusion ( Novikov et al., 2014 ). In

rinciple, structural disorder could also arise from extracellular water,

nd would in this case be expected to follow the functional form for 2d

r 3d disorder, as ( ln 𝑡 )∕ 𝑡 or 1∕ 𝑡 . This functional form should however be

ollowed by both 𝐷( 𝑡 ) and 𝐾( 𝑡 ) . Overall, the trend in 𝐷( 𝑡 ) was flat and

ertainly did not support a decay as ( ln 𝑡 )∕ 𝑡 which is more pronounced

han 1∕ 
√
𝑡 . The 2d or 3d disorder was also not supported by 𝐷( 𝑡 ) in

uman cortex ( Lee et al., 2020b ). 

The estimation of inter-compartment exchange based on NEXI 𝐾( 𝑡 )
ielded relatively long exchange times ( 𝑡 𝐾( 𝑡 ) 

𝑒𝑥 = 80–130 ms, exceeding our

iffusion time range) in highly myelinated white matter bundles such as

he corpus callosum and internal capsule, intermediate exchange times

 𝑡 
𝐾( 𝑡 ) 
𝑒𝑥 ∼ 40 ms) in thinner bundles such as the cingulum that may experi-

nce partial volume effects with neighboring gray matter, and relatively

hort exchange times in the cortex and hippocampus ( 𝑡 ex ∼ 15–20 ms).

Estimates of exchange time in WM bundles were unsurprisingly im-

recise due to the mismatch between probed timescales (10 – 45 ms)

nd the expected exchange time 𝑡 𝐾( 𝑡 ) 
𝑒𝑥 > 80 ms. Nevertheless, this result

alidates a posteriori the assumption of non-exchanging compartments

or white matter models at diffusion times typical for PGSE acquisitions:

 < 80 ms. Our findings are also consistent with previous studies in the

uman WM reporting exchange times above 500 ms ( Lampinen et al.,

017 ; Nedjati-Gilani et al., 2017 ), and 350–400 ms in mouse corpus

allosum ( Hill et al., 2021 ). 

In the case of gray matter, the 𝑡 K(t) 
ex estimates of 15–20 ms were

onsistent with previous studies in human gray matter ( Veraart et al.,

018a ) and perfused pup rat spinal cord ( Williamson et al., 2019 ).

ther studies using relaxation-based methods suggested however longer

xchange times of 100–150 ms in astrocyte and neuron cultures

 Yang et al., 2018 ), in rat subcortical structures – presumably the stria-

um ( Quirk et al., 2003 ) and in rat perfused cortical cultures ( Bai et al.,

018 ). Filter-exchange imaging (FEXI), another diffusion-based method

o estimate the exchange time between a slow and a fast water pool re-

orted an exchange time on the order of 1 s in WM and 2.5 s in GM using

 filtering block of b f = 0.9 ms/μm 

2 ( Lampinen et al., 2017 ; Nilsson et al.,

013 ). While the exchange times between different WM tracts agreed

ith expected myelination levels, e.g., up to 3 s in corpus callosum and

00 ms in anterior corona radiata, it is somewhat counterintuitive that

he exchange time would be longest in GM – the authors suggested the

atter was likely overestimated. Recent work using FEXI with a similar

lter also yielded an exchange time of around 1 s in WM and 1.4 s in

M ( Bai et al., 2020 ), while arguing that there is no direct evidence that

hat FEXI measures is the exchange between intra- and extra-cellular

ompartments. Conversely, shorter exchange times of 2 – 5 ms have re-

ently been reported in fixed mouse gray matter using SMEX (Standard

odel with EXchange), a similar approach to NEXI, as will be discussed

n the more detail further on Olesen et al. (2022) . 

