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a b s t r a c t 

Diffusion-weighted (DW) magnetic resonance spectroscopy (MRS) suffers from a lower signal to noise ratio (SNR) 

compared to conventional MRS owing to the addition of diffusion attenuation. This technique can therefore 

strongly benefit from noise reduction strategies. In the present work, Marchenko-Pastur principal component 

analysis (MP-PCA) denoising is tested on Monte Carlo simulations and on in vivo DW-MRS data acquired at 9.4 T 

in rat brain and at 3 T in human brain. We provide a descriptive study of the effects observed following different 

MP-PCA denoising strategies (denoising the entire matrix versus using a sliding window), in terms of apparent 

SNR, rank selection, noise correlation within and across b-values and quantification of metabolite concentrations 

and fitted diffusion coefficients. MP-PCA denoising yielded an increased apparent SNR, a more accurate B 0 drift 

correction between shots, and similar estimates of metabolite concentrations and diffusivities compared to the 

raw data. No spectral residuals on individual shots were observed but correlations in the noise level across shells 

were introduced, an effect which was mitigated using a sliding window, but which should be carefully considered. 
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. Introduction 

Magnetic resonance spectroscopy (MRS) is a powerful technique that

rovides unique information about brain metabolite concentrations in

ivo . Combined with diffusion weighting (DW), information on metabo-

ites’ diffusivities which are expected to reflect properties of the tissue

icrostructure can be extracted ( Pfeuffer et al., 2000 , Nicolay et al.,

001 , de Graaf et al., 2001 , Palombo et al., 2018 , Ligneul et al.,

019 , Najac et al., 2016 , Ronen et al., 2014 , Genovese et al., 2021 ).

hese properties include cell geometry, characteristic sizes of com-

artments, cytosol viscosity and molecular crowding. Unlike water,

etabolites are naturally compartmentalized and probe the intracellu-

ar space almost exclusively. Some metabolites are even considered to

e largely specific to glial cells, such as glutamine (Gln) or myo-inositol

mIns), some to neurons, such as N-acetylaspartate (NAA) or glutamate

Glu) ( Palombo et al., 2018 , Ligneul et al., 2019 , Brand et al., 1993 ,

renjak et al., 1993 , Harris et al., 2015 ), while others are found in all

ell types, such as creatine in all its forms ( Rackayova et al., 2017 ) (total

reatine: tCr). This intrinsic compartment specificity makes DW-MRS an
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xtremely powerful tool to probe brain microstructure, in combination

r in contrast to water diffusion MRI. 

However, MRS is an inherently low signal-to-noise (SNR) technique

ue to the much lower concentration of metabolites relative to water,

esulting in the need for substantial spectral averaging. For DW-MRS,

ven more extended averaging is needed to compensate for diffusion

ttenuation, and acquisition times become prohibitively long to parse

ultiple diffusion weightings (b-values), directions or diffusion times.

W-MRS data is typically acquired in single-voxel fashion. When fine

patial localization is required to study small structures, low SNR cannot

e compensated by large voxel volumes. In this case, post-processing

ethods aiming to minimize the noise variance and its impact on the

uantification of MRS signals are needed. 

Several denoising schemes have been proposed, but remarkably none

f them has been fully adopted by the MRS community ( Ebel et al., 2006 ,

render et al., 2019 , Ahmed, 2005 , Goryawala et al., 2020 , Abdoli et al.,

016 , Nguyen et al., 2013 , Clarke and Chiew, 2022 , Klauser et al., 2018 ,

imicic et al., 2021 , Knoll et al., 2011 , Pijnappel et al., 1992 , Rowland

t al., 2021 , Doyle et al., 1994 ). Some of these denoising techniques, typ-

cally based on singular value decomposition (SVD) or another sparse
ember 2022 
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epresentation such as Fourier space or wavelets ( Pijnappel et al.,

992 , Rowland et al., 2021 ), have been implemented for spectroscopic

maging data (MRSI) ( Goryawala et al., 2020 , Abdoli et al., 2016 ,

guyen et al., 2013 , Clarke and Chiew, 2022 , Klauser et al., 2018 ,

imicic et al., 2021 ), and mainly in clinical applications. These meth-

ds rely on linear predictability, partial separability of spatial-temporal

odes, or both, of such data ( Abdoli et al., 2016 , Nguyen et al., 2013 ,

larke and Chiew, 2022 , Klauser et al., 2018 ). In addition, constraints on

he spatial distribution of the signal with specific regularization, such as

otal generalized variation (TGV), has shown to further enhance the SNR

n MRSI reconstruction ( Klauser et al., 2018 ). TGV regularization aims

o denoise by enforcing smooth spatial variations, however with known

imitations in terms of detecting focal pathology ( Knoll et al., 2011 ).

ther approaches based on smoothing using splines, sliding windows or

aussian windows lead to a deterioration of spectral/temporal resolu-

ion as well as artefactual auto-correlation ( Rowland et al., 2021 ). Fi-

ally, deep learning approaches have been very recently suggested ( Lei

t al., 2021 ; Dziadosz et al., 2021 ), but likely require more investigation

o become robust. 

The main challenge of sparse representations such as SVD resides in

he determination of the appropriate thresholds that separate the noise

rom the signal. In MRS, this arbitrary threshold can lead to possible

limination of spectral features that are on the same order of magnitude

s noise components. One solution to choosing a threshold in a sparse

omain has been proposed recently, with the initial aim to denoise dif-

usion MRI data ( Veraart et al., 2016 ). It is based on the Marchenko-

astur principal component analysis (MP-PCA) technique, which ex-

loits the fact that noise eigenvalues follow the asymptotic universal

archenko-Pastur distribution, a result of the random matrix theory

or noisy covariance matrices. This method thus provides a data-driven

more specifically, noise-driven) approach to distinguish noise from the

ignal components in SVD, since the cut-off is obtained by iteratively

tting the MP distribution to the tail of eigenvalues, and has shown

ts superiority to TGV for instance ( Veraart et al., 2016 ). In practice,

P-PCA is suitable for the denoising of data with a high level of redun-

ancy and a constant noise level across them. In the case of a diffusion

RI dataset for example, this could correspond to images acquired with

ifferent diffusion-weightings and directions. Since its initial develop-

ent for diffusion MRI, its applications have been extended to func-

ional MRI ( Ades-Aron et al., 2021 , Diao et al., 2021 ), T 2 relaxome-

ry ( Does et al., 2019 ), preclinical 1 H-MRSI ( Simicic et al., 2021 ) and
1 P-MRSI ( Froeling et al., 2021 ). More recently, the NORDIC method

 Moeller et al., 2021 ) has been introduced and addresses issues that are

argely related to clinical diffusion MRI data, namely the use of multi-

hannel coils for image acquisition acceleration, whose recombination

esults in a spatially varying and non-Gaussian noise distribution (cf. g-

actor maps), and the fact that most data are retrieved and processed in

agnitude space, further skewing the noise distribution. In the field of

RS, these two issues are in general not problematic since the multiple

oil data featuring Gaussian noise are linearly combined maintaining

he Gaussian characteristics, and since complex-valued data is used. In

he broader context of matrix denoising, soft thresholding and optimal

hrinkage of singular values ( Gavish and Donoho, 2017 , Johnstone and

aul, 2018 , Ma et al., 2020 ) have shown to outperform hard threshold-

ng like MP, especially in the case of low SNR input matrices. 

The aim of the present study was to implement and test the potential

f MP-PCA for denoising 1 H DW-MRS. The performance of MP-PCA was

ested using Monte Carlo simulations and in vivo experiments in rat brain

t 9.4 T and in human brain at 3 T. 

