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Abstract

We propose a novel formulation to solve the problem of intra-voxel reconstruction of

the fibre orientation distribution function (FOD) in each voxel of the white matter of

the brain from diffusion MRI data. The majority of the state-of-the-art methods in the

field perform the reconstruction on a voxel-by-voxel level, promoting sparsity of the

orientation distribution. Recent methods have proposed a global denoising of the diffu-

sion data using spatial information prior to reconstruction, while others promote spatial

regularisation through an additional empirical prior on the diffusion image at each q-

space point. Our approach reconciles voxelwise sparsity and spatial regularisation and

defines a spatially structured FOD sparsity prior, where the structure originates from

the spatial coherence of the fibre orientation between neighbour voxels. The method

is shown, through both simulated and real data, to enable accurate FOD reconstruction

from a much lower number of q-space samples than the state of the art, typically 15

samples, even for quite adverse noise conditions.

1. Introduction

The challenge in diffusion MRI is to infer features of the local tissue anatomy, com-

position and microstructure from water displacement measurements. Water diffusion

in living tissues is highly affected by its cellular organization (Beaulieu, 2002). In par-

ticular, water does not diffuse equally in all directions in a highly ordered organ such as5
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the brain and this property can be exploited to study the structural neural connectivity

in a non-invasive way. The estimation of fibre connectivity patterns in vivo represents

a major goal in neuroscience but also in a clinical perspective, with applications for

diagnosis of stroke, schizophrenia or Parkinson’s disease. In order to reconstruct en-

tire fibre pathways and hence brain connections, tractography algorithms nowadays10

rely on the orientations of maximal water diffusion in each voxel. Thus, an accurate

reconstruction of the local fibre populations is crucial to ensure good performance of

fibre-tracking.

A great variety of approaches have been proposed to tackle the problem of intra-

voxel fibre orientation estimation. Diffusion Tensor Imaging (DTI) (Basser et al., 1994)15

is one of the simplest and fastest reconstruction techniques since it only requires sam-

pling 6 points of the q-space. However, it is by construction unable to model multiple

fibre populations within a voxel and thus it is not valid in regions with crossings. Diffu-

sion Spectrum Imaging (DSI) (Wedeen et al., 2005), on the other hand, is a model-free

imaging technique known to provide good imaging quality. Yet, it requires strong20

magnetic field gradients and long acquisition times, needing typically 256 samples for

a good reconstruction. As a consequence, it generally becomes too time-consuming

to be of real interest in a clinical perspective. Accelerated acquisitions, relying on as

few sampling points as possible while still sensitive to fibre crossings represent thus a

major goal in the field.25

In the last years, spherical deconvolution (SD) methods (Tournier et al., 2004;

Alexander, 2005; Tournier et al., 2007) have become very popular in the framework

of local reconstruction since they can recover the fibre configuration with a relatively

small number of points, typically from 30 up to 60. They consider that both anisotropy

and magnitude of water diffusion in white matter (WM) are constant in the whole30

volume. Under this assumption, SD methods acknowledge the fact that the diffusion

signal can be expressed as the convolution of a response function, or kernel, with the

fibre orientation distribution function (FOD). The FOD is a real-valued function on the

unit sphere that indicates the orientation and the volume fraction of the fibre popula-

tions in a voxel. The Constrained Spherical Deconvolution approach of Tournier et al.35

(2004, 2007) represents the first attempt to solve the ill-posed SD problem. It applies
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Tikhonov regularisation, introducing a constraint on the `2 norm of the FOD, specially

to ensure its positivity. Apart from the aforementioned work, most of the state-of-the-

art methods to solve SD problems promote sparse regularisation based on `1 minimi-

sation (Jian and Vermuri, 2007; Ramirez-Manzanares et al., 2007; Mani et al., 2014),40

where the `1 norm is defined, for any real vector, as the sum of the absolute value of its

coefficients. Yet, Daducci et al. (2014b) acknowledge in recent work that `1 minimisa-

tion is formally inconsistent with the fact that the volume fraction sum up to unity, and

demonstrate the superiority of `0-norm minimisation. All these local reconstruction

methods solve the FOD recovery problem for each voxel independently and thus, do45

not exploit the spatial coherence of the fibre tracts in the brain. A number of approaches

have addressed this shortcoming by formulating the problem globally (simultaneously

for all voxels) to be able to exploit the correlation between the different volumes. Some

of them decouple the problem and propose a global denoising of the diffusion data prior

to reconstruction (Tristán-Vega and Aja-Fernández, 2010; Wiest-Daessl et al., 2008).50

Another group of methods present a joint scheme for reconstruction and spatial regular-

isation on the diffusion images at each q-space point. For instance, Fillard et al. (2007)

propose a variational formulation to jointly estimate and regularise DTI to account for

the effect of Rician noise in low SNR regimes, while Mani et al. (2014); Michailovich

et al. (2011) use the standard state-of-the-art minimisation of the total variation (TV)55

semi-norm (Rudin et al., 1992) of the diffusion images.