Related to FEXI, while bi-exponential functions typically fit diffusion

ecay in brain tissue well, the association of the slow and fast water

ools to specific tissue compartments has never been straightforward

 Kiselev and Il’yasov, 2007 ; Novikov et al., 2018a ), in particular since
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(  
 distribution of non-parallel sticks – a single compartment, technically

also yields a characteristic decay that is well approximated by a bi-

xponential function ( Assaf and Cohen, 1998 ; Callaghan et al., 1979 ;

ovikov et al., 2018a ; Sehy et al., 2002 ). For this same reason, alter-

ative approaches to the Kärger model, extracting the exchange time

rom the decay of the intra-cellular fraction – as estimated from a bi-

xponential model – with increasing diffusion time ( Moutal et al., 2018 )

ere explored in yeast suspensions but are not suitable for brain tissue.

ndeed, predominant stick-like geometries in both white and gray matter

nvalidate the approximation of a sum of two Gaussian compartments

n any direction or for the powder-average signal. 

Our analysis of 𝐾( 𝑡 ) so far cannot provide direct information on

he mechanisms of exchange, such as intra/extracellular, neurite/soma

r neurite/neurite exchange. However, numerical simulations suggest

hat neurite/soma and neurite/neurite exchange within the same neu-

on occur at longer time scales (on the order of 100 ms or more) than

hose estimated here ( ∼20 ms) ( Ianus et al., 2020 ) and support the in-

ra/extracellular exchange as the dominant mechanism in these experi-

ents. 

Exchange vs soma . Going a step further, we investigated the per-

ormance of a two-compartment model with exchange (NEXI) and of

 three-compartment model accounting for soma (SANDI) to capture

iffusion signal decay at high b -values, and for multiple diffusion times.

ANDI extends the SM by adding an extra compartment for modeling ex-

licitly diffusion restricted in soma and relies on the assumption of neg-

igible exchange between the three tissue compartments: intra-neurite,

ntra-soma and extra-cellular. Our results do not challenge this assump-

ion in the rat GM in vivo for relatively short diffusion times ( ≤ 20 ms),

hile challenging it for longer diffusion times ( > 20 ms), where the

ANDI model parameters show some time-dependence. This diffusion

ime cutoff is in line with 𝑡 K(t) 
ex and suggests that unaccounted exchange

echanisms between the three major tissue compartments in GM (cel-

ular processes, soma and extra-cellular space) may bias SANDI parame-

ers estimation at diffusion times longer than 20 ms. On the other hand,

ur results also suggest that SANDI model parameter estimation pro-

ides f , 𝐷 𝑖, ∥ and 𝐷 𝑒 estimates in good agreement with the equivalent

ounterpart from the SM and NEXI. The importance of modeling ex-

hange in addition to soma was mostly evident in the ability of NEXI vs

ANDI to predict signal decay curves for longer diffusion times based

n model parameters estimated at short diffusion times. This result is

onsistent with findings in the rat cortex ex vivo ( Olesen et al., 2022 ).

owever, based on the NEXI parameter estimation performance alone

discussed below – a larger q-t coverage and higher SNR would likely

e needed in vivo to account for both soma and exchange in a model. 

NEXI parameter estimation . To provide recommendations of min-

mum data and fitting procedures for NEXI, we first established its per-

ormance in simulations. Given a comprehensive protocol with 7 shells

p to b max = 10 ms/μm 

2 and high final SNR of 100 – boosted by the

P-PCA denoising procedure and the powder-averaging over directions

data at a single diffusion time were insufficient to estimate 𝑡 𝑒𝑥 and

 𝑖, ∥. Noise was clearly the culprit as the noiseless simulations other-

ise demonstrated good performance for all four model parameters.

itting the NEXI model to joint data over four diffusion times dramati-

ally improved the accuracy and precision for all four model parameters

hough 𝐷 𝑖, ∥ remained the most challenging parameter to estimate, con-

istent with other model frameworks ( Jelescu et al., 2016 ; Novikov et al.,

018b ; Palombo et al., 2020 ). The benefit of a broader b -value range was

ritical between 2.5 and 6 ms/μm 

2 , but only marginal beyond, which

uggests a range 0 < b < 6 ms/μm 

2 could be sufficient to estimate NEXI

arameters. 