. Methods 

The following terminology will be used throughout the manuscript.

he SNR referred to as time-domain SNR in simulations is defined as

he magnitude (absolute value) of the first complex point of the free

nduction decay (FID) over one standard deviation (SD) of noise, taken
2 
n the real part of the FID tail (time points 1500 to 2048) ( Kreis et al.,

021 ). The SNR referred to as spectral SNR or SNR corresponds to the

NR of the NAA singlet at 2.01 ppm, defined as the NAA peak height

aken on magnitude spectra to avoid phasing and linewidth issues, over

ne standard deviation of noise taken in a noise-only region of the real

art of the spectra (from 8.2 to 10.9 ppm for simulations and rodent

ata, and 13.0 to 20.1 ppm for human data). 

The term apparent SNR will be used to refer to the SNR after denois-

ng. The term shot will be used to refer to every complex FID in each

hell, i.e. of a row of matrix 𝑍, according to a recent consensus on ter-

inology in MRS ( Kreis et al., 2021 ). The terms shell will be used to

esignate a set of 100 (simulations), 128 ( in vivo – rodent), and 32 ( in

ivo – human) shots for a given b-value. The term estimated spectral fit

ncertainty (ESFU) ( Marja ń ska et al., 2022 ) will be used to refer to the es-

imated lower error bounds for the concentration estimates determined

y LCModel, for which the term Cramer Rao Lower Bounds (CRLB) may

ot apply after denoising. 

.1. Theory 

Let 𝑍 be an initial noisy matrix in the temporal domain, 𝑍 ∈
 𝑛 ×𝑚 ( ℂ ) , where 𝑛 is the number of shots, and 𝑚 is the number of time

oints in the FID signal: 

 = �̃� + 𝜀 

here 
∼
𝑍 

∈  𝑛 ×𝑚 ( ℂ ) is the signal information and 𝜀 ∈  𝑛 ×𝑚 ( ℂ ) the

aussian, uncorrelated noise. For this section, we will assume that

 𝑛 < 𝑚 and 2 𝑛 ≫ 1 (asymptotic condition of the MP law). The real

nd imaginary parts of 𝑍 are concatenated on the first dimension ( 𝑛 ),

nd the resulting matrix 𝑌 ∈  2 𝑛 ×𝑚 ( ℝ ) is centered, such that: 

 = 𝑌 − 𝟏 T 2 𝑛 𝑌 

here 𝑋 ∈  2 𝑛 ×𝑚 ( ℝ ) , 𝑌 ∈  1×𝑚 ( ℝ ) is the column-wise mean of 𝑌 and

 

T 
2 𝑛 is a column vector of 2 𝑛 ones. Matrix 𝑋 is then decomposed using

he singular value decomposition: 

 = 𝑈𝑆 𝑉 𝑇 

here 𝑈 ∈  2 𝑛 ×2 𝑛 ( ℝ ) , 𝑆 ∈  2n×𝑚 ( ℝ ) and 𝑉 ∈  m×𝑚 ( ℝ ) . Columns of

are singular vectors of the first dimension (shots), columns of 𝑉 are

ingular vectors of the second dimension (time points) and 𝑆 contains

he singular values of 𝑋, arranged in descending order, which are also

he square root of the eigenvalues of 𝑋 

𝑇 𝑋 . Since 𝑋 = 𝑌 − 𝟏 T 2 𝑛 𝑌 , 
1 
2 𝑛 𝑋 

𝑇 𝑋 

s the covariance matrix of 𝑌 . The Marchenko-Pastur distribution is then

tted to the smallest non-zeros eigenvalues 𝜆 of 1 
2 𝑛 𝑋 

𝑇 𝑋: 

 ( 𝜆|𝜎, ( 2 𝑛 − 𝑃 ) ∕ 𝑚 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
√
( 𝜆+ − 𝜆) ( 𝜆− 𝜆− ) 

2 𝜋𝜆𝜎2 ( 2 𝑛 − 𝑃 ) ∕ 𝑚 if 𝜆− ≤ 𝜆 ≤ 𝜆+ 

0 otherwise 

here 𝜎 is the noise level estimated from the input matrix 𝑋, 𝑃 is

he number of signal-carrying eigenvalues, 𝜆− the smallest noise-related

igenvalue and 𝜆+ the largest. 𝑃 corresponds to the number of values 𝜆

uch that 𝜆 ≥ 𝜆+ , with 𝜆+ = 𝜎2 ( 1 + 

√ 

2 𝑛 − 𝑃 
𝑚 

) 2 . The matrix 𝑌 can then be

pproximated by: 

̂
 = 𝑈𝑆 𝑃 𝑉 

𝑇 + 𝟏 T 2 𝑛 𝑌 

here 𝑆 has been truncated at rank 𝑃 . 

.2. Monte Carlo simulations 

Synthetic 1 H MR spectra were created (Matlab, MathWorks, Nat-

ck, MA, USA) to mimic experimental conditions in the rat brain (see

ection 2.3 below). 19 metabolites, listed with their corresponding con-

entrations in Table 1 , were simulated using NMRSCOPE-B from jMRUI

 Star čuk and Star čuková, 2017 ), with published J-coupling and chemi-

al shifts constants ( Govindaraju et al., 2000 , Govind et al., 2015 ) and
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Table 1 

Simulated metabolites with their respective concentrations and diffusion coefficients used in the MC simulations. 

Metabolite Concentration (mM) D intra ( 𝜇m 

2 /ms) Metabolite Concentration (mM) D intra ( 𝜇m 

2 /ms) 

Alanine (Ala) 0.8 0.2695 Lactate (Lac) 0.8 0.65 

Ascorbate (Asc) 1.5 0.3115 N-acetylaspartate (NAA) 9 0.4 

Aspartate (Asp) 2 0.67 scyllo-Inositol (Scyllo) 0.1 0.3805 

Creatine (Cr) 4 0.5 Taurine (Tau) 4.5 0.55 

Phosphocreatine (PCr) 4.5 0.5 Glucose (Glc) 1.7 0.57 

gamma-Aminobutyric acid (GABA) 1.6 0.378 N- acetylaspartylglutamate (NAAG) 0.3 0.4 

Glutamine (Gln) 3 0.384 Phosphatidylethanolamine (PE) 0.5 0.318 

Glutamate (Glu) 10 0.5 Glycerophosphocholine (GPC) 0.8 0.45 

Glutathione (GSH) 1.5 0.2655 Phosphocholine (PCho) 0.2 0.45 

myo-Inositol (mIns) 6.5 0.45 
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he SPECIAL sequence (9.4 T, echo time (TE) 2.8 ms). The lineshapes of

he individual signals were constructed using a sum of 0.2 Hz Lorentzian

nd 1.8 Hz Gaussian apodizations, and a full macromolecule spectrum

cquired in vivo (MM, 1.3 mM) was included ( Simicic et al., 2021 ). 

The FID were generated with 2048 points. Diffusion weighting was

imulated using Callaghan’s model of diffusion in randomly oriented

ticks ( Callaghan et al., 1979 ), with 10 b-values: 0.4, 1.5, 3.4, 6, 7.6,

3.4, 15.7, 20.8, 25.2, 33.3 ms/ 𝜇m 

2 . Intra-stick free diffusion coeffi-

ients ranging from 0.265 to 0.67 μm 

2 /ms ( Table 1 ) were attributed to

he 19 metabolites and 0.005 μm 

2 /ms to the MM. Metabolite intra-stick

ree diffusivities were set to be five times the apparent diffusion coef-

cient (ADC) of the ensemble of randomly-oriented cellular processes

n the rodent brain from literature ( Ligneul et al., 2019 ). These values

ere retrospectively found to be in the same range as the intra-stick free

iffusion coefficients estimated in vivo in the present work. A residual

ater signal was added to each spectrum (16 Hz Lorentzian linewidth,

ono-exponential decay with apparent diffusivity of 0.2 μm 

2 /ms, ran-

om phase). An additional 5 Hz Lorentzian line broadening was finally

pplied to all spectra. To simulate the full dataset for MP-PCA denoising

matrix 𝑍), Gaussian noise was added to the real and imaginary parts of

he FID, with a single shot time-domain SNR of 13. One hundred noisy

ID were generated for each b-value (constituting a “shell ”) and B 0 drifts

random drift in [-15, + 15] Hz) and phase distortions (random phase in

0,30]°) were added on individual shots, mimicking high SNR experi-

ental in vivo rodent DW-MRS data. The initial matrix 𝑍 thus consisted

f 1000 rows (10 b-values, 100 shots per b-value) and 2048 columns

FID time points). 