In this paper, we propose a formulation that solves the fibre configuration of all

voxels of interest simultaneously and imposes spatial regularisation directly on the fi-

bre space. This reconstruction allows us to exploit information from the neighbouring

voxels that cannot be taken into account by the existing state-of-the-art methods that60

approach fibre reconstruction independently in each voxel. The natural smoothness of

the anatomical fibre tracts through the brain can be translated in a certain spatial co-

herence of the FOD in neighbouring voxels. Accordingly, in the aim of recovering the

global FOD field in all voxels, the present work leverages a reweighted `1-minimisation

scheme to promote a spatially structured sparsity prior imposing spatial coherence.65

While the spatial regularisation schemes proposed by Fillard et al. (2007); Mani et al.

(2014); Michailovich et al. (2011) enforce sparsity of the images at each q-space point,
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our spatial regularisation relates to the fundamental coherence between fibre directions

- the FOD - in neighbour voxels, thus adding anatomically driven constraints. Our code

is available at https://github.com/basp-group/co-dmri and it is distributed open-source.70

2. Materials and methods

2.1. dMRI framework for recovery of FOD via spherical deconvolution

In the SD framework, the intra-voxel structure estimation can be expressed through

the FOD recovery problem in terms of the following linear formulation:

y = Φx+ η, (1)

where x ∈ Rn
+ stands for the FOD, y ∈ Rm

+ is the vector of measurements, Φ is the

linear measurement operator and η is the acquisition noise. The reader can refer to

Jian and Vermuri (2007) for a more detailed overview on SD methods and the formal75

equations describing the relationship between the FOD and the diffusion signal. We

consider a dictionary Φ that spans a set of the Diffusion Basis Functions introduced

by Ramirez-Manzanares et al. (2007). Each of these basis functions is generated by

applying a different rotation to a kernel, which corresponds to the diffusion signal

response to a single fibre. The set of available orientations represents a discretisation80

of half of the unit sphere (S2), assuming antipodal symmetry in diffusion signal. The

diffusion signal can then be expressed as a linear combination of these basis functions,

also referred to as the atoms of our dictionary Φ.

Prior constraints are essential to regularise a deconvolution problem like (1) in order

to find a unique solution from an originally ill-posed problem. In the framework of the85

recently developed theory of compressed sensing (CS) (Donoho, 2006; Candès et al.,

2006) sparsity priors are commonly used as regularisers to recover a signal from a set

of undersampled measurements. In formulation (1) the sparsity can directly be inferred

from the small number of fibre directions of interest, in correspondence with the FOD

coefficients. In this paper, the method proposed by Daducci et al. (2014b) is taken as90

the state-of-the-art algorithm in the framework of SD local methods for FOD recovery.

For the sake of completeness of this work, it is described in detail hereafter.
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Daducci et al. (2014b) propose to resort explicitly to the non-convex `0 prior to

solve for the FOD rather than to its convex `1 relaxation. A convex optimisation prob-

lem for FOD reconstruction can be defined through a constrained formulation between

adequate sparsity prior and data, also making use of a reweighted sparse deconvolution.

The proposed minimisation problem reads as:

min
x≥0

||Φx− y||22 s.t. ||x||0 ≤ k. (2)

In (2), || · ||0 represents the `0 norm (number of non-zero coefficients) and k acts as

a bound on the expected number of fibre populations in a voxel. Since the `0 norm

is non-convex, a reweighted `1-minimisation scheme (Candès et al., 2008) is used in

order to approach `0 minimisation by a sequence of convex weighted-`1 problems of

the form:

min
x≥0

‖Φx− y‖22 s.t. ‖x‖w,1 ≤ k. (3)

In (3), the `0 norm has been substituted by a weighted-`1 norm defined as ‖x||w,1 =∑
iwi|xi|. The algorithm alternates between estimating the solution at iteration t, x(t),

and redefining the weights essentially as the inverse of the values of the solution at the95

previous iteration w(t+1)
i ≈ 1/x

(t)
i . The use of these weights allows the algorithm

to iteratively better estimate the non-zero locations and induces that, at convergence,

the weighted-`1 norm mimics the `0 norm. Hence, formulation (2) promotes sparsity

through a sequence of problems (3). In the rest of the manuscript we will refer to this

voxel-by-voxel method based on `2 and `0 priors as L2L0.100

In the next subsection we describe an algorithm, inspired by L2L0, that exploits

the anatomical coherence of the fibre tracts of the brain by promoting a structured spar-

sity prior on the FOD field. We show evidence that taking into account neighbouring

information through an appropriate prior directly on the object of interest improves sig-

nificantly the results in comparison with solving for all voxels independently or using105

indirect spatial regularisation schemes.
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2.2. Spatial regularisation through structured sparsity

In the aim of exploiting the spatial coherence of the fibres in the brain when re-

covering the local fibre configuration, we formulate a problem to solve the ensemble

FOD field for all voxels simultaneously. To emphasize the fact that the minimisation

problem (2) is formulated separately for each voxel of the brain, we can rewrite it using

the following notation:

min
x(v)≥0

||Φx(v) − y(v)||22 s.t. ||x(v)||0 ≤ k, (4)

where x(v) ∈ Rn
+ represents the real-valued FOD in the particular voxel indexed v. By

concatenating all vectors x(v) columnwise, one can build a matrix X ∈ Rn×N
+ , whose

columns correspond to the FOD in each particular voxel. The elements of matrix X110

will be indexed as Xdv , each row d being associated with the atom of the dictionary

oriented in direction indexed d, each column v being associated with voxel indexed

v, X·v = x(v), as represented in Figure 3. N denotes the total number of voxels we

want to recover the fibre configuration from. The rows of ΦX represent the modelled

diffusion images at each q-space point.115

In our proposed formulation, a global data term is minimised adding a sparsity

constraint that simultaneously promotes spatial coherence of the solution. Inspired by

formulation (3), we adopt a procedure that consists in solving a sequence of problems

of the form:

min
X∈Rn×N

+

‖ΦX− Y‖22 s.t. ‖X‖W,1 ≤ K, (5)

where the matrix Y ∈ Rm×N is formed by the concatenation of all N measurement

column vectors: Y·v = y(v) ∈ Rm. The sensing matrix Φ is exactly the same as in (4)

and ‖ · ‖W,1 stands for a weighted `1 norm of a matrix defined as:

