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Abstract. Although generative adversarial network (GAN) based style
transfer is state of the art in histopathology color-stain normalization,
they do not explicitly integrate structural information of tissues. We
propose a self-supervised approach to incorporate semantic guidance
into a GAN based stain normalization framework and preserve detailed
structural information. Our method does not require manual segmenta-
tion maps which is a significant advantage over existing methods. We
integrate semantic information at different layers between a pre-trained
semantic network and the stain color normalization network. The pro-
posed scheme outperforms other color normalization methods leading to
better classification and segmentation performance.

Keywords: GANs · Semantic guidance · Color normalization · Digital
pathology

1 Introduction

Increased digitization of pathology slides has enhanced the importance of digi-
tal histopathology in the medical imaging community. Staining is an important
part of pathological tissue preparation where, e.g., Hematoxylin and Eosin dyes
alter intensity of tissue elements - nuclei turns dark purple while other struc-
tures become pink. Tissue structures become distinguishable facilitating manual
or automated analysis. Color variation of the same structure is observed due
to differences in staining protocols from different centers, different dye manu-
facturers and scanner characteristics. Consequently, this leads to inconsistent
diagnosis and limits the efficacy of automated methods. Hence there is a need
for stain color normalization to have uniform appearance of dye-stained regions.
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We propose to integrate self-supervised semantic guidance with GANs for better
structure preservation after stain normalization.

Two widely explored categories for stain normalization methods are color
matching [23], and stain-separation [14,18]. Since these methods rely on tem-
plate images it leads to mismatch and poor performance when the template is
not representative of the dataset The third category comprises machine learn-
ing approaches [12] which sub-divide an input image into multiple tissue regions
using a sparse autoencoder, and independently normalize each region. Recent
works solve stain normalization as a style-transfer problem using Generative
adversarial networks(GANs) [4]. GANs have found many applications in medi-
cal image analysis [13,32] such as image super-resolution [19], registration [22],
segmentation [21,34] and augmentation [5,20] to name a few. Unpaired Image-to-
Image Translation with CycleGANs were used in [26] to facilitate style transfer
across two domains. These methods do not require a reference image and achieve
high visual agreement with images from the target domain. Gupta et. al. in
[10] leverage GAN based image-image translation for augmenting histopathol-
ogy images to improve segmentation accuracy. Other variants include use of prior
latent variables and auxiliary networks [33], and auxiliary inputs [35].

Previous works have demonstrated the effectiveness of cycle GANs in stain
normalization, thus eliminating the tedious task of selecting a reference stain.
However, as pointed out in [8] shape outlines of translated objects may change
which leads to sub optimal performance. Gadermayr [8] used two different
pipelines to overcome this pitfall. While their results are effective, the pipeline
itself is tedious. Vahadane et al. [30] propose a structure preserving normaliza-
tion method using non negative matrix factorization but do not explicitly use
semantic information. Lahiani et al. [16] introduce a perceptual embedding loss
to reducing tiling artifacts in reconstructed whole slide images (WSI).

Self-supervised learning requires formulating a proxy (or pretext) task which
can be solved on the same dataset and using the trained network to perform self
supervised tasks such as segmentation or depth estimation [9]. Some examples
in the field of medical image analysis include surgical video re-colorization as a
pretext task for surgical instrument segmentation [25], rotation prediction for
lung lobe segmentation and nodule detection [29] and use disease bounding box
localization for cardiac MR image segmentation [2].

Contributions: Since medical image analysis influences diagnostic decisions it
is helpful to preserve information about finer structures for semantic guidance.
Inclusion of segmentation information requires detailed annotations of the image
which is extremely cumbersome for WSIs. Our primary contribution is a color
stain normalization method that uses semantic guidance through self supervised
features. We build our model using cyclic GANs [22,36] as they are an effective
choice for transferring image appearances across domains. Semantic guidance
is incorporated using a pre-trained semantic segmentation network trained on
a different dataset. Semantic information in the form of segmentation feature
maps from multiple levels is injected into the stain normalization network. Since
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Fig. 1. Workflow of our proposed stain colour normalization method using CycleGANs.
Semantic guidance is injected from the corresponding layers of SegSem into the gener-
ators GAB , GBA and help preserve important cellular structures in normalization.

we use self supervised segmentation maps we do not need manual annotations
during training or test stages which makes it easy to deploy for novel test cases.