Finally, the matrix 𝑍 was generated 100 times with different noise

ealizations, water residual signal, B 0 drifts and phase distortions, and

he effect of denoising on simulations was assessed in terms of variations

cross the MC iterations. 

.3. In vivo rodent experiments 

All experiments were approved by The Committee on Animal Exper-

mentation for the Canton de Vaud, Switzerland. 1 H DW-MRS acquisi-

ions were performed on a horizontal actively shielded 9.4 Tesla system

Magnex Scientific, Oxford, UK) interfaced to a Varian Direct Drive con-

ole (Palo Alto, CA, USA), equipped with 400 mT/m gradients and using

 home-built 14 mm diameter surface 1 H-quadrature transceiver. 

Four adult male Wistar rats were scanned under isoflurane anesthe-

ia ( ∼1.5%). During the DW-MRS experiments, animals were placed in

n in-house-built cradle, and their head was fixed in a stereotaxic system

bite bar and a pair of ear bars). The respiration rate and body temper-

ture were monitored using a small-animal monitor system (SA Instru-

ents, New York, NY, USA). Body temperature was measured with a

ectal thermosensor and maintained at 37.7 ± 0.2°C by warm water cir-

ulation. 

First- and second-order shims were adjusted using FASTMAP

 Gruetter and Tkác, 2000 ), achieving water linewidths of 18-21 Hz

n the volume of interest (VOI). DW-MRS data were acquired using a

iffusion-weighted STEAM sequence ( Callaghan, 1993 , Frahm et al.,
3 
989 , Kunz et al., 2010 ) (TE/mixing time (TM)/repetition time

TR) = 15/112/4000 ms) in a VOI of 162 to 245 𝜇l depending on the

nimal. The water signal was suppressed by using the VAPOR module

nterleaved with outer volume suppression blocks ( Tkác et al., 1999 ).

iffusion gradients were applied simultaneously along three orthogo-

al directions ( 𝛿= 6 ms, Δ= 120 ms). A total of eleven b - values with 128

hots were acquired: 0.4, 1.5, 3.4, 6.0, 7.6, 9.3, 13.4, 15.7, 20.8, 25.2

nd 33.3 ms/ 𝜇m 

2 . 

.4. In vivo human experiments 

Human 1 H DW-MRS acquisitions were performed on a 3 Tesla Mag-

etom Skyra Connectom-A system (Siemens Healthineers Erlangen, Ger-

any), equipped with 300 mT/m gradients and using a 32-channel head

oil. 

Four healthy volunteers (3 males/1 female) out of the twelve in the

ohort of ref ( Ş im ş ek et al., 2022 ), featuring the highest water SNR at

 = 1.4 ms/ 𝜇m 

2 and the least drop for the 0.9 ppm MM signal, were

elected to test the denoising procedure. All experiments had been ap-

roved by the competent ethical review board. A voxel (23 ± 2 cm 

3 ) was

ositioned in the occipito-parietal cortex and DW-MRS acquisitions were

erformed with an ECG-triggered diffusion-weighted STEAM sequence

TE/TM/TR min = 30/65/1800 ms). Eleven b-values were acquired (0.37,

.4, 2.7, 5.4, 8.2, 10.9, 15.5, 18.4, 21.6, 23.3 and 25.1 ms/ 𝜇m 

2 ) us-

ng metabolite cycling, where some of the b-values had multiple sets of

4 shots. Thirty-two metabolite and thirty-two water spectra (4000 Hz

pectral width, 4096 complex points) were constructed from 64 shots

er b-value by difference and summation, respectively. 

A table summarizing the minimum reporting standards in MRS is

resented in supplementary materials ( Table S 5 ), for simulations and

n vivo data. 

.5. MP-PCA denoising 

The raw data individual spectra in matrix 𝑍 were first eddy-current-

nd phase-corrected (maximization of the area of the metabolite region

or each spectrum). The details of the processing steps specific to the

uman data are presented in supplementary materials ( Text S 1 ). The

esulting complex-valued FID were split into real and imaginary parts

nd organized into a matrix 𝑌 where the second dimension contained

he time domain sampling and the first dimension a concatenation of

ll shots/b-values/real and imaginary parts. This was done in order to

alance the number of rows with the number of columns and to increase

he smallest dimension of 𝑋. The matrix 𝑌 was centered column-wise

nd assigned to matrix 𝑋. A summary of the denoising strategies and of

he study design is presented in Figure 1 . 

MP-PCA denoising performances were first tested on shots with no

iffusion weighting ( “single-shell ”) and different noise generations on

he MC simulations, and compared to summation of the individual shots.

 matrix 𝑋 of size 200 × 2048 was made of 100 single shots of the same

hell (here: b = 0), for multiple noise levels (SNR 13 – Figure 2 and SNR
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Figure 1. Study design and denoising strategies. A: Matrix organization for denoising a single-shell. This approach led to a similar result as summation of the shots 

on MC simulations (see Figure 2 ). B: Matrix organization for multi-shell full matrix (strategy 1) and sliding window denoising (strategy 2), the latter showing a 

reduced noise heterogeneity across shells. Strategy 3 (identical to strategy 2 with half the number of shots) is not displayed, showing similar results as strategy 2, 

yet with an increased number of outliers in the diffusion decay estimates. NS: number of shots, N bval : number of b-values. 

Figure 2. MP-PCA denoising performance on NS = 100 shots of the same shell (with different noise realizations and no phase/frequency drifts). A: Raw (blue) and 

denoised (orange) spectra, of the summed 100 shots (top) and of a single shot (bottom): SNR raw,100 = 101.9, SNR raw,1 = 11.0, appSNR dn,100 = 101.8, appSNR dn,1 = 51.2. B 

top: Residuals (denoised minus raw matrix) for the real part of the spectra. B bottom: Quantile-quantile (Q-Q) plot of the spectral residuals. Denoising a single-shell 

performs similarly to the summation of single shots (rank 𝑃 = 1 selected by the MP fit) and yields a Gaussian distribution of residuals. 

1  

d

 

(  

a

 

 

 

 

 

 

 

 

 

 

 

 

, 2 and 5 – Figure S 1 ), as well as without or with phase/frequency

rifts in the original spectrum ( Figure 2 and Figure S 1 , respectively). 

For denoising heterogeneous matrices 𝑋 composed of all b-values

 “multi-shells ”), two strategies were compared, both on MC simulations

nd on in vivo data: 

1) Multi-shell full matrix denoising - strategy 1 : MP-PCA denoising

was performed on the full matrix. For MC simulations, the matrix 𝑋

to denoise was of size 2000 × 2048: 10 shells with 100 shots (i.e.

noise realisations), and recreated 100 times. For in vivo rodent data,

the matrix 𝑋 to denoise was of size 2816 × 2048: 11 shells with 128
4 
shots. For in vivo human data, the matrix 𝑋 to denoise was of size

832 to 960 × 3481: 13 to 15 shells with 32 shots. 

2) Multi-shell sliding window (sw) denoising - strategy 2 : MP-PCA

denoising was performed on a subset of the full matrix, using a slid-

ing window of sub-blocks of three shells among all shells, and the

denoised spectra output is selected when the shell is the middle of

the 3-shell sub-block (similarly to the dMRI procedure ( Veraart et al.,

2016 )). The first and last shells were selected together with the sec-

ond shell and one before last from the first and last sub-blocks, re-

spectively ( Figure 1 ). 
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The same denoising procedure as strategy 2 but using only half of

vailable shots ( strategy 3 ) was tested on simulations and on in vivo

odent data, with 50 and 64 shots per b-value, respectively. This strategy

imed at assessing whether a reduction in scan time for the same data

uality could be achieved, comparing datasets with fewer and denoised

hots to the original complete sets. 