‖X‖W,1 =
∑
d,v

Wdv|Xdv|. (6)

The following paragraphs are devoted to describe in detail the reweighting scheme and

define the weighting matrix W.
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In a reweighted-`1 scheme, large weights will progressively tend to discourage

nonzero entries whereas small weights will promote nonzero entries in the solution.

The weighting matrix W has the same dimension as X and each of its entries acts as a120

weight for the corresponding entry of X. The weights should still represent the inverse

value of the associated entry at the previous iteration, so as to lead to an `0-norm prior

at convergence. However, a strong spatial coherence prior can actually be promoted

by adapting the computation of the weights as follows. Our definition of the weights

is driven by the underlying anatomical assumption that fibre bundles in neighbouring125

voxels should have very close orientations as the trajectories are smooth (schematically

represented in Figure 1). In terms of the FOD, this premise implies that neighbour

voxels should bear similar directions.

To translate this idea into a mathematical formulation of the weights we start by

formally defining the concept of neighbourhood. Since each atom of the dictionary130

represents a direction d on the half sphere, we define an angular neighbourhood N (d)

for each of them composed by the closest atoms (in terms of angular distance). In our

implementation we have considered a maximal angular distance of 15◦ to delimit the

neighbourhood of each atom. Analogously, for each voxel v of the brain we define

its spatial neighbourhood N (v) as the group of 26 voxels that share either a face, an135

edge or a vertex with the voxel of interest v, commonly referred to as the 26-adjacent

neighbourhood (Huang et al., 1998). A visual representation of both N (d) and N (v)

is shown in Figure 2. For convenience, we define N (d) = d ∪ N (d) and N (v) =

v ∪ N (v), the neighbourhoods that include the central element. We then define the

neighbourhood of an element Xdv as the entries of X at the intersection of rows d and140

all its neighbour directions, and columns v and all its neighbour voxels: N (dv) =

{(d′, v′); d′ ∈ N (d), v′ ∈ N (v)}, as it is schematically represented in Figure 3.

At each iteration, every element of the weighting matrix Wdv is set as the inverse

of an average of the absolute values that X takes in the neighbourhood of Xdv in the

previous iteration:

W
(t+1)
dv =

[
τ (t) +

1

|N (v)|

∑
d′v′∈N (dv)

|X(t)
d′v′ |

]−1
. (7)

7



Figure 1: Synthetic FOD field in a rep-
resentative 2D slice, which consists of
two crossing fibre bundles. Due to
the natural smoothness of the bundles,
FODs in neighbouring voxels are ex-
pected to contain similar peaks, as high-
lighted in the figure.

Figure 2: Top row: Schematic representation of a spatial neighbourhood. On the left: Set of voxels rep-
resenting the 3D-volume (brain) we want to solve for. Voxels in red configure the neighbourhood N (v) for
a particular voxel v, in green. On the right: Mapping of N (v) as a set of columns of matrix X. Bottom row:
Schematic representation of an angular neighbourhood. On the left: Set of black circles representing
the discretisation of the half sphere chosen to build dictionary Φ. Points highlighted in blue configure the
neighbourhood N (d) for a particular direction d, in green. On the right: Mapping of N (d) as a set of rows
of matrix X.
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Figure 3: Schematic representation of the neighbourhood of element Xdv (in green), i.e. the elements of X
involved in the computation of weight Wdv . It includes coefficients corresponding to directions d and all its
neighbours N (d) for voxel v and all its neighbours N (dv) = {(d′, v′); d′ ∈ N (d), v′ ∈ N (v)}.

Consequently, at each iteration t, the weighting matrix W(t) represents a blurred

version of the current estimation of the solution X(t)1. In (7), we average over voxels,145

but sum over directions as all values in neighbour directions are interpreted as con-

tributing to a single true local direction, in particular because the true direction does

in general not coincide exactly to one of the discrete points of the sphere identifying

our orientation dictionary. This helps to stabilise the regularisation and prevent the ap-

pearance of spurious peaks: fibre contributions are usually spread over a small angular150

support while spurious peaks are associated with isolated directions. To avoid infinite

values for null averages, we add a stability parameter τ in the definition of the weights.

We apply an homotopy strategy (Nocedal and Wright, 2006) and use a decreasing se-

quence {τ (t)} in such a way that τ (t) → 0 when t→∞. In the absence of any spatial

constraint, W(0) corresponds to the matrix of all 1s and thus, the weighted `1 norm is155

the standard `1,1 norm of a matrix, ‖X‖W,1 = ‖X‖1,1.