Simulations also suggested the exchange time estimate 𝑡 𝑒𝑥 plateaus

eyond ground truths 𝑡 𝑒𝑥 ≥ 80 𝑚𝑠 approximately. This is likely related

o the diffusion time range simulated 12–40 ms, which is too short to

robe slow processes with longer characteristic exchange times. For tis-

ues where longer exchange times are expected, the diffusion time range

hould be adjusted accordingly. 
13 
Importantly, the performance of NEXI on experimental data using

 multi-shell multi- t protocol was consistent with simulations. On av-

rage, the intra-neurite diffusivity was 2.2–2.5 μm 

2 /ms, in agreement

ith its estimate from the SM and from SANDI at the shortest diffusion

imes, as well as with previous reports of intra-neurite/axonal diffusivity

 Dhital et al., 2019 ; Kunz et al., 2018 ; Olesen et al., 2021 ). The extra-

eurite diffusivity was 0.75 μm 

2 /ms and remarkably also agreed with

he SANDI estimate at the shortest times. We underline that the intra-

eurite diffusivity corresponds to the parallel diffusivity, with 𝐷 𝑖,⊥ = 0
n the perpendicular direction (the stick picture). A three-fold ratio be-

ween 𝐷 𝑖, ∥ and 𝐷 𝑒 is consistent with previous literature that reported

imilar Apparent Diffusion Coefficient (ADC) between intra- and extra-

ellular water in rat GM ( Duong et al., 1998 ). Considering the picture

f isotropically-oriented neurites, the ADC of intra-cellular water in any

iven direction would be estimated at 𝐷 𝑖, ∥/3 and thereby similar to 𝐷 𝑒 .

Compartment fractions: The neurite fraction was about 0.3, which

s lower than estimates from ex vivo histology (~0.65) but nonethe-

ess higher than the SANDI estimate for neurite fraction at the short-

st diffusion time (f ~ 0.25). This suggests that even at short diffu-

ion times, neurite fractions from models that do not account for ex-

hange may be underestimated, possibly by “missing ” fast-exchanging

omponents. In parallel, by comparing NEXI and SANDI compartment

ractions, it appears the soma is associated to extra-neurite space in

EXI. While accounting for exchange had the advantage of providing

 time-independent estimate of the neurite fraction, thereby correct-

ng for its decrease with longer times in models of non-exchanging

ompartments, the absolute value of the neurite fraction estimate re-

ains lower than the 60–70% expected from histology ( Bondareff and

ysh, 1968 ; Motta et al., 2019 ; Shapson-Coe et al., 2021 ; Spocter et al.,

012 ). Combined relaxation-diffusion measurements may help improve

he quantification of the neurite fraction by correcting for relaxation

ime-weighting ( Barakovic et al., 2021 ; Hutter et al., 2018 ; Tax et al.,

021 ; Veraart et al., 2018b ). Exchange processes on a shorter scale than

hose explored here also cannot be excluded, as very short exchange

imes have been recently reported in rat brain ex vivo ( Olesen et al.,

022 ). 

Exchange time: Determining the accurate value of t ex correctly is

f utmost importance to mapping GM microstructure, as this value

ets the relevant tissue features to be modeled, given that typically

ccessible diffusion times on clinical MRI systems are 𝑡 > ∼ 10 𝑡 ≥ 10 ms.

f, for instance, t ex ∼1 ms (well below 10 ms), the exchange can

e practically classified as fast, i.e., there are no distinct intra- and

xtra-stick exchanging compartments; neurites and extra-neurite space

orm a homogenized effective medium. This is the picture suggested

y recent results of Olesen et al. If, conversely, t ex 
> ∼≥ 100 ms, as

ampinen et al. (2017) , Yang et al. (2018) suggest, then exchange is

low and can be neglected, and a Standard Model-like approach is appli-

able. Finally, if exchange is intermediate, between ∼10 ms and ∼50–

00 ms, as our present results and the 2-dimensional NMR measure-

ents by Williamson et al. (2019) suggest, then exchange is relevant,

ust be explicitly modeled, and can be mapped. This possibility, albeit

equiring more complex modeling, would open a tantalizing prospect

f mapping tissue function in vivo , since permeability has been shown to

e modulated by metabolism ( Bai et al., 2019 ). Below we consider the

onfounding effects for t ex . 