.6. Quantification and modelling 

Raw and denoised simulations and rodent spectra were further cor-

ected for B 0 drifts (alignment of the tCr peak at 3.03 ppm or NAA at

.01 ppm in each spectrum to its position in the first spectrum after 8

z apodization) and summed (for each b-value). 

Metabolite concentrations were quantified using LCModel. The

etabolite basis set was composed of the noiseless simulated signals

or the MC study, and of spectra simulated using the acquisition pa-

ameters for the in vivo acquisitions, all basis sets containing an in vivo -

cquired macromolecule signal. In addition, for the in vivo rodent data,

eparately simulated MM and lipid components from LCModel were in-

luded to compensate for possible lipid contamination due to the large

ize of the voxel and its position close to the scalp ( Oz et al., 2005 ,

udalbu et al., 2021 ). The LCModel parameter controlling the baseline

tiffness, DKNTMN, was set to 0.25. 

The randomly oriented stick model was fitted to the decay of each

etabolite concentration as a function of b-value using a non-linear least

quares algorithm in Matlab ( fit function, Trust-Region method). The con-

entration decays as a function of b-value were fitted for each of the 100

C iterations for simulations, and for each rat or volunteer individually

or the in vivo data. The median estimated diffusion coefficients D intra 

ith SD (across the 100 MC iterations or across the animals/volunteers)

ere extracted. Percentage bias is reported for the concentrations and

 intra ((Value method -Value noiseless )/Value noiseless ). 

Statistical tests were performed in RStudio (RStudio, PBC, Boston,

A). For simulations, D intra estimates based on raw and denoised data

from each denoising strategy) were compared to the D intra estimate

rom the noiseless data using a repeated-measures one-way ANOVA, and

-values were corrected for multiple comparisons with Dunnett’s post-

oc test. For in vivo data, D intra estimates based on raw and denoised

ata (from each denoising strategy) were compared using a repeated-

easures one-way ANOVA, and pairwise p-values were corrected for

ultiple comparisons with Tukey’s post-hoc test. The following statis-

ical significance values were used: ∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001,
 ∗ ∗ ∗ p < 0.0001. 

. Results 

The performance of the denoising strategies was assessed in terms

f apparent SNR, spectral residuals (denoised summed spectra minus

aw summed spectra for a given shell), rank selection, noise correlation

ithin and across shells, as well as precision and accuracy of metabolite

uantification for each b-value and of resulting diffusivity estimation. 

.1. Monte Carlo simulations 

This section aims to study the effect of MP-PCA denoising on simu-

ated DW-MRS data while having access to the ground truth. 

.1.1. Single-shell: MP-PCA denoising versus summation 

Figure 2 shows the performance of MP-PCA denoising on a single-

hell matrix, i.e. NS = 100 shots of a spectrum with no diffusion weight-

ng. Since summation (accumulation of spectra with different noise re-

lisations but the same signal content) is a very efficient denoising

trategy, it will be compared to MP-PCA. For a single-shell, denois-

ng performs similarly to averaging on the summed spectra (NS = 100,

igure 2 A, top) and a rank 𝑃 = 1 is selected by the MP fit. Single shots
5 
re also strongly denoised (NS = 1, Figure 2 A, bottom) but this represen-

ation should be handled with care since single shots are reconstructed

rom the entire denoised matrix and thus are not an equivalent represen-

ation of single shot raw data. The spectral residuals (100 shots x 2048

eal spectral points) follow a Gaussian distribution and no structure in

he metabolites’ region was observed ( Figure 2 B). When phase and fre-

uency drifts are applied across shots on the simulated spectrum, and

t sufficiently high SNR, a rank 𝑃 > 1 is retained by the MP fit (Sup-

lementary Figure S 1 B). 

.1.2. Multi-shell - strategy 1: MP-PCA denoising on the entire 

iffusion-weighted matrix 

Figure 3 A shows simulated diffusion-weighted spectra at 10 b-

alues. 11 principal components were retained by the MP fit ( Figure 3 B

nd Figure S 3 C for their representation). The raw and denoised spectra

or the two extreme b-values are shown in Figure 3 C, for a single shot

bottom) and for the sum of the 100 shots (top). Denoising yields an

mproved spectral apparent SNR, on individual shots and on their sum.

he central panel of Figure 4 A shows that the noise level is non-uniform

cross shells after denoising with strategy 1, the shell containing the

igher b-value experiencing a stronger denoising effect, as evidenced

y the ratio of spectral noise variances at b min and b max . Although the

oise level is shell-dependent, its distribution in a noise-only spectral

egion within one shell remained Gaussian after denoising. 

.1.3. Multi-shell - strategy 2 versus strategy 1 

An alternative strategy of denoising using a sliding window of 3

hells, denoted as a “sub-block ”, is proposed (strategy 2), and aims at re-

ucing the non-uniform noise level across shells introduced by strategy

. This resulted in minimal SNR heterogeneity within each sub-block

n which the denoising was applied and is similar to what is used in

MRI ( Lei et al., 2021 ) where the columns of matrix 𝑋 are composed

f a sliding spatial kernel of voxels. However, here we strive to reduce

eterogeneity in the diffusion dimension (row-wise). 

Although strategy 2 shows smaller noise reductions versus raw com-

ared to strategy 1 (at b min , 2.3 apparent SNR increase for strategy 2

ersus 2.7 for strategy 1, at b max , 3.6 apparent SNR increase for strategy

 versus 6.8 for strategy 1, Figure 4 C), it reduced the non-uniform noise

evels across shells ( Figure 4 A). On the summed spectra: 
𝜎𝑏𝑚𝑖𝑛 

𝜎𝑏𝑚𝑎𝑥 
= 2 . 24 for

trategy 1 and 
𝜎𝑏𝑚𝑖𝑛 

𝜎𝑏𝑚𝑎𝑥 
= 1 . 65 for strategy 2, whereas this ratio before de-

oising was close to 1 since single shots were created with the same

oise level in each shell. The excessive noise reduction at high b-values

and potential wiping of signal) is also manifest, yet reduced with strat-

gy 2. Noise levels on single shots display the same overall pattern as

n the sum ( Figure 4 A, bottom). These observations suggest that some

orrelation is introduced in the noise, also shown in Figure 5 . 

The decreasing number of signal-carrying components retained by

he MP fit as a function of sub-block number ( Figure 4 B) highlights that,

t low SNR (i.e. the noisiest sub-matrix, containing the highest b-values),

ess meaningful information can be separated from the noise (also shown

n Figure S 1 ). In strategy 2, the apparent spectral SNR ( Figure 4 C)

ncreases by a factor of 2.3 at b min and 3.6 at b max and follows a similar

rend as in the raw data. However, it reaches a maximum for central

-values in strategy 1, possibly resulting from a “decay ” of the apparent

oise levels, as detailed in Figure S 2 . The term SNR after denoising

hould be used carefully in the light of the noise correlations described

elow ( Figure 5 ). 

The summed residuals across shots ( Figure 4 D) show hardly any

tructure in the metabolites’ region. The weak residuals around the NAA

nd Cr peaks may be caused by differences between the phase and fre-

uency drift correction factors estimated from the raw or denoised data,

r a change in linewidth after denoising, leading to spectral misalign-

ent before summation ( Stoyanova and Brown, 2002 ). 