The specific computation of the weights described in the former paragraphs en-

courages that neighbour voxels present the same or very close (neighbour) directions,

imposing structured sparsity of the solution. Indeed, all entries corresponding to the

neighbourhood of an element contribute to its weight. Therefore those orientations160

1The values of the final solution are influenced by their weights, however they are not directly identified
with them.
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that are “supported” by the surrounding voxels are reinforced, since they will be given

a small weight compared to isolated directions that are not coherent with their environ-

ment. At convergence, our definitions (6) and (7) thus implement a spatially coherent

version of the matrix `0 norm, i.e. the sum of the `0 norms of its columns. This

reweighting scheme promotes a regularisation that takes into account the true anatomy165

of the brain accounting for the fact that fibre populations present a coherent trajectory

across voxels close to each other in the brain volume. This prior constitutes a powerful

constraint that cannot be exploited when solving the problem independently for each

voxel, like in (4).

The main steps of the reweighting scheme are reported in algorithm 1; in the re-170

maining of the manuscript we will refer to it as L2L0NW, in reference to the described

neighbour weighted scheme. The reweighting process stops when the relative variation

between successive solutions ‖X(t)−X(t−1)‖2/‖X(t−1)‖2 is smaller than some bound

or after the maximum number of iterations allowed is reached.

Algorithm 1 Reweighted `1 minimisation for global reconstruction of the FOD
Require: Y ∈ Rm×N ; Φ ∈ Rn×m; K; ν; τthr; Nmax; N (d), d = 1, .., n; N (v), v =

1, .., N
Ensure: FOD X ∈ Rn×N

+

Initialise t← 0; X(0) = 0; W(0) ← 1
while ρ > ν and t < Nmax do

Solve:
X(t) ← minX∈Rn×N

+
‖ΦX− Y‖22 s.t. ‖X‖W,1 ≤ K

Update W(t+1)

Update ρ = ‖X(t) − X(t−1)‖2/‖X(t−1)‖2
t← t+ 1

end while
X← X(t−1)

2.3. Implementation details175

To generate the dictionary Φ in our experiments, we estimated two different Gaus-

sian kernels that model the diffusion signal in the regions of the brain corresponding to

(i) white matter (WM) and (ii) partial volume with grey matter or cerebrospinal fluid

(CSF). Modelling each kernel actually corresponds to estimating the three eigenvalues
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of the diffusion tensor. Grey matter and CSF are typically isotropic media. Conse-180

quently, their representative kernel is spherical – a tensor with three equal eigenvalues

– and not sensitive to rotations. On the other hand, the kernel corresponding to the

WM is anisotropic. Its response function was first estimated by fitting a tensor from

the diffusion signal in those voxels with the highest fractional anisotropy (as expected

to contain only one fibre population) and subsequently it was rotated in 200 different185

directions equally distributed on the sphere. Therefore, the final number of atoms of

the dictionary used for this reconstruction is 201: 200 atoms corresponding to WM

plus 1 isotropic atom modelling partial volume with CSF and grey matter.

Each weighted-`1 problem of the form (5) is solved using Douglas-Rachford algo-

rithm (Combettes and Pesquet, 2007) in the context of proximal splitting theory (Com-190

bettes and Pesquet, 2011). To set a meaningful boundK we have followed the criterion

that at convergence the weighted-`1 norm of a matrix, as defined in section 2.2, mimics

the `0 norm – as in formulation (3) –. K is then heuristically fixed as K = 3N , as

it represents a conservative bound on the total number of fibre orientations to be iden-

tified, computed as the number of voxels N times an average bound on the number195

of fibre orientation per voxel. We initialise τ (0) as the variance of the solution after

the first iteration X(0) and, in subsequent iterations, we update τ (t+1) = βτ (t) with

β = 10−1. Ideally τ (t) should decrease to 0 but we heuristically fix a lower bound

τthr = 10−7, above which significant signal components could be identified. Experi-

ments show that for a convergence bound ν = 10−3 the reweighting process stops after200

a relatively small number of iterations, typically 4 or 5. In our simulations, ν is set to

10−3 and Nmax to 10.

To extract the final fibre directions from the solution to algorithm 1 in every voxel

we perform a search for local maxima among all directions within a cone of 15◦ around

every direction. In this entire process, we disregard the directions with contributions205

(i.e. coefficients) smaller than 10% of the maxima in order to filter out spurious peaks.

2.4. Phantom data

We perform our experiments using the phantom data used for the HARDI recon-

struction Challenge 2012 (Daducci et al., 2014a). The public results in (Daducci et al.,
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2014a) allow us to compare the performance of L2L0NW with other methods using dif-210

ferent spatial regularisation schemes – such as TV regularisation mentioned above –

with no need for their explicit implementation. The dataset is a 16 × 16 × 5 volume

that comprises 5 different fibre bundles that result in voxels with bending, crossing and

kissing tracts. The response function of each bundle has been generated with a frac-

tional anisotropy between 0.75 and 0.90 and the diffusion properties are constant along215

all its trajectory. More details on its geometry can be found in Daducci et al. (2014a).

The signal is contaminated with Rician noise (Gudbjartsson and Patz, 1995) as

follows:

Snoisy =
√

(S + ξ1)2 + (ξ2)2, (8)

with ξ1, ξ2 ∼ N (0, σ2) and σ = S0/SNR corresponding to a given signal-to-noise

ratio (SNR) on the S0 image. The quality of the reconstructions has been evaluated as

a function of three different noise levels, i.e. SNR = 10, 20, 30 and 5 different q-space

acquisition schemes (30, 20, 15, 10 and 6 samples), evenly spaced on half of the unit220

sphere.