The discrepancy in exchange time estimates between Olesen et al.

nd the current work, which are otherwise similar in approach, can be

ue to multiple sources. First, in vivo vs fixed tissue is an important

river of exchange time differences ( Li et al., 1998 ; Shepherd et al.,

009 ; Thelwall et al., 2006 ). Recent additional work using NEXI on ex

ivo rat brain at 20 °C also yielded shorter exchange times of 4–6 ms,

han the ones reported here in vivo ( Jelescu and Uhl, 2022 ). Another

ossible source of discrepancy is the range of diffusion times explored in

ither study: 7.5–16 ms in Olesen et al. vs 11–45 ms here. The diffusion

imes act as a filter for the exchange times that can be reliably estimated

see Fig. 8 , where, in simulations, the estimation of t ex plateaus beyond
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Table 2 

NEXI and NEXI_dot parameter estimates from the average signal in the rat cortex 

(as in Fig. 6 ). Mean ± std as provided by the fits’ confidence intervals. 

f n t ex D i D e f dot / 𝜎

NEXI 0.29 ± 0.01 43 ± 8 2.55 ± 0.24 0.74 ± 0.02 –

NEXI_dot 0.22 ± 0.03 21 ± 9 3.6 ± 0.6 0.70 ± 0.02 0.022 ± 0.008 

NEXI_rm 0.29 ± 0.01 22 ± 6 3.2 ± 0.3 0.69 ± 0.02 0.025 ± 0.002 
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5 ms for simulated diffusion times of 12–40 ms). Slow exchange cannot

e accurately captured with short diffusion times. 

Finally, since the NEXI fit deviates from the data at high b -values

 Fig. 6 ), we also tested an adapted model of NEXI including a “dot ”

ompartment (i.e., water apparently immobile, as reported mainly ex

ivo and in the cerebellum) and a model fitting for a Rician floor. In the

rst case, the NEXI_dot model is thus characterized by five parameters

o be estimated, similar to the SMEX model by Olesen et al.: f n , t ex , D i ,

 e and f dot . In the second case, the NEXI_rm (for Rician mean) model is

lso characterized by five parameters to be estimated: f n , t ex , D i , D e and

he Rician noise parameter 𝜎: 

EXI 𝑟𝑚 
(
𝑓, 𝑡 𝑒𝑥 , 𝐷 𝑖 , 𝐷 𝑒 , 𝜎

)
= 

√ 

𝜋

2 
⋅ 𝜎 ⋅ 𝐿 1∕2 

⎛ ⎜ ⎜ ⎝ − 

1 
2 

( 

NEXI 
(
𝑓, 𝑡 𝑒𝑥 , 𝐷 𝑖 , 𝐷 𝑒 

)
𝜎

) 2 ⎞ ⎟ ⎟ ⎠ 
Where 𝐿 1 

2 
( 𝑥 ) = 1 𝐹 1 ( − 

1 
2 , 1 , 𝑥 ) = 𝑒 𝑥 ∕2 [ ( 1 − 𝑥 ) 𝐼 0 ( − 

𝑥 

2 ) − 𝑥 𝐼 1 ( − 

𝑥 

2 ) ] is the

eneralization of Laguerre polynomial 𝐿 𝑛 ( 𝑥 ) , which for non-integer 𝑛

s given in terms of the confluent hypergeometric function. The above

quation elevates NEXI ( 𝑓, 𝑡 𝑒𝑥 , 𝐷 𝑖 , 𝐷 𝑒 ) based on the Rician expectation

alue. 