We further analysed the correlations of the NAA peak amplitude and

f the noise between single shots and the sum of NS = 100 introduced by
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Figure 3. MP-PCA denoising performance on the full diffusion-weighted matrix 𝑋 made up of 10 shells, with 100 shots (NS) each (10 ×100 ×2 × 2048 FID points 

– ‘ ×2’ is for the concatenation of real and imaginary parts of the FID) – strategy 1. A: Simulated diffusion-weighted spectra at each b-value. B: Example MP fit on 

matrix 𝑋 for strategy 1 for one MC iteration. C: Example raw and denoised spectra, at low and high b-value, of the sum of the 100 shots (top) and of a single shot 

(bottom). SNR raw,100,bmin = 90.4, SNR raw,1,bmin = 11.9, SNR raw,100,bmax = 24.0, SNR raw,1,bmax = 4.3, appSNR dn,100,bmin = 229.3, appSNR dn,1,bmin = 41.8, appSNR dn,100,bmax = 155.4, 

appSNR dn,1,bmax = 27.7. Denoising improves apparent spectral SNR. 
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P-PCA ( Figure 5 ). The NAA peak amplitude at b min (top left) scales

ith the number of shots (NS = 100), as expected, both for raw and de-

oised data. At lower SNR (b max , bottom left), the NAA peak amplitude

n the raw data does not exactly scale with NS because of possible arte-

acts in the summation, such as improper frequency/phase drifts correc-

ion, leading to partially incoherent summation. For the denoised data,

he coherent summation property seems to be restored (amplitude ratio

lose to 100), which can be due to an improved frequency/phase drifts

orrection after denoising ( Figure 6 ) and/or to the creation of more

elf-similar spectra after rank truncation. The noise level in the raw data

isplays a ratio that scales with 
√
𝑁𝑆 , as expected, both for b max and

 min . For the denoised data, some correlation in the noise across shots is

ntroduced by both denoising strategies, leading to a noise ratio scaling

ith a factor greater than 
√
𝑁𝑆 . 
6 
.1.4. Estimation of metabolite concentrations as a function of b-value 

In our post-processing pipeline, denoising was performed before B 0 

rift correction. This allowed for a more accurate realignment of spec-

ra within each b-value, most noticeably at b max ( Figure 6 ): the cor-

ection factors derived from the denoised data were closer to ground

ruth (RMSE: 2.7 Hz) compared to the ones derived from the raw data

RMSE: 6.0 Hz), although the latter yielded a higher amplitude of the

ummed signal. Metabolite concentrations at b min and b max for all de-

oising strategies, together with relative ESFU, are presented in Table S

 . They highlighted an overall stronger bias introduced by the denoising

trategies with respect to the one of the raw data for low-concentrated

etabolites, but a weaker one for high-concentrated metabolites, even

ith strategy 3. Fit precision (ESFU) is strongly improved after denoising

or all metabolites. When comparing strategies 1 and 2 on concentration
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Figure 4. Comparison of MP-PCA denoising performance on the full matrix (strategy 1) or using a sliding window of 3 shells over the diffusion-weighted matrices 

(strategy 2). A: Histograms of spectral noise between 8.2 and 10.9 ppm (a region with no signals), for a single shot (bottom) and for the sum of the 100 shots (top), 

before and after denoising using strategies 1 and 2, for the lowest (red) and highest (green) b-values. The mean ratio across MC iterations of the noise level at b min 

over the one at b max is displayed in each case. Standard deviations across MC associated to the mean ratios displayed: for 𝑁𝑆 = 100 , 0.04 (raw), 0.24 (dn full), 0.15 

(dn sw), and for 𝑁𝑆 = 1 , 0.05 (raw), 0.33 (dn full), 0.40 (dn sw). B: Number of principal components retained as signals (i.e. the rank P) by the MP fit, in strategy 

1 (orange) and for each sub-block in strategy 2 (yellow), as mean and SD across MC iterations. C: Spectral (apparent) SNR on the summed spectra for each shell of 

raw and denoised data (strategy 1 & 2), as mean and SD across MC iterations. D: Spectral residuals on the summed spectra for the two denoising strategies at low 

(top) and high (bottom) b-values, shifted downwards for display. Both denoising strategies gave heterogeneous noise levels and increases in apparent SNR with no 

structure in spectral residuals. Strategy 2 mitigates some effects of strategy 1, namely the non-uniform SNR gain and variance across shells. 

7 
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Figure 5. Increased correlation in NAA peak amplitude and noise level after denoising, for low and high diffusion weighting, between one shot and the sum of NS 

shots within a shell. Mean and SD across MC are displayed. The region of noise correlation is shaded in grey. 

Figure 6. Spectral realignment (B 0 drift correction) after denoising. The B 0 drift correction was performed by aligning the frequency-domain position of the tCr 

peak to its position on the first spectrum, using a Lorentzian apodization of 8 Hz, on raw and denoised data, for 1 MC iteration (left panels, before/after, for b min and 

b max ). The central panel shows the summed raw spectra with corrections derived either from the raw or the MP-PCA data, as compared to the summed raw spectra 

where the negative input B 0 drifts have been applied. Denoising yields no benefit on B 0 drift correction in the case of sufficient SNR (e.g. at b min ). At low SNR (e.g. 

b max ), the summed raw spectra with corrections derived from MP-PCA is closely matching to the one reconstructed from the input B 0 drift values, yet with a smaller 

amplitude than the summed spectra with corrections from the raw data. Denoising before B 0 drift correction led to a better accuracy of the B0 drift estimates with 

respect to the input drifts (right panel) at b max , and a worse accuracy at b min . 𝑅𝑀𝑆 𝐸 𝑚𝑒𝑡ℎ𝑜𝑑 = 

√ 

1 
𝑁𝑆 

𝑁𝑆 ∑
𝑖 =1 

( 𝐵 0 𝑐𝑜𝑟𝑟, 𝑚𝑒𝑡ℎ𝑜𝑑 − 𝐵 0 , 𝑖𝑛𝑝𝑢𝑡 ) 
2 . 

8 
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Figure 7. Concentration decays as a function of b-value and D intra estimates in simulations. A: Representative concentration decay curves for three metabolites: Lac, 

Gln, NAA, normalized to the concentration at the lowest b-value. Overlaid curves are: mean and SD of concentrations across MC iterations (blue), Callaghan model fit 

using the mean D intra estimated across MC iterations (black) and Callaghan model fit of the quantified noiseless concentration decay (red). B: Zoom-in of panel A for 

b-values between 20 and 33 ms/μm 

2 . C: Estimated metabolite D intra from Callaghan’s model using raw or denoised data, for various denoising strategies. The values 

labelled as “truth ” represent the diffusion coefficients given as input in the simulations, and the values labelled as “noiseless ” represent the LCModel concentrations 

fit from the noiseless data. D: % bias on D intra ((D method -D noiseless )/D noiseless ) and number of outliers between all methods and the noiseless fit. The D intra that differ 

from the noiseless values by more than ± 10% bias are highlighted in orange. The ouliers are defined as elements being above the upper quartile or below the lower 

quartile by a quantity greater than 1.5 times the interquartile range. The cases where denoising reduces or equalizes the number of outliers found with their raw 

data counterparts (raw or raw 

1 
2 

av) are highlighted in green. Some metabolite-dependant bias on the concentrations and on D intra estimates is either introduced or 

reduced compared to the raw data after denoising. 
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ecay curves, their impact was metabolite-dependent ( Figure 7 A-B). In

he case of Lac, strategy 1 introduced a systematic bias (overestimated

oncentration) with respect to the noiseless fit, an effect largely miti-

ated using strategy 2. For Gln, however, both strategies (1 and 2) im-

roved the decay curve accuracy, while no benefit was brought by any

f the strategies for NAA. 

In terms of D intra estimation ( Figure 7 C-D), although p-values high-

ighted a systematic bias (versus noiseless data, Table S 4 ), strategy 2
9 
ed to an improvement in accuracy for some metabolites compared to

he raw data and strategy 1 (Ala, tCho, mIns, Tau), a deterioration for

ome low concentrated metabolites (GABA, GSH, Lac) and similar accu-

acy for the remaining ones. The number of outliers was slightly reduced

y all the denoising strategies. 