2.5. Real Data

One HARDI dataset was acquired at b = 3000 s/mm2 using 256 directions uni-

formly distributed on half of the unit sphere (as described by Jones et al. (1999)),

TR/TE = 7000/108 ms and spatial resolution = 2.5 × 2.5 × 2.5 mm. To assess the225

robustness of L2L0NW to different under-sampling rates, the dataset has been retrospec-

tively undersampled and three additional datasets have been created, consisting of only

30, 20 and 10 diffusion directions selected in order to be evenly spaced on half of the

unit sphere using the tool subsetpoints which is available in the camino toolbox2. We

will refer to these four data sets as hardi256, hardi30, hardi20 and hardi10,230

respectively. The actual SNR in the b = 0 images, computed as the ratio of the mean

value in a region-of-interest placed in the WM and the standard deviation of the noise

estimated in the background, was about 30.

2www.camino.org.uk
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To evaluate the reconstructions from the undersampled real datasets, the metrics

described in subsection 2.6 are computed considering the fully-sampled hardi256 as235

the golden truth, as it is suggested by Yeh and Tseng (2013).

2.6. Evaluation criteria

To evaluate the quality of the reconstructions we have focussed on the performance

of each method in both correctly assessing the number of fibre populations in each

voxel and the angular accuracy in their orientation. In this work we adopted a set of240

metrics that Daducci et al. (2014a) used to evaluate and compare all methods participat-

ing in the HARDI reconstruction Challenge 2012. For consistency we have kept their

notation to design the different quality indices. The success rate (SR∠) corresponds

to the proportion of voxels in which a reconstruction algorithm correctly estimates the

number of fibre populations. A fibre is considered to be correctly identified when an245

estimated fibre falls within a tolerance cone around a true fibre. To compare our results

with different algorithms evaluated in (Daducci et al., 2014a), in this work the toler-

ance was set to 20◦. False positive and negative rates (n+∠ and n−∠ , respectively) are

an average over all voxels of the number of over-/underestimated fibre populations per

voxel.250

The angular accuracy is measured through the mean angular error θ̄ (in degrees)

averaged over all true fibre directions, where the angular error associated with each true

fibre is formally defined as:

θ =
180

π
arccos(|dtrue · destimated|), (9)

where dtrue and destimated are unitary vectors in the true fibre direction and the closest

estimated direction. Note that indices SR∠, n+∠ and n−∠ represent mean values over

all voxels of interest, whereas θ̄ is computed voxelwise and we study its statistical

distribution to evaluate the general angular accuracy of each reconstruction.

2.7. Experimental setup255

In the next section, we evaluate the quality of reconstructions using L2L0NW, both

for numerical simulations and tests on real data. Daducci et al. (2014b) showed that
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L2L0 outperforms other state-of-the-art local methods that recover the FOD in the

framework of spherical deconvolution. Consequently, we have chosen it as a bench-

mark to compare L2L0NW with respect to methods that perform voxel-by-voxel recon-260

struction of the fibre configuration. We had access to the original implementation by

Daducci et al. (2014b) to run L2L0 reconstructions.

We also compare the performance of L2L0NW, which jointly estimates the FOD and

applies spatial regularisation, with respect to applying first a non-local denoising pro-

cedure and subsequently perform local reconstruction. We have chosen an adaptation265

of the Linear Minimum Mean Squared Error (LMMSE) filter proposed by Tristán-

Vega and Aja-Fernández (2010) to simultaneously filter all different gradient images.

We use a publicly available implementation of the Joint Anisotropic LMMSE filter3

and subsequently apply L2L0 to reconstruct the FOD. We refer to this alternative as

JAMMLSE+L2L0.270

In addition, taking the advantage of the public results of the HARDI reconstruction

Challenge 2012 (Daducci et al., 2014a), we can compare the performance of L2L0NW

with a representative collection of state-of-the-art methods for simulations on phantom

data. In particular, we are able to establish a comparison with other methods using

different spatial regularisation schemes – such as TV regularisation mentioned above –275

with no need for an explicit implementation of these methods.

Our optimisation code4 was implemented in MATLAB and run on a standard 2.4

GHz Intel Xeon processor. The non-optimised version of the code is able to reconstruct

a whole brain volume of 106× 106× 51 voxels within approximately 4 hours.

3. Results and discussion280

3.1. Phantom data

In this subsection we start comparing in detail the performance for L2L0NW rel-

ative to L2L0 and JAMMLSE+L2L0 for the phantom data set described in subsec-

tion 2.4. The performance of the three methods as a function of the undersampling

3http://www.nitrc.org/projects/jalmmse_dwi/
4Code is available at https://github.com/basp-group/co-dmri.
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rate in q-space is reported in Figure 4. We consider 5 different acquisitions schemes285

(30, 20, 15, 10 and 6 samples) and present results for two different noise levels, at

SNR = 30 and SNR = 20. The plots demonstrate that L2L0NW outperforms L2L0

and JAMMLSE+L2L0 for all number of samples, in both noise conditions. L2L0NW

exhibits an accurate reconstruction (SR∠ ≥ 85 and mean(θ̄) ≤ 6.5◦), robust to noise

for different undersampling regimes, down to 15 samples. Denoising high-SNR data290

prior to reconstruction, as it is done in JAMMLSE+L2L0, seems not to improve the

quality of the reconstructions. Indeed, at SNR = 30, 20 JAMMLSE+L2L0 exhibits

slightly worse results than L2L0 (moderatly lower SR∠ and θ̄). With high quality data