Our paper makes the following contributions: 1) we integrate self-supervised
features for stain normalization using semantic guidance from a pre-trained net-
work; 2) self supervised segmentation feature maps allow us to use our method
despite unavailability of manual segmentation maps. Our proposed method beats
the state of the art stain normalization methods when the normalized images
are used for classification and segmentation tasks. Different from [16], 1) we
explicitly use semantic information to capture geometric and structural patterns
for image normalization; 2) use pixel adaptive convolutions; and 3) match fine
grained segmentation maps of normalized images.

2 Method

We denote the set of training images as ITr, their labels (manual segmenta-
tion masks or disease class) as LTr, and the trained model (segmentation or
classification) as MTr. Given a set of test images ITest our objective is to seg-
ment/classify them using the pre-trained model MTr. To successfully do that
we : 1) color normalize the test images using our proposed method SegCN-Net;
and 2) apply pre-trained MTr.

Figure 1 depicts the workflow of our proposed stain normalization method.
There are three different networks, GAB (the generator network in red), SegSem

(the pre-trained segmentation network in yellow providing semantic guidance),
and GBA (the generator network in green). All three networks are based on
a UNet architecture [24] to facilitate easy integration of semantic information
during training and test phases. GAB transforms A to look like an image from
domain B while GBA performs the reverse translation to maintain cycle consis-
tency. Images from A and B are passed through SegSem and the information
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from different layers of SegSem is fused with the corresponding layer of GAB and
GBA to facilitate integration of semantic guidance.

2.1 Semantic Guidance Through Self Supervised Learning

Our self-supervised approach does not define any pretext task but focuses on
using pre-trained networks for semantic guidance in stain normalization. Seman-
tic features for guiding the stain normalization task come from the pre-trained
segmentation network SegSem shown in Fig. 1. SegSem’s pre-trained weights
guide the feature learning process of the two generators without the need for
further finetuning.

The translation invariance property of standard convolution makes it content-
agnostic and poses certain limitations such as, despite reducing number of
parameters it may lead to sub-optimal learning of feature representations. Addi-
tionally, spatially-shared filters globally average loss gradients over the entire
image and the learned weights can only encode location-specific information
within their limited receptive fields. Content-agnostic filters find it difficult to
distinguish between visually similar pixels of different regions (e.g. dark areas due
to artifacts or tissues) nor learn to identify similar objects of different appearance
(e.g. same tissue structure with different shades as in our problem).

Pixel-adaptive convolutions [28] can address the above limitations where the
feature representations encoded in the semantic network helps to distinguish
between confounding regions, and are defined as

v′
i =

∑

j∈Ω(i)

K(fi, fj)W
[
pi − pj

]
vj + b (1)

where f are the features from the semantic network that guide the pixel adaptive
convolutions, p are pixel co-ordinates, W is the convolutional weights of kernel
size k, Ωi is a k × k convolution window around pixel i, v is the input and b is
the bias term. For each feature map, we apply a 3 × 3 and a 1 × 1 convolution
layer followed by Group Normalization [31] and exponential linear units (ELU)
non-linearities [7]. The resulting semantic feature maps are fused with the cor-
responding layers of GAB and GBA, and used as guidance on their respective
pixel-adaptive convolutional layers. K is a standard Gaussian kernel defined by

K(fi, fj) = exp
(

−1
2
(fi − fj)T Σ−1

ij (fi − fj)
)

(2)

where Σ−1
ij is the covariance matrix between feature vectors fi,fj and formulated

as a diagonal matrix σ2 · ID, where σ is an additional learnable parameter for
each filter. Standard convolution is a special case when K(fi, fj) = 1.