Unfortunately, strategy 3, using half the data (i.e. NS = 50) to assess

f the total duration of the scan could be reduced without a significant

ompromise in accuracy and precision of metabolite concentration and
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Figure 8. In vivo rodent data - spectral quality and apparent SNR gain, before versus after denoising. A : Representative summed spectra for one animal, at low (dark 

colors) and high (light colors) b-values, based on raw and denoised data, with strategies 1 to 3. NAA singlet SNR is displayed for each case. B : Relative apparent 

SNR gain from the denoising strategies 1 to 3, expressed in % increase compared to the raw data SNR, with mean and SD across animals. Orange: strategy 1, yellow: 

strategy 2, purple: strategy 3. Increased apparent spectral SNR was observed in vivo . 
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n  
 intra , yielded worse or at best similar accuracy and precision for D intra 

s the full raw data (NS = 100) but also as half the raw data (NS = 50)

epending on the metabolite. 

.2. In vivo rodent data 

The same analyses were performed on in vivo data from four animals

nd MP-PCA denoising effects were compared to the ones observed in

imulations. 

.2.1. Apparent SNR 

The summed spectra for the two extreme b-values before and after

enoising using all three strategies are shown in Figure 8 A. Denoising

mproved the apparent SNR at all b-values, yet to a smaller extent com-

ared to simulations ( Figure 8 B): on average, the SNR gain is % at b min 

nd 241% at b max for strategy 1 and 53% at b min and 61% at b max for

trategy 2. The apparent SNR gain follows a similar b-value dependence

o the one in simulations, with a maximum for a central b-value for

trategy 1 and a constant gain for strategy 2. 

.2.2. Noise properties 

For strategies 1 and 2, the noise level on in vivo data after denois-

ng was non-uniform across shells, both on the sum and on the single

hots ( Figure 9 A), and strategy 2 attenuated this effect: on the summed

pectra: 
𝜎𝑏𝑚𝑖𝑛 

𝜎𝑏𝑚𝑎𝑥 
= 2 . 49 for strategy 1 and 

𝜎𝑏𝑚𝑖𝑛 

𝜎𝑏𝑚𝑎𝑥 
= 1 . 87 for strategy 2. A

ank 𝑃 = 12 for strategy 1 and 𝑃 ∈ [ 4 , 12 ] for strategy 2 was selected

y the MP fit ( Figure 9 B), which was consistent among rats (strategy

: 𝑃 = 11 . 5 ± 0.58, strategy 2: 𝑃 𝑏𝑚𝑖𝑛 = 11 . 25 ± 0.5 and 𝑃 𝑏𝑚𝑖𝑛 = 3 . 5 ± 1) and

imilar to the ranks found in simulations ( Figure 3 B). Similarly to the ef-

ect observed in simulations, the noise level distribution in a noise-only

pectral region within one shell remained Gaussian after denoising. 

The spectral residuals for both strategies showed no distinct struc-

ure around metabolite frequencies ( Figure 9 C), suggestive of a homo-

eneous denoising in the spectra. 
10 
.2.3. Estimation of metabolite concentrations as a function of b-value 

All denoising strategies yielded similar concentrations and reduced

SFU compared to the raw data for the six quantified metabolites at b min 

nd b max ( Table S 2 ). Similar trends to those identified in simulations

re observed between estimates of D intra from raw and denoised data

 Figure 10 ). In the multiple comparison post-hoc test, only tCr D intra 

howed a significant difference between strategy 1 and 3. For the high-

oncentrated metabolites (Glu, NAA and tCr), strategy 2 reduced the

ariability of D intra estimates across animals, as compared to that from

he raw data. 

.3. In vivo human data 

The Connectom gradients allowed to reach strong diffusion weight-

ng, making the human DW-MRS b-value range and the data quality

omparable to the rodent ones. Figure 11 A shows representative spec-

ra at increasing b-values for one volunteer’s dataset. The NAA spec-

ral SNR decays with increasing b-values for the raw data, as expected

 Figure 11 B). In the case of strategy 1, the apparent spectral SNR is

igher after denoising at all b-values and reaches a maximum for b ∼3

s/ 𝜇m 

2 , an effect which is mitigated by strategy 2. There is hardly any

tructure in the spectral residuals for either strategy ( Figure 11 C). As

bserved in the simulations and in the rodent data, the denoising ef-

ect is stronger at b max compared to b min . The concentrations ( Table S

 ) and the D intra estimates ( Figure 11 E) show no significant difference

etween the raw and denoised data, confirming the observation made

n rodent DW-MRS data. The fit error (root mean square error between

he fit and the experimental decay) is reduced after denoising for tNAA,

Cho and tCr, with strategies 1 and 2. 

. Discussion 

The aim of this work was to evaluate the performance of MP-PCA de-

oising on synthetic and experimental datasets of single-voxel diffusion-
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Figure 9. In vivo rodent data - MP-PCA denoising performance using strategy 1 and strategy 2. A: Histograms of spectral noise for one example animal in the 8.2-10.9 

ppm noise-only region, for a single shot (bottom) and for the sum of the 128 shots (top), before and after each denoising strategy, for the smallest (red) and highest 

(green) b-values. The ratio of the experimental noise level at b min over b max is displayed in each case, averaged over the four animals. Standard deviations across 

animals associated to the mean ratios displayed: for 𝑁𝑆 = 100 , 0.04 (raw), 0.28 (dn full), 0.25 (dn sw), and for 𝑁𝑆 = 1 , 0.06 (raw), 0.44 (dn full), 0.65 (dn sw). 

B: MP fit for both strategies. C: Residuals between the denoised and raw spectra at the two extreme b-values, after summation of the 128 shots available, shifted 

downwards for display. The same trends as the ones for simulations can be observed: heterogeneous noise level across shells, increase in apparent SNR with no 

structure in spectral residuals after denoising, with strategy 2 mitigating some effects of strategy 1. 

11 
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Figure 10. In vivo rodent data - concentration decays after 

quantification with LCModel, and resulting D intra fit, for raw 

and denoised data with the three strategies. A: Representative 

decays across b-values for three metabolites: NAA, Glu, Gln, 

for each animal (circles), with concentrations normalized to 

the lowest b-value, and individual fits of Callaghan’s model 

(solid line). B: Estimated D intra from Callaghan’s model for 

a few metabolites, for all strategies. Raw and denoised data 

provide similar estimates for most metabolites. 
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i  
eighted 1 H-MRS comprising spectra at multiple diffusion-weightings

b-values), as compared to conventional averaging across each b-value.

e investigated three denoising strategies, comparing their impact on

he data structure (apparent SNR increase, spectral residuals, noise cor-

elation), and evaluating their potential for improved diffusion coeffi-

ient estimates. Similar characteristics of the denoised spectra were ob-

erved between simulations and in vivo data (similar SNR on the raw

ata between simulations, rodent and human data, noise ratios between

rst and last shells, apparent SNR gain and evolution as a function of
 a  

12 
-value, spectral residuals) thus ensuring that conclusions drawn from

imulations with respect to the ground truth are relevant for the in vivo

atasets. 

.1. Increased apparent spectral SNR 

Simulations revealed that denoising all DW-spectra together signif-

cantly improved apparent spectral SNR for each b-value compared to

veraging ( Figure 3 and Figure 4 for simulations and Figure 8 for in
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Figure 11. In vivo human data - effects of denoising in terms of apparent spectral SNR, residuals, fit and D intra estimation. A: Representative diffusion-weighted raw 

spectra for one volunteer (LB = 2 Hz). B: Evolution of (apparent) spectral SNR as a function of the b-value, mean and standard deviation across the 4 volunteers. C: 

Overlap of raw, denoised full (strategy 1) and denoised with a sliding window (strategy 2) spectra and residues shifted downwards for display. D: Representative 

experimental decays across b-values for tCho with strategy 2 (circles), with concentrations normalized to the lowest b-value, and individual fits of Callaghan’s model 

for all volunteers (solid line). E: Estimated median and population variance for D intra from the Callaghan’s model for a few metabolites for the raw data and the two 

denoising strategies. The fit error (root mean square error between the fit and the experimental decay) was reduced after denoising for tNAA, tCho and tCr, with 

both strategy 1 (median RMSE normalized to the one of raw, for tNAA: 0.91 [range 0.79-0.93], for tCho: 0.84 [range 0.64-0.99] and for tCr: 0.90 [range 0.88-1.01]) 

and strategy 2 (for tNAA: 0.90 [range 0.87-1.02], for tCho: 0.92 [range 0.73-1.09] and for tCr: 0.89 [range 0.78-0.95]). Denoising improves apparent SNR, yields 

no spectral residual and the same D intra estimates for raw and denoised. 
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t  
ivo rodent data and Figure 11 for human data). Remarkably, denoising

lso provided the following two valuable features vs averaging. 