(SNR = 30 and from 30 to 15 samples), the differences between the three methods are

fairly mild. The superiority of L2L0NW compared to L2L0 and JAMMLSE+L2L0 ap-295

pears clearer as we move to higher undersampling regimes and SNR = 20, specially in

terms of the ability of identifying the correct number of fibres (higher SR∠). The over-

all improvement in terms of the success rate is even more evident when we go down

to 10 samples, where L2L0 and JAMMLSE+L2L0 exhibit a severe drop of the perfor-

mance with SR∠ = 52 (L2L0) and SR∠ = 50 (JAMMLSE+L2L0) at SNR = 30300

and SR∠ = 36 (L2L0) and SR∠ = 38 (JAMMLSE+L2L0) at SNR = 20, while

SR∠ = 81 (SNR = 30) and SR∠ = 72 (SNR = 20) are obtained with L2L0NW. We

notice a significant deterioration of the reconstructions with all methods when decreas-

ing the number of samples down to 6.

A more detailed analysis in severe noise conditions (SNR = 10) is presented in305

Figure 5. The plots show an important difference between the performance achieved

by L2L0, that solves the problem voxelwise, and L2L0NW and JAMMLSE+L2L0 that

take into account the correlation between voxels and directions. At SNR=10, the de-

noising step in JAMMLSE+L2L0, specially indicated to correct the effect of the Rician

noise at low SNR regimes (Tristán-Vega and Aja-Fernández, 2010), improves drasti-310

cally the quality of the reconstructions. In particular, the overall θ̄ performances differ

significantly between L2L0 and JAMMLSE+L2L0, with an average enhancement of

up to 5◦ in the mean θ̄ in different undersampling regimes. While in terms of angular

resolution both L2L0NW and JAMMLSE+L2L0 exhibit similar performance, L2L0NW

shows a higher SR∠ down to 10 samples. In this noise setting, we analyse in detail315
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the ability of correctly assessing the number of fibres through the false positives and

negatives rates. Results show the effectiveness of the spatial regularisation applied both

in JAMMLSE+L2L0 and L2L0NW, specially in avoiding overestimated directions (ex-

treme decrease of n+∠) even if the number of missed fibres (n−∠) is also significantly

decreased.320

Plots analogous to Figures 4 and 5 can be found in (Daducci et al., 2014a), where

an exhaustive comparison of all methods participating in the HARDI reconstruction

Challenge 20125 is presented. The performance of these algorithms is evaluated on

the same phantom used in our simulations by computing the same quality metrics de-

scribed in the present paper (SR∠, θ̄, n
+ and n−). Figure 6 shows a comparison of the325

performance of L2L0NW run with 15 samples with the following eight representative

methods participating in the Challenge6: (i) DTIneigh, classical DTI method enhanced

using contextual information (Prckovska et al., 2010); (ii) L2-L1-DL, method using

dictionary learning in the framework of `2-`1 reconstruction (Donoho, 2006); (iii -

iv) L2-L1-TV and L2-L1-TGV, using the `2-`1 problem formulation and including330

spatial regularisation schemes based on total variation and total generalised variation,

respectively (Mani et al., 2014); (v - vi) L2-L2 and NN-L2, based on `2 norm priors

(Ramirez-Manzanares et al., 2007; Canales-Rodriguez et al., 2009); (vii) DOT, classi-

cal diffusion orientation transform (Ozarslan et al., 2006); (viii) DSILR, classical DSI

enhanced using Lucy-Richardson deconvolution (Canales-Rodriguez et al., 2010). For335

a more detailed explanation of each reconstruction method, you can refer to (Daducci

et al., 2014a). Direct quantitative comparisons with all these standard state-of-the-art

algorithms is not straightforward from the results, since every method was tested using

different sampling schemes (different number of samples and distribution of points).

Yet, L2L0NW can be positioned in the overall picture. In Figure 6, participant meth-340

ods are sorted by the number of samples used for the reconstruction, increasing from

left to right. The actual number of samples is indicated on the plot for every method.

In mild noise conditions (SNR = 30), L2L0NW is able to correctly assess the num-

5http://hardi.epfl.ch/static/events/2012_ISBI
6For the sake of consistency, all methods are named following the same notation as in (Daducci et al.,

2014a).
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ber of fibres in 85% of voxels (SR∠ = 85) using as few as 15 signal samples and

this quality appears comparable to the best SR∠ scores obtained in the Challenge with345

methods using many more points (from 30 up to 257) to recover the fibre configu-

ration. The superiority of L2L0NW appears to be even more significant when a more

noisy setting is considered. At SNR = 10, L2L0NW using only 15 samples, shows

the same quality of reconstruction, in terms of both SR∠ and θ̄, as DSI using an ex-

haustive cartesian sampling scheme of 257 points. NN-L2 stands as the only method350

presenting slightly better results in terms of SR∠, yet, using 48 samples. Only with

15 samples L2L0NW is able to attain comparable levels of performance, thus implying

a speed-up factor of three. We pay special attention to the comparison with the rest

of methods that promote any kind of spatial regularisation. L2L0NW with 15 samples

(SR∠ = 85 and mean(θ̄) = 6.4◦) outperforms L2-L1-TV, the method imposing TV355

regularisation (Daducci et al. (2014a); see also Mani et al. (2014)), in terms of success

rate (SR∠ = 75) and present similar average angular error (mean(θ̄) = 6◦), stressing

the fact that the latter uses a sampling scheme with the double number of points (30

samples). Overall, we point out that all participant methods imposing spatial regular-

isation (L2-L1-TV, L2-L1-TGV) use a significant amount of measurements (from360

30 to 64 points) to recover the fibre configuration. The anatomical structured sparsity

prior that we impose allows us to yield the same quality in the reconstructions using

higher undersampling regimes.