To capture semantic information across multiple scales we extract the feature
maps after each convolution stage to get a set of maps with varying dimension
due to max pooling operations, whose values are normalized to [0, 1]. For a given
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pair of images we calculate the mean squared error between fs - corresponding
multi scale feature maps. Thus, the feature map loss between a and â is

LFeatMap(a, â) =
S∑

s=1

√
(fs(a) − fs(â))2

N
(3)

(a) (b) (c) (d) (e)

Fig. 2. Color normalization results: (a) Domain A image; (b) Domain B image; Domain
A transformed to Domain B using: (c) proposed SegCN −Net; (d) [8]; (e) [35]. Areas
of structure inconsistency are shown by black arrows. (Color figure online)

2.2 Color Normalization Using Semantic Guidance

Cycle GANs transform an image from domain A to B, and the reverse trans-
lation from B to A should generate the original input image. In forward cycle
consistency, an image from domain A is translated to domain B by generator
GAB expressed as ab̂ = GAB(a). Image ab̂ is translated back to domain A by
GBA to get â = GBA(ab̂). Similarly, the original and reconstructed images from
B should also match. Thus the overall cycle consistency loss is,

Lcycle(GAB , GBA) = Ea ‖a − GBA(GAB(a))‖1 + ‖b − GAB(GBA(b))‖1 + LSeg,
(4)

LSeg =

LSeg1︷ ︸︸ ︷
LFeatMap(a, â) + LFeatMap(b, b̂) +

LSeg2︷ ︸︸ ︷
LFeatMap(a, ab̂) + LFeatMap(b, bâ)

(5)
We impose the additional constraint that the fine grained segmentation maps of
images should match, not just of the reverse transformed images a, â and b, b̂)
but also between the outputs of each generator and the corresponding original
images, i.e. between a, ab̂ and bâ, b. LSeg2 is specifically designed to preserve
structural information between images of domain A,B in stain normalization.

Discriminator DB is employed to distinguish between real image b and gen-
erated image ab̂ where the adversarial loss in forward cycle, Ladv, is

Ladv(GAB ,DB , A,B) = Eb log DB(b) + Ea log [(1 − DB(GAB(a)))] . (6)

There also exists a corresponding Ladv(GBA,DA, B,A) to distinguish between
real image a and generated image bâ Thus the final objective function is

L = Ladv(GAB ,DB , A,B) + Ladv(GBA,DA, B,A) + Lcyc(GAB , GBA) (7)
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Network Architecture. All the networks (GAB , GBA, SegSem) are based on
a UNet architecture [24] with a ResNet backbone. Each convolution block has 3
layers of convolution layers (all using the pixel adaptive convolutions and ELU)
followed by a 2 × 2 maxpooling step of stride 2. Skip connections exist between
the stages of the contracting and expanding path. 3 × 3 kernels are used with
adequate padding to maintain image dimensions. There are four convolution
blocks in both paths.

3 Experimental Results

3.1 Evaluation Set up for Classification

Our proposed color normalization method is SegCN-Net (segmentation based
color normalization network), and evaluate it’s performance as a pre-processing
step. CAMELYON16 [3] and CAMELYON17 [6] public datasets are used having
WSIs for classification and segmentation of breast cancer metastases. CAME-
LYON16 has images from 2 independent medical centers while CAMELYON17’s
images come from 5 centers. We train SegCN-Net on CAMELYON16 and eval-
uate on transformed images of CAMELYON17. Domain A consists of images
from Center 1 of CAMELYON16 (C116), while Domain B has images from C216.
100, 000 patches of 256 × 256 were extracted from each domain, and we train all
models using a NVIDIA Titan X GPU having 12 GB RAM, Adam optimiser [15]
with a learning rate of 0.002. Xavier initialization was used and training took
42 h for 150 epochs with batch size 16.