NEXI, NEXI_dot and NEXI_rm were fit to the data in Fig. 6 within

he ranges: f n : [0, 1], t ex : [0, 200], D i : [0, 4], D e : [0, 4], f dot : [0, 0.2]

 Table 2 ). NEXI_dot and NEXI_rm indeed yielded a shorter t ex than

EXI, but not as short as reported in Jelescu and Uhl (2022) ,

lesen et al. (2022) . Furthermore, the uncertainty in NEXI_dot estimates

as largest among the three models, while the intra-neurite diffusivity

argely exceeded 3 μm 

2 /ms systematically. The NEXI_dot and NEXI_rm

stimates were similar and the resulting fitted curves approximated the

ata well (Supplementary Fig. S11). This suggests both an actual dot

ompartment and an impact of non-zero Rician mean could explain the

EXI departure from experimental points at highest b -values. 

The exchange time estimates depended on the underlying SNR of

he data, on the diffusion time range and on the estimation approach.

or a diffusion time range 10–45 ms, NEXI estimated an exchange time

f 15 – 60 ms while the matching estimate from 𝐾( 𝑡 ) was 10–40 ms.

he latter became 18–60 ms when the diffusion time range was reduced

o 20–45 ms (albeit with increased uncertainty). These exchange times,

ombined with intra-neurite realistic diameter values yielded a range

f cell membrane permeability values on the order of 𝑃 ≅ [ 2 . 1 − 33 ]
m/s. This range of permeability values is in agreement with previ-

us reports of physiologically relevant membrane permeability values

n healthy cells: 𝑃 ≅ [ 6 − 30 ] μm/s ( Baylis, 1988 ; Harkins et al., 2009 ;

atour et al., 1994 ; Stanisz et al., 1997 ; Vestergaard-Poulsen et al.,

007 ). Cell-specific membrane water permeability values have also been

eported as [18–76] μm/s in murine neurons, [41–112] μm/s in murine

strocytes and [23–81] μm/s in human red blood cells ( Boss et al.,

013 ). The latter have been extensively studied in terms of water perme-

bility, with variable reported ranges ( Benga et al., 2009 , 2000 ). Shorter

xchange times of 3–5 ms reported ex vivo by Jelescu and Uhl (2022) ,

lesen et al. (2022) would translate into a permeability 𝑃 ≅ [ 25 − 167 ]
m/s, consistent with chemical fixation increasing permeability over

hree-fold ( Shepherd et al., 2009 ). 

Parametric maps agreed with known rat brain structure, with clear

elimitation between gray and white matter. Contrast between adjacent

ortical layers and between hippocampal sub-fields was also apparent.

omparison with histological staining revealed that higher NEXI neu-
14 
ite fraction in middle cortical layers corresponded to higher neurofila-

ent density in that area, but that in hippocampus, abundant astrocytic

rocesses could contribute to the higher NEXI neurite fraction. Indeed,

ater is ubiquitous and microstructural features with similar geometry

re typically pooled together – here neurites and astrocytic processes

re both thin elongated cylinders. This is expected to be the case for all

ater diffusion models proposed, though the balance of contributions

etween neurons and glial cells has never been firmly established. 

The importance of high SNR ( > 20–30 in an individual b = 0 im-

ge) for reliable parameter estimation was manifest throughout our data

hich had a strong SNR spatial gradient from cortex to deep brain due

o the use of a surface transceiver. An experimental setup with a volume

oil for transmission and a surface coil for reception would yield uniform

NR and enable estimates of NEXI parameters over the whole brain. DL

pproaches are increasingly replacing NLLS in biophysical model esti-

ation ( Diao and Jelescu, 2022; Hill et al., 2021; Nedjati-Gilani et al.,

017; Palombo et al., 2020 ) . We also showed here an improved manage-

ent of noise by DL vs NLLS, although bias towards the mean of the prior

as also more pronounced and DL outputs should always be examined

arefully ( Coelho et al., 2021 ; Gyori et al., 2021b ; Martins et al., 2021 ).

lternatively, a log-likelihood objective function could be considered

or the NLLS optimization to account for Rician noise in a voxel-wise

ashion. As there was already good agreement between sum-of-squares

LLS and DL on our data, we did not implement the log-likelihood min-

mization, but it may be worth considering for lower SNR data. 