3.2. Real Data

3.2.1. Quantitative comparison365

In this subsection, we compare quantitatively the reconstructions obtained from

undersampled real data (i.e. hardi30, hardi20 and hardi10 ) to those with fully-

sampled data (i.e. hardi256 ), considering the latter as ground-truth, for L2L0,

JAMMLSE+L2L0 and L2L0NW. Results quoted next are in agreement with those ob-

tained for numerical simulations on the phantom, confirming that L2L0NW actually370

outperforms L2L0 and JAMMLSE+L2L0. Bearing in mind that he actual SNR in

the b = 0 images is about 30, results for JAMMLSE+L2L0 and L2L0NW appear in line

with conclusions driven from the HARDI Reconstruction Challenge 2012, where it was
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Figure 4: Comparison of SR∠ and θ̄ between L2L0, JAMMLSE+L2L0 and L2L0NW approaches. Exper-
iments are performed on the phantom dataset used in Daducci et al. (2014a) for a fixed SNR = 30 (top
row) and SNR = 20 (bottom row). On the left, SR∠ represents the success rate. On the right, the boxplot
diagrams present the distribution of θ̄, with the edges of each box representing the 25th and 75th percentiles,
the mean and median value appear as “square” and “circle” value and the outliers are plotted as red dots.

Figure 5: Comparison of SR∠ and θ̄ between L2L0, JAMMLSE+L2L0 and L2L0NW approaches. Experi-
ments are performed on the phantom dataset used in Daducci et al. (2014a) for a fixed SNR = 10. On the
top left, SR∠ represents the success rate. On the top right, the boxplot diagrams present the distribution of
θ̄ with the same conventions as for Figure 4. On the bottom row, n−∠ and n+

∠ represent the false negatives
and positives rates.

18



Figure 6: Comparison of SR∠ and θ̄ between different reconstruction methods. Experiments are performed
on the phantom dataset used in Daducci et al. (2014a) for a fixed SNR = 30 (top row) and SNR = 10
(bottom row). On the left, SR∠ represents the success rate. For the sake of comparison, the number of
samples used for the reconstruction is reported in parentheses next to the name of each method. On the right,
the boxplot diagrams present the distribution of θ̄, with the edges of each box representing the 25th and 75th
percentiles, the mean and median value appear as “square” and “circle” value and the outliers are plotted as
red dots.
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shown that spatial regularisation appeared to be effective also in low noise regimes,

while merely denoising the images did not (Daducci et al., 2014a).375

The average mean angular error (θ̄) using 30 samples was 13.9◦ ± 11.4◦ (mean ±

standard deviation over WM voxels of the whole brain volume) for L2L0, 14.5◦±10.8◦

for JAMMLSE+L2L0 and 7.8◦±9.14◦ for L2L0NW . Reconstructions using 20 samples

had an average error of 15.7◦ ± 11.2◦ for L2L0, 16.7◦ ± 11.8◦ for JAMMLSE+L2L0

and 9.1◦ ± 9.6◦ for L2L0NW . When one goes down to 10 samples, reconstructions380

using L2L0 and JAMMLSE+L2L0 exhibit an angular error of 19.8◦ ± 11.25◦ and

19.8◦ ± 12.0◦, respectively, which is already higher than the resolution of the spher-

ical discretisation defined by our dictionary; while the angular error for L2L0NW is

13.6◦ ± 10.5◦. Results for the success rate are as well consistent with the results ob-

tained in simulations. As in numerical simulations, the benefits of imposing a spatial385

regularisation directly on the fibre orientations are more remarkable when we go to

higher subsampling regimes. The SR∠ was 31.1%±46.3% for L2L0, 34.8%±47.6%

for JAMMLSE+L2L0 and 67.0%±47.0% for L2L0NW with 30 samples; 27.9%±44.9%

for L2L0, 28.0%±45.0% for JAMMLSE+L2L0 and 61.7%±48.6% for L2L0NW at 20

samples. All methods present a degradation in the quality of their reconstructions when390

we go down to 10 samples, SR∠ decreasing to 16%±36.6% for L2L0, 18.8%±39.0%

for JAMMLSE+L2L0 and 40.6%± 49.1% for L2L0NW.

Figures 7 and 8 illustrate the numerical results for one representative slice of the

brain volume. The angular accuracy of each reconstruction is presented by plotting the

mean angular error θ̄ per voxel in Figure 7. A map of the number of false positives395

and false negatives per voxel is used to illustrate the ability of each method of correctly

assessing the number of fibres in Figure 8. The images show the superiority of L2L0NW

with respect to L2L0 and JAMMLSE+L2L0, specially in those voxels close to the

boundaries with the grey matter and the cerebrospinal fluid.
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Figure 7: Angular accuracy (map of θ̄ per voxel) in real data between L2L0, JAMMLSE+L2L0 and L2L0NW
reconstructions with 30, 20 and 10 samples (hardi30, hardi20, hardi10 datasets, respectively).