For evaluation, images from the different centers of CAMELYON17 were
split into training/validation/test in 50/30/20% to obtain the following
split: C117:37/22/15, C217: 34/20/14, C317: 43/24/18, C417: 35/20/15, C517:
36/20/15. For our first baseline, we train 5 different ResNet50 [11] with batch
size 32, Adam optimizer learning rate of 0.001 for 70 epochs (denoted as
ResNetNoNorm) on images from C117–C517 using the split described before,
but without normalization. We apply SegCN-Net on images from different cen-
ters of CAMELYON17 to color normalize them and train ResNet50 networks
with similar settings as ResNetNoNorm using the data split of C117–C217. The
results (using area under curve (AUC) as the performance metric) are reported
in Table 1 under SegCN-Net. We replace our stain normalization method with
other competing methods, such as [8,18,23,30,35] and perform the same set of
classification experiments with the performance summarized in Table 1.

[30] aims to preserve structure information through templates while [35]
employ stain color matrix matching. Since they do not explicitly use segmenta-
tion information, SegCN-Net performs better than both methods. The method
by [8] actually does better than others because of the use of segmentation infor-
mation, but requires labeled segmentation maps. SegCN-Net’s superior perfor-
mance shows that use of self supervised segmentation can be leveraged when
manual segmentation maps are not available. Figure 2 shows the stain normalized
images of different methods. The advantage of SegCN-Net in preserving struc-
tural information is indicated by the black arrows where the glandular structure
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is deformed from the original image in [35], and to a lesser extent in [8]. Thus
the advantages of our semantic guidance based stain normalization is obvious.

Table 1. Classification results in terms of AUC measures for different stain normaliza-
tion methods on the CAMELYON17 dataset. p values are with respect to SegCN-Net.

Method Center 1 Center 2 Center 3 Center 4 Center 5 Average p

ResNetC17noNorm 0.8068 0.7203 0.7027 0.8289 0.8203 0.7758 0.0001

Reinhard [23] 0.7724 0.7934 0.8041 0.8013 0.7862 0.7915 0.0001

Macenko [18] 0.7148 0.7405 0.8331 0.7412 0.7436 0.7546 0.0001

CycleGAN 0.9010 0.7173 0.8914 0.8811 0.8102 0.8402 0.002

Vahadane [30] 0.9123 0.7347 0.9063 0.8949 0.8223 0.8541 0.003

Zhou [35] 0.9381 0.7614 0.7932 0.9013 0.9227 0.8633 0.013

Gadermayr [8] 0.9487 0.8115 0.8727 0.9235 0.9351 0.8983 0.013

SegCN-Net 0.9668 0.8537 0.9385 0.9548 0.9462 0.9320 -

Ablation Study Results

SegCN-NetConv 0.9331 0.8255 0.9148 0.9259 0.9181 .9035 0.0008

SegCN-NetSeg Only 0.9376 0.7974 0.8942 0.9187 0.9012 0.8898 0.0001

SegCN-NetC17Rand 0.9624 0.8403 0.9267 0.9478 0.9391 0.9232 0.34

SegCN-NetGlas 0.9762 0.8627 0.9509 0.9677 0.9588 0.9432 0.042

3.2 Ablation Studies

Table 1 summarizes the performance of the following variants of our method:

1. SegCN-NetConv - SegCN − Net using standard convolutions instead of pixel
adaptive convolutions.

2. SegCN-NetSeg - SegCN-Net using only the final segmentation masks without
the intermediate feature map. This evaluates the relevance of using a single
segmentation map without semantic guidance at each layer.

3. SegCN-NetC17Rand - SegCN-Net tested on all normalized images of C17 with
random selection of train/val/split. The results are an average of 10 runs and
investigate possible bias in data split.