Limitations. We note that a multi-shell multi- t acquisition proto-

ol may be difficult to implement when scan time is of the essence.

uture work will focus on optimizing the protocol to the best compro-

ise between minimal scan time and maximal accuracy and precision

f model parameter estimates. The currently large uncertainty on 𝑡 𝑒𝑥 
nd 𝐷 𝑖, || estimates will also benefit from such an optimization, which

ay include schemes that combine multiple diffusion tensor encodings

 Chakwizira et al., 2021 ). 

After inspecting the mode of NEXI outcomes as a function of random

lgorithm initialization, and in line with recent evidence that 𝐷 𝑖, ∥ ≅ 2 −
 . 5 μm 

2 ∕ ms ( Dhital et al., 2019 ; Howard et al., 2020 ; Kunz et al., 2018 ;

lesen et al., 2021 ), we chose an algorithm initialization where 𝐷 𝑖, ∥ >

 𝑒 in NLLS, and trained the DL network on disjoint intervals 𝐷 𝑖, ∥ ≥ 1 . 5
nd 𝐷 𝑒 ≤ 1 . 5 . These constraints would likely need to be reconsidered

nd relaxed, particularly when characterizing pathological conditions

r diseases, such as Alzheimer’s or Huntington’s diseases, where tangles

nd/or proteins accumulate in the intracellular space, hence increasing

he cytoplasm tortuosity and reducing 𝐷 𝑖, ∥, potentially to the level of

eing slower than 𝐷 𝑒 . 

One substantial limitation of the NEXI model is that it does not ac-

ount for soma as a third compartment, which are then artificially ab-

orbed into the extra-neurite space as the relative fractions suggest. Re-

ently, the evidence of curved boundaries in the cortex, attributed to

oma, was presented by observing the localization regime of diffusion

n a human Connectom scanner ( Lee et al., 2021 ). An important line of

uture work is the extension of NEXI to three compartments, or, equiva-

ently, the incorporation of exchange processes in the SANDI model, as

as been implemented in fixed mouse gray matter ( Olesen et al., 2022 ).

or now, SANDI accounts for three non-exchanging compartments –

oma, neurites, extracellular space – but thus requires data acquisition

t relatively short diffusion times ( ≤ 20 ms) concomitantly with high

 -values ( b max ≥ 6 ms/μm 

2 ) ( Palombo et al., 2020 ) which can only be

chieved on preclinical and Connectom scanners, but not on typical clin-

cal scanners. Going forward, accounting for exchange in SANDI will

ake it translatable to clinical settings, by enabling the use of longer

iffusion times. The feasibility of estimating a large number of model

arameters on data limited in terms of SNR and ( q,t ) coverage by in vivo

nd/or clinical hardware settings is yet to be determined. 

Furthermore, NEXI considers Gaussian compartments, an assump-

ion which seems to break for the neurite compartment, as revealed

t higher b -values, likely due to finite length of dendritic processes,
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ranching, etc. This poses a significant conundrum, as low b -values

here non-Gaussian contributions in each compartment can be ne-

lected are detrimental for estimation accuracy and precision, while

igher b -values reveal non-Gaussian effects which bias the outcomes as

ell. Ultimately, computational models based on realistic simulations of

eural cells ( Callaghan et al., 2020 ; Ginsburger et al., 2019 ; Lee et al.,

020a ; Palombo et al., 2019 ) and cortical substrate may be the best

pproach for characterizing gray matter microstructure in vivo . Analyt-

cal approaches able to incorporate intra-compartmental non-Gaussian

ime-dependent effects, such as Lee et al. (2018) , are in need to faithfully

uantify the structural disorder contributions. 