3.2.2. Qualitative comparison400

The reconstructions7 of the FOD obtained with L2L0 and L2L0NW for a significant

slice of the brain in the corona radiata region are compared qualitatively in Figures 9

and 10. These plots show the robustness of each method to two different undersam-

pling regimes, hardi30 and hardi10. In the light of the quantitative results obtained

for both phantom and real data and given the fact that qualitative differences between405

reconstructions using L2L0 and JAMMLSE+L2L0 are difficult to appreciate, we do

not show qualitative results for JAMMLSE+L2L0. In all images, three meaningful re-

gions with fibre bundle crossings have been highlighted. With 30 samples (Figure 9

corresponding to hardi30), the FODs reconstructed by L2L0NW present neater and

sharper profiles with less presence of spurious peaks than the ones reconstructed by410

L2L0. In addition, the fibre orientation distribution field reconstructed by L2L0NW

7The images have been created using the tool mrview of mrtrix. This required the FOD from L2L0 and
L2L0NW to be previously converted to spherical harmonics.
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Figure 8: Ability of correctly assessing the number of fibres in real data between L2L0, JAMMLSE+L2L0
and L2L0NW reconstructions with 30, 20 and 10 samples (hardi30, hardi20, hardi10 datasets, respec-
tively). Map of number of false positives (top) and false negatives (bottom) per voxel.
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looks qualitatively smoother overall. As a consequence, fibre bundles are better de-

fined through more clearly identified peaks. Plots in Figure 10 show reconstructions

performed with only 4% of the original data (10 samples). In these images – cor-

responding to reconstructions with highly undersampled data – the above-mentioned415

qualitative differences between the two methods are confirmed and even more easily

noticeable. As discussed in section 1, these differences can have a significant impact

when applying tractography methods on these fibre orientation fields.

4. Discussion and conclusions

In this work we have proposed a novel algorithm to recover the intra-voxel FOD420

simultaneously for all voxels. The method leverages a spatially structured sparsity

prior directly on the FOD, where the structure originates from the spatial coherence of

the fibre orientation between neighbour voxels. We have made use of a reweighting

scheme to enforce structured sparsity in the solution. We have shown through numer-

ical simulations and tests on real data that this method outperforms a voxel-by-voxel425

reconstruction method when assessing the correct number of fibres and the angular pre-

cision of their orientation. As shown in section 3, exploiting spatial information about

the neighbouring directions appears essential to ensure a stronger robustness to noise

and ability to go to higher undersampling regimes, leading to accurate reconstructions

with only 15 samples.430

We also compare the performance of our proposed method with respect to applying

first a non-local denoising procedure and subsequently perform local reconstruction.

This comparison allows us to highlight the benefits of using a spatial regularisation as

in our approach as opposed to this decoupled strategy. As presented in simulations,

our spatial prior on the FOD outperforms as well the empirical TV regularisation of q-435

space images proposed by Mani et al. (2014), being able to recover the fibre orientation

distribution using fewer samples. Note that spatial regularisation of the q-space images

is actually complementary to our formulation and could be added as an additional prior

to our method.

The regularisation presented in this paper could as well be applied in a voxel-by-440
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Figure 9: Qualitative comparison on HARDI human data. Reconstructions of the FODs in the corona radiata
region are shown for L2L0 (top) and L2L0NW (bottom) for 30 samples superimposed to the FA map.
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Figure 10: Qualitative comparison on HARDI human data. Reconstructions of the FODs in the corona
radiata region are shown for L2L0 (top) and L2L0NW (bottom) for 10 samples superimposed to the FA map.
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voxel configuration, redefining the weights in formulation (3) to account for the values

of the FOD in a defined neighbourhood. Preliminary investigations in this direction did

not provide promising results. Fixing a single bound to estimate the number of fibres

separately in every voxel of the brain appears to be too constraining. On the contrary,

setting a bound on the total number of fibres of the whole volume and solving the445

problem for all voxels simultaneously leaves more freedom on the effective directions

(number of non-zero coefficients) per voxel. Furthermore, future evolutions of this

algorithm should enable undersampling in Fourier space (k-space) for each of the q-

space images acquired. This combined k − q-space sampling approach, along the

lines of work by Mani et al. (2014), will potentially enable a significant additional450

acceleration, in which context a voxel-by-voxel approach is not an option. Regarding

computing resources, the memory requirements of a reweighting scheme to solve each

voxel independently but using neighbourhood information to define the weights would

not differ from L2L0NW, bearing in mind that the main operator Φ remains exactly the

same for both formulations (3) and (5). In any case, the computation time of L2L0NW455

is affordable for a single processor, as described in section 2.7.

In recent work, Daducci et al. (2015) present a general framework for Accelerated

Microstructure Imaging via Convex Optimization (AMICO) to recover the microstruc-

ture configuration voxel-by-voxel in regions with one single fibre population. Future

investigations will consider to exploit the spatial coherence of the microstructural fea-460

tures of the fibres all over the brain with the aim of extending the AMICO framework to

regions of the WM with multiple fibre populations and more complex configurations.
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