First, the correction for B 0 drifts between individual shots of high

-value shells was more reliable after denoising especially at low SNR

 Figure 6 ). Whether a stronger apodization or spectral registration at

igh b-values could mimic the benefit of denoising prior to B 0 drift cor-

ection should be further tested with multiple datasets. Interestingly,

he correction for phase drifts did not improve after denoising. From

his perspective, denoising could be used to determine the optimal fre-

uency drift corrections on individual spectra, and apply it to raw spec-

ra, as previously described in a simpler spectral pattern ( Brown and

toyanova, 1996 ). 

Second, the individual spectra after denoising displayed dramatically

igher apparent SNR than raw spectra, even at the highest b-value. This

ingle-shot SNR increase, however, results from a correlation with spec-

ra from other shells. Whether this improvement on single shots may

enefit other applications where averaging multiple spectra is detrimen-

al, such as functional MRS, where it could provide a boost in temporal

esolution, should be the subject of future work. 

Figure S 1 also provides a perspective: a reduction in voxel size could

e acceptable (reduced SNR by a factor 2 to 3 while preserving the num-

er of shots yielding to a similar rank and fit RMSE). This could help

mproving spatial resolution with little penalty in quantification. 

.2. Strategy 1 versus strategy 2 

For large heterogeneities across the dataset to be denoised, such as

he extreme case of very low and very high b-values (in our case 𝑏 ∼ 0 . 4
nd up to 𝑏 ∼ 30 𝑚𝑠 ∕ 𝜇𝑚 

2 ), more leakage from high to low-SNR data is
13 
xpected after denoising, which may bias high b-values concentration

stimates. 

Two approaches can, however, mitigate this effect. 

The first approach is to denoise using a sliding-window along b-

alues, so that the spectra used in each denoising matrix are more similar

o each other in terms of SNR. Here we tried a sliding window of three

-values (effectively leading to 3 × 2 × NS rows, accounting for real and

maginary parts of the signal, where NS is the number of shots acquired

or each b-value). While this approach resulted in a more limited noise

eduction, especially at high b-values (apparent SNR increase compared

o raw of 575% for strategy 1 and 265% for strategy 2 at b max in simu-

ations, 241% for strategy 1 and 161% for strategy 2 at b max in rodents

nd 166% for strategy 1 and 66% for strategy 2 at b max in humans), it

reserved noise variance better across b-values. The apparent SNR in-

rease is higher in simulations compared to in vivo data, possibly owing

o sources of non-Gaussian noise or distortions present in raw in vivo

pectra and absent in simulations. Additionally, in human data, motion

nd spurious echoe artefacts at low b-values (even after cutting out the

ater region) are more prominent than in rodent data. These variations

ill not be captured in the noise principal components, thus increasing

he selected rank and leading to a smaller denoising effect. The number

f components retained (P) as signal-carrying decreased across blocks,

oth in simulations and in vivo ( Figure 4 C for simulations, Figure 8 B

or rodent data and from 𝑃 𝑏𝑚𝑖𝑛 = 71 . 0 ± 9.6 to 𝑃 𝑏𝑚𝑎𝑥 = 7 . 3 ± 2.1 for human

ata). One reason is that at high b-values, the variance created by the

ctual (low SNR) signal is close to the noise floor. An additional hy-

othesis is that sources of structural/physiological noise in the spectra

e.g. frequency drifts) are more discernible at low b-value than at high

-value and contribute to signal-carrying components. Possibly also, in

he shells containing the highest b-values, the variations in the input
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ata are more Gaussian-distributed than the ones observed in the shells

ontaining the lowest b-values. This may further improve the separation

f the signal from the artefacts and the noise. 

The second mitigating approach, which remains to be tested, could

e to diversify the DW-MRS acquisition scheme not only into multiple

-values, but also directions and diffusion times instead of plain repeti-

ions. While working with only a small range of b-values (with similar

NR) – as for the sliding window above – the denoising matrix construct

ould nonetheless collect multiple directions and diffusion times. This

ould also enable to generate large matrices, improving the MP-PCA

erformance by fulfilling the asymptotic condition of the random ma-

rix theory. 

.3. Assessment of denoising quality 

One important aspect of MP-PCA denoising is the assumption of

aussian, constant and uncorrelated entry noise. This assumption can be

asily violated for MR imaging in clinical setups where multi-channel re-

eiver coils are recombined using sum-of-squares algorithms, following

hich the magnitude of the complex signal is retained. In contrast, our

n vivo preclinical setup was ideal to fulfil this criterion, as the receiver

oil was a quadrature circuit whose signals were recombined physically

rior to amplification. Each channel (real and imaginary) of the com-

lex signal retained Gaussian noise properties. Despite the apparent SNR

ncrease and homogenous residuals within each shot, some noise corre-

ation within ( Figure 5 ) and across shells ( “noise decay ”, Figure 4 A and

igure 9 A) introduced by MP-PCA were identified in the current study.

onsequently, noise estimation with a prior of uncorrelated Gaussian

oise should be avoided in denoised spectra, as well as quality assess-

ent based on noise amplitude, such as CRLB or the fit quality num-

er (FQN) ( Kreis et al., 2021 ). A bootstrapping approach for the esti-

ation of metabolites concentration uncertainty has been recently pro-

osed ( Clarke and Chiew, 2022 ), where multiple fits of the same spec-

rum corrupted by correlated noise estimated from the denoised data,

re performed. 

.4. Noise properties 

Spectral residuals: When comparing denoising to averaging on a

ingle-shell without distortions ( Figure 2 ), we observed no patterns in

he spectral residuals and their distribution was Gaussian. For the multi-

hell case, hardly any pattern was observed with the exception of small

rtefacts (spikes), likely due to a B 0 -drift correction mismatch between

aw and denoised data ( Figure 4 D for simulations, Figure 9 C). Remark-

bly, these artefacts are not present in human data ( Figure 11 C) where

he B 0 -drift correction was performed before denoising. 

Uniform noise level across spectral points: In the entire study

single-shell, multi-shell, simulations and in vivo data), the noise in a

oise-only region on single shots was Gaussian-distributed after denois-

ng. When investigating the variance on each spectral point across MC

terations, the authors of ref. ( Clarke and Chiew, 2022 ), who investi-

ated different low-rank denoising methods for MRSI data, reported a

on-uniform variance. Concretely, the standard deviation of the spec-

rum across MC iterations is higher in the metabolite region of the spec-

rum and smaller in the noise region. In the present study, in the case of

n input matrix with only one signal information (single-shell), which

s not centered (see Theory section), and when a rank 𝑃 = 1 is manu-

lly selected, a non-uniform variance on spectral points is also observed.

hen the matrix is not centered, the only singular value selected will be

n estimate of the mean of the input matrix, which might be biased. Re-

arkably, no non-uniform variance across spectral points was observed

n our work when denoising a matrix comprised of multi-shell data, even

ithout centering, with any of the strategies. The high number of prin-

ipal components selected, 𝑃 ∼ 11 − 12 , probably mitigates this effect. 