Finally, built on the anisotropic KM, NEXI assumes exchange hap-

ening within each ensemble of “neurite + its immediate extracellu-

ar space ” separately. This may differ from GM microanatomy, where

eurites at different angles can be piercing a volume of the size of the

iffusion length. Sequential exchange processes can bring a molecule

rom, e.g., one stick to the extra-stick space to a differently-oriented

tick, and so on; such a model geometry has not been considered. We

ote, however, that in the limit of 𝑏 𝐷 𝑒 ≫ 1 , the distinction between this

ore general geometry and NEXI should vanish, since, once a spin enters

he extra-neurite space, its contribution to the overall signal gets expo-

entially suppressed, as does the memory about the above sequential

xchange processes with different orientations. Hence, we expect that

 ex estimated from the full protocol including strong diffusion weight-

ngs will be more accurate than that from the time-dependent kurtosis

pproximation of Eq. (6) . 

Value. Taken together, our results suggest that inter-compartment

xchange is not negligible in gray matter at typical PGSE or clinical

iffusion times ( t > 20 ms) and should therefore be accounted for in

iophysical models of gray matter and potentially even in thinner white

atter tracts such as the cingulum (in rodents), and by extension to

emyelinating WM as a result of disease. Our findings also highlight

n additional challenge for approaches that use b -tensor encoding tech-

iques to disentangle various tissue geometries or solve model degen-

racy ( Afzali et al., 2021 ; Coelho et al., 2019 ; Gyori et al., 2021a ;

eisert et al., 2019 ). Since free gradient waveforms introduce by de-

ign a whole spectrum of relatively long diffusion times ( > 20 ms), the

ll-definition of the diffusion time may become problematic in a regime

here exchange cannot be neglected. 

NEXI constitutes an important first step in accounting for inter-

ompartment exchange in GM and developing a more realistic model of

iffusion in gray matter. The estimate of the exchange time alone can be

sed as a proxy for membrane permeability, which is known to increase

ith injury or neurodegeneration ( Nilsson et al., 2013 ; Pacheco et al.,

015 ), and could yield an original and valuable new biomarker of tis-

ue integrity, metabolism and function ( Bai et al., 2018 ). In myelinated

tructures, the exchange time could also become a strong proxy for the

yelin thickness, which is at the heart of several “in vivo histology ”

fforts ( Brusini et al., 2019 ; Hill et al., 2021 ; Lazari and Lipp, 2021 ;

ancini et al., 2020 ). 

. Conclusions 

One fundamental challenge in brain microstructure is to establish

he biophysical origin of effects beyond the “Standard Model ” (SM) pic-

ure of non-exchanging Gaussian compartments. Here we showed that

n the rat GM in vivo , the exchange dominates over structural disorder,

nd offer the picture of diffusion time effectively filtering out the contri-

ution of unmyelinated neurites with stronger dispersion. At long times,

his picture suggests that only the myelinated (non-exchanging) neurites

ontribute to the intra-neurite SM compartment, and the rest is asymp-

otically attributed to extra-neurite space. Exchange also explains signal

ecay curves across different diffusion times better than the addition of a

oma compartment. If a choice is warranted, a two-compartment model

ith exchange – NEXI – is better suited than a three-compartment model

ith soma for characterizing cortical microstructure at diffusion times
15 
 > 20 ms, while also yielding a valuable estimate of exchange time,

hich can be used as a proxy for membrane permeability. Going for-

ard, both soma and exchange should ideally be accounted for, if the

ata support the estimation of a larger number of parameters. 
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ppendix: DKI( t ) for the orientationally-averaged anisotropic KM 

We begin from a familiar DKI representation of a standard (scalar)

M: 

ln 𝑆 𝐾𝑀 

( 𝑏 ) = − 𝑏𝐷 + 

𝑏 2 

2 
𝑓 ( 1 − 𝑓 ) 