In the original approach SegSem was pre-trained on the MS-COCO dataset
[17]. In a variant of our proposed method we use a network pre-trained on the
Glas segmentation challenge dataset [27] which has segmentation masks of his-
tological images, and use it for classification of the test images from CAME-
LYON17. The results are shown in Table 1 under SegCN-NetGlas.

SegCN-NetGlas shows better classification performance than SegCN-Net, and
the difference in results at p = 0.042 is significant as semantic guidance is
obtained from a network trained on histology images while SegCN-Net used
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natural images. Although natural images provide some degree of semantic guid-
ance by learning edge features, SegSem trained on histopathology images pro-
vides domain specific guidance and hence leads to better performance. Since
such a annotated dataset is not always available for medical images, we show
that semantic guidance from a network trained on natural images significantly
improves upon the state of art method for stain color normalization.

SegCN-NetC17Rand performance is close to SegCN-Net without any statis-
tically significant difference, indicating that SegCN-Net is not biased on the
test set. SegCN-NetSeg Only shows inferior performance compared to SegCN-
Net, which indicates that multistage semantic guidance is much better than
a single segmentation map. However SegCN-NetSeg Only still performs slightly
better than [8] indicating the advantages of including segmentation information
for structure preserving color normalization.

Table 2. Segmentation results on the GLas Segmentation challenge for SegCN−Net,
[8,35] and the top ranked method. HD is in mm. Best results per metric in bold.

SegCN −Net Glas Rank 1 [8] [35]

Part A Part B Part A Part B Part A Part B Part A Part B

F1 0.9351 0.7542 0.912 0.716 0.926 0.728 0.922 0.729

DM 0.9212 0.8054 0.897 0.781 0.909 0.798 0.892 0.785

HD 42.276 143.286 45.418 160.347 44.243 157.643 47.012 161.321

3.3 Segmentation Results

We apply our method on the public GLAS segmentation challenge [27] which has
manual segmentation maps of glands in 165 H&E stained images derived from
16 histological sections from different patients with stage T3 or T4 colorectal
adenocarcinoma. We normalize the images using SegCN-Net (using MS-COCO
images for semantic guidance), train a UNet with residual convolution blocks and
apply on the test set. The performance metrics - Dice Metric (DM), Hausdorff
distance (HD), F1 score (F1)- for SegCN-Net, [8,35] and the top ranked method
[1] are summarized in Table 2. [35]’s performance comes close to the top ranked
while [8] outperforms both of them, and SegCN-Net gives the best results across
all three metrics. This shows that stain normalization in general does a good
job of standardizing image appearance which in turn improves segmentation
results. SegCN-Net performs best due to integration of segmentation information
through self supervised semantic guidance.

3.4 Color Constancy Results:

Similar to [33] we report results for normalized median intensity, which measures
color constancy of images, for the same dataset and obtained the following values:
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SegCN-Net - Standard Deviation (SD) = 0.011, Coefficient of Variation (CV) =
0.021, which is better than Zanjani et al. [33] - SD = 0.0188, CV = 0.0209.

As reported in [16] we calculate values for complex wavelet structural sim-
ilarity index (CWSSIM) between real and generated images. CWSSIM ∈ [0, 1]
with higher values indicating better match and is robust to small translations
and rotations. Mean CWSSIM values of SegCN-Net is 0.82, which is higher than
CycleGAN (0.75), [16] (0.77) and other baseline methods.

4 Conclusion

We have proposed a histopathology image stain color normalization approach
using cycle GANs that integrates semantic guidance from self supervised seg-
mentation feature maps. Our semantic guidance approach facilitates inclusion of
segmentation information without the need for manually segmented maps that
are very difficult to obtain. Experimental results on public datasets show our
approach outperforms state of the art normalization methods when evaluated
for classification and segmentation. Ablation studies also show the importance of
semantic guidance. Although semantic guidance is obtained from the MS-COCO
dataset of natural images, we also demonstrate that when domain specific guid-
ance is used the results improve even further. This has potential in improving
performance of medical image analysis tasks where annotations are not readily
available.
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