Non-uniform noise level across b-values: In the present work, the

oise level was b-value dependent after MP-PCA denoising (less noise
14 
n the high b-value spectra), an effect which was reduced by using a

liding-window across b-values. The evolution of the spectral SNR after

enoising with strategy 1 is very similar between simulations, rodent

ata and human data, reaching a maximum value for intermediate b-

alues, 𝑏 ∼ 7 . 6 𝑚𝑠 ∕ 𝜇𝑚 

2 for the simulations ( Figure 4 C), 𝑏 ∼ 13 . 4 𝑚𝑠 ∕ 𝜇𝑚 

2

or in vivo rodent data ( Figure 8 B), and 𝑏 ∼ 3 𝑚𝑠 ∕ 𝜇𝑚 

2 for in vivo human

ata ( Figure 11 B). Figure S 2 gives a tentative explanation of this effect.

fter MP-PCA, the time evolution of the spectral points in a noise-only

egion will be reconstructed from one of the first signal-carrying sin-

ular vectors in the shot dimension ( 𝑈 1 Figure S 2 B), representing the

verall decay of metabolites across b-values (strongest contribution to

he variance). Consequently, the noise points will decay with increasing

-values. Due to the initial positive/negative distribution of these noise

oints ( Figure S 2 D-E), the noise level (standard deviation of the noise

oints across a spectral region) will decrease at intermediate b-values

nd increase again at higher b-values. Meanwhile, the NAA concentra-

ion decay is similar for raw and denoised data, which results in a max-

mum apparent SNR at intermediate b-values. With a similar argument

n the other dimension, the first signal-carrying singular vectors in the

pectral dimension will represent high SNR spectra ( 𝑉 1 in Figure S 2 B).

he closer the metabolite information to the noise level, the more likely

t will be reconstructed from a linear combination of high SNR spec-

ral information, and even more so when 𝑃 is small. This observation

hallenges the use of MP-PCA denoising for extracting low-concentrated

etabolites information from the noise floor using the entire range of

-values. The sliding window approach can however mitigate these ef-

ects, as shown throughout the present work. 

The number of principal components retained with strategy 1 was

11 − 12 for simulations and in vivo data, which was also the rank found

hen using optimal shrinkage of the principal components ( Gavish and

onoho, 2017 ). The high number of components was mostly due to

he B 0 drift distortions which were not corrected for prior to denoising,

o the random water residual, and to possible sources of non-Gaussian

oise in in vivo data. Structural noise, retained as signal component,

hich has a larger impact on low-b spectra (in particular the water

esidual which is completely suppressed at high b-values) may there-

ore serendipitously limit the impact of noise reduction across shells. 

.5. Estimation of diffusion coefficients 

From the perspective of metabolite quantification, MP-PCA denois-

ng reduced the concentration ESFU ( Table S 1, Table S 2 and Table

 3 ). After denoising, the ESFU are not equivalent to the Cramer Rao

ower Bounds, representing the lower bounds of the fitting error, and

hich are based on a correct model and Gaussian uncorrelated noise, a

rior which may be violated after denoising. Simulations showed that

enoising based on the full range of b-values could also introduce bias

or some metabolite concentration decays, such as lactate ( Figure 7 A-B),

nd an over-estimation of the concentrations at high b-values compared

o the same concentrations on the raw data ( Table S 1 ). Interestingly,

his over-estimation is not systematic anymore when comparing de-

oised vs noiseless data: although beyond the scope of this work, this ob-

ervation highlights some systematic underestimation of concentrations

ith LCModel for raw data with realistic SNR and Lorentzian broaden-

ng, as shown in a MRS fitting challenge ( Marja ń ska et al., 2022 ). The

liding-window approach (strategy 2) introduced less bias on metabo-

ite concentrations at high b-values than the full-range denoising and

he raw data for high-concentrated metabolites, in addition to better

reserving the noise structure. The observations made on the accuracy

nd precision of metabolite quantification could not be directly trans-

osed to the estimations of the free diffusion coefficients D intra . Overall,

he sliding window-denoising followed the raw data estimates for most

etabolites: whether or not bias ( > 10%) existed in the raw data esti-

ates, the same was observed for strategy 2. The only exceptions are

ABA, GSH, Lac, for which more bias was introduced with strategy 2

nd Glc, mIns, Tau for which less bias was introduced with strategy 2.
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owever, this performance may depend on the underlying diffusivity

alues chosen in our simulations. 

In simulations, the variability across MC iterations was also reduced

fter denoising (when compared to the raw data with the same num-

er of shots) for all metabolites ( Figure 7 C). Remarkably, in rodent

ata, MP-PCA denoising also contributed to reducing the variability in

etabolite concentration decay curves across the different rats (which

ere all part of a homogeneous control group) for some metabolites

NAA, tCr, Glu on Figure 10 ). The estimated metabolite diffusivities

ere systematically lower with MP-PCA denoising vs raw data, though

he ground truth is not known in this case. This could reflect the system-

tic under-estimation of the raw data concentrations found in simula-

ions (mentioned above), yielding lower concentration values at the tail

f the curve and thus a higher estimated diffusivity. For human data, the

atasets were not fitted individually in ref Ş im ş ek et al., 2022 , owing

o their low SNR, but after doing a cohort average. The present study

hows the feasibility of individual volunteer fitting, yet no difference

n D intra between the raw and denoised data with any strategy and no

eduction in the group variability across volunteers was observed, pos-

ibly owing to the high 𝑃 . Though, the difference between the diffusion

ecay fitted with Callaghan’s model and the experimental data tended

o be reduced after denoising. 

It should also be noted that Callaghan’s model of randomly-oriented

ticks may not be well-suited to describe the diffusion of certain metabo-

ites in vivo , e.g. if they are also extracellular and/or if the radius of the

endrites cannot be assumed to be effectively zero. For human data,

n addition, there is substantial contribution of white matter where the

andomly oriented stick model may not apply for the current case where

nly one arbitrary diffusion direction was acquired. 

Simultaneous spectral and diffusion modelling ( Ş im ş ek et al., 2022 ,

dalid et al., 2017 , Najac et al., 2022 , Clarke et al., 2022 ) – though

ossibly more challenging - may also offer increased fit stability, but

ay not readily be combined with MP-PCA denoising given the noise

orrelation between shells. A sliding-window approach along the spec-

ral dimension instead of the diffusion-weighting dimension could also

e considered. This would however lead to issues in LCModel quantifi-

ation, and multiple resonances of the same metabolite (thus sharing

ommon features) could be denoised separately, thereby decreasing the

edundancy. Finally, the strong spectral overlap of some metabolite res-

nances also prevents the selection of a denoising window which could

ontain only one metabolite. 

. Conclusion 

Overall, we have shown that MP-PCA denoising improves apparent

NR and B 0 drift correction and thus spectral averaging. For highly con-

entrated metabolites, which are the ones typically considered in DW-

RS studies, we have shown that denoising improves the within-group

omogeneity of estimated diffusivities with little penalty to the diffusiv-

ty estimates – future work could focus on testing whether the between-

roup differences are thus reinforced by comparing a control to a patient

roup. However, for low-concentrated metabolites, we have also shown

hat denoising biases their estimated diffusivity due to signal leakage

rom the high-concentrated metabolites. 

In agreement with previous studies, we suggest that PCA-denoising

or diffusion MRS should be used with caution and we recommend that

ll effects should be tested in simulations prior to drawing conclusions

n in vivo data. Uniform variance along the spectrum was preserved due

o the matrix centering and the selection of a high rank P by the MP

t (with uncorrected B 0 drift prior to denoising), but noise correlation

cross rows were introduced as a consequence of the rank truncation,

hich should prevent the use of the term CRLB after denoising. We rec-

mmend the use of an across-shell sliding window denoising approach

i.e. denoising more self-similar matrices) to mitigate the b-value depen-

ent noise level post-denoising. 
15 
For DW-MRS acquisitions that include multiple diffusion times and

iffusion directions, it remains to be established whether signal can be

eparated from noise more efficiently due to higher self-similarity of

ifferent measures. 
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