(
𝐷 1 − 𝐷 2 

)2 
⋅ 𝐹 ( 𝜏) , 

𝐹 ( 𝜏) = 

2 ( 𝑒 − 𝜏 − 1 + 𝜏) 
𝜏2 

, 𝜏 = 

𝑡 

𝑡 𝑒𝑥 

orresponding to the kurtosis ( Fieremans et al., 2010 ) 𝐾( 𝜏) = 𝐾 0 𝐹 ( 𝜏)
ith 

 0 = 3 𝑓 ( 1 − 𝑓 ) ⋅
(
𝐷 1 − 𝐷 2 

)2 
2 . 
𝐷 

http://www.cai2r.net
https://doi.org/10.1016/j.neuroimage.2022.119277
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We now use the above expressions for a single ensemble of neurites

nd their immediate extracellular space, oriented at an angle 𝜃 to the

radient direction, as function of 𝑥 = cos 𝜃. This means that 𝐷 1 = 𝐷 𝑖, ∥ 𝑥 
2 

nd 𝐷 2 = 𝐷 𝑒,⊥ + Δ𝑒 𝑥 
2 , where Δ𝑒 = 𝐷 𝑒, ∥ − 𝐷 𝑒,⊥. Note that Δ𝑒 ≡ 0 and

 𝑒,⊥ ≡ 𝐷 𝑒 for the isotropic extra-cellular space assumed in the main text.

o average over directions, we expand 𝑆 𝐾𝑀 

( 𝑏, 𝑥 ) in moments up to 𝑏 2 ,

ntegrate term-by-term over the orientations and re-expand in the expo-

ential: 

𝑆̄ ( 𝑏 ) = 

1 
∫
0 
𝑑 𝑥 𝑆 𝐾 𝑀 

( 𝑏, 𝑥 ) ≃ 𝑒 
− 𝑏 ̄𝐷 + 𝑏 

2 𝐷̄ 2 𝐾̄ 
6 . 

In this way, after some algebra we obtain 

̄
 = 

1 
3 
[
𝑓 𝐷 𝑖, ∥ + ( 1 − 𝑓 ) 

(
3 𝐷 𝑒,⊥ + Δ𝑒 

)]
nd 

̄
 = 𝐾 0 𝐹 ( 𝜏) + 𝐾 ∞, 

here 

 0 = 

3 𝑓 ( 1 − 𝑓 ) 
[
𝐷 𝑒,⊥

2 + 

2 
3 𝐷 𝑒,⊥

(
Δ𝑒 − 𝐷 𝑖, ∥

)
+ 

1 
5 

(
Δ𝑒 − 𝐷 𝑖, ∥

)2 ]
𝐷̄ 

2 
, 

 ∞ = 

4 
15 

[
𝑓 𝐷 𝑖, ∥ + ( 1 − 𝑓 ) Δ𝑒 

]2 
𝐷̄ 

2 
. 

For 𝐷 𝑒,⊥ = 0 or for 𝑓 = 1 (only sticks), 𝐾̄ = 𝐾 ∞ = 

12 
5 , the familiar

urtosis value for the Callaghan model. Since 𝐹 (0) = 1 , the initial value

 ( 𝑡 ) |𝑡 =0 = 𝐾 0 + 𝐾 ∞ . 

The long-time asymptotic behavior is 

 ( 𝑡 ) |𝑡≫𝑡 𝑒𝑥 
≃ 𝐾 ∞ + 2 𝐾 0 ⋅

𝑡 𝑒𝑥 

𝑡 
. 

Note that the residual kurtosis 𝐾 ∞ ≡ 𝐾( 𝑡 ) |𝑡 →∞ corresponds to that of

he isotropic mixture of diffusion tensors with axial and radial diffusiv-

ties 𝑓 𝐷 𝑖, ∥ + ( 1 − 𝑓 ) 𝐷 𝑒, ∥ and ( 1 − 𝑓 ) 𝐷 𝑒,⊥, respectively. 

In the main text we set Δ𝑒 = 0 and 𝐷 𝑒,⊥ = 𝐷 𝑒, ∥ = 𝐷 𝑒 in the above

xpressions, and end up neglecting 𝐾 ∞ when analyzing data, since the

bove model does not adequately describe mixing between sticks with

ifferent orientations at sufficiently long times. 
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