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Image Denoising in

Mixed Poisson-Gaussian Noise
Florian Luisier, Thierry Blu, Senior Member, IEEE, and Michael Unser, Fellow, IEEE

Abstract

We propose a general methodology (PURE-LET) to design and optimize a wide class of transform-

domain thresholding algorithms for denoising images corrupted by mixed Poisson-Gaussian noise. We

express the denoising process as a linear expansion of thresholds (LET) that we optimize by relying on

a purely data-adaptive unbiased estimate of the mean-squared error (MSE), derived in a non-Bayesian

framework (PURE: Poisson-Gaussian Unbiased Risk Estimate). We provide a practical approximation of

this theoretical MSE estimate for the tractable optimization of arbitrary transform-domain thresholding.

We then propose a pointwise estimator for undecimated filterbank transforms, which consists of subband-

adaptive thresholding functions with signal-dependent thresholds that are globally optimized in the image

domain. We finally demonstrate the potential of the proposed approach through extensive comparisons

with state-of-the-art techniques that are specifically tailored to the estimation of Poisson intensities. We

also present denoising results obtained on real images of low-count fluorescence microscopy.
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I. INTRODUCTION

The two predominant sources of noise in digital image acquisition are:

1) The stochastic nature of the photon-counting process at the detectors.

2) The intrinsic thermal and electronic fluctuations of the acquisition devices.

Under standard illumination conditions, the second source of noise, which is signal-independent, is

stronger than the first one. This motivates the usual additive-white-Gaussian-noise (AWGN) assumption.

However, in many applications such as fluorescence microscopy or astronomy, only few photons are

collected by the photosensors, due to various physical constraints (low-power light source, short exposure

time, photo-toxicity). Under these imaging conditions, the major source of noise is strongly signal-

dependent. Consequently, it is more reasonable to model the output of the detectors as a Poisson-

distributed random vector. The problem is then to estimate the underlying intensities of Poisson random

variables, potentially further degraded by independent AWGN. In this paper, we propose fast and high-

quality nonlinear algorithms for denoising digital images corrupted by mixed Poisson-Gaussian noise.

Among various image-denoising strategies, the transform-domain approaches in general, and in partic-

ular the multiscale ones, are very efficient for AWGN reduction (e.g. [1]–[3]). As many natural images

can be represented by few significant coefficients in a suitable basis/frame, the associated transform-

domain processing amounts to a (possibly multivariate) thresholding of the transformed coefficients, which

results in a fast denoising procedure. Since the present work lies within this scope of transform-domain

thresholding strategies, we discuss hereafter the main multiscale techniques that have been considered

for Poisson intensity estimation. Note that there are also non-multiscale methods for Poisson denoising,

e.g. [4]–[6].

A. Related Work

Since the Poisson statistics are generally more difficult to track in a transformed domain than the

traditional Gaussian ones, a natural solution consists in “Gaussianizing” the Poisson measurements. This

is usually performed by applying a nonlinear mapping (e.g., a square root) to the raw data, an approach
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that has been theorized by Anscombe in [7] and first exploited in denoising applications by Donoho in

[8]. The so-called Anscombe variance-stabilizing transform (VST) has been later generalized by Murtagh

et al. to stabilize the variance of a Poisson random variable corrupted by AWGN [9]. After stabilization,

any high-quality AWGN denoiser can be applied (e.g., [1]).

Several works take advantage of the fact that the unnormalized Haar wavelet transform1 has the

remarkable property of preserving Poisson statistics in its lowpass channel. Fryzlewicz et al. have proposed

a VST based on the observation that the scaling coefficients at a given scale are good local estimates

of the noise variances of the same-scale wavelet coefficients [10]. Their approach gave state-of-the-

art denoising results (in the minimum mean-squared error sense) at the time of its publication (2004).

Another interesting property of the unnormalized Haar transform applied to Poisson data is that the

statistical relation between a scaling coefficient (parent) and its child (scaling coefficient at the next finer

scale) is very simple; the distribution of a child conditioned on its parent is binomial. These properties

have been exploited in a Bayesian framework in [11]–[14], as well as in a user-calibrated hypothesis

testing [15]. Hirakawa et al. have taken advantage of the Skellam distribution of the unnormalized Haar

wavelet coefficients to derive a so-called SkellamShrink [16], [17], which can be viewed as a Poisson

variant of Donoho’s et al. SUREshrink [18]. Recently, we have proposed a non-Bayesian framework to

estimate Poisson intensities in the unnormalized Haar wavelet domain (PURE-LET [19], see Fig. 1 for

an illustration of its principle). The qualitative and computational efficiency of this approach results from

the combination of the following two key ingredients:

1) A prior-free unbiased estimate of the expected mean-squared error (MSE) between the unknown

original image and the denoised one. Under an AWGN hypothesis, this estimator is known as Stein’s

unbiased risk estimate (SURE) [20], while, for Poisson data, we called it PURE, which stands for

Poisson’s unbiased risk estimate. Note that, contrary to the Bayesian approach, the noise-free image

is not considered as random in [19].

1See Fig. 1 for a filterbank implementation of the unnormalized Haar wavelet transform.
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Fig. 1. Filterbank implementation of the unnormalized discrete Haar wavelet transform and principle of the class of denoising

algorithms described in [19]. Notations: the superscript j = 1 . . . J indicates the level of decomposition; s is the vector of

noisy scaling coefficients (s0 is thus the noisy input); d is the vector of noisy wavelet coefficients; θ is the subband-dependent

thresholding function; δ̂ (resp. ς̂) is the vector of the estimated noise-free wavelet (resp. scaling) coefficients.

2) A linear parameterization of the denoising process, through a linear expansion of thresholds (LET).

The optimal parameters of this expansion are then the solution of a system of linear equations,

resulting from the minimization of the subband-dependent quadratic unbiased estimate of the MSE.

In the more standard case of Gaussian noise reduction, better results have been usually obtained with

wavelets that are smoother than Haar, and/or with shift-invariant transformations (e.g. the undecimated

wavelet transform). This has motivated researchers to devise Poisson-intensity estimators applicable to

arbitrary multiscale transforms. Kolaczyk has developed (a pair of) soft/hard-thresholds for arbitrary

wavelet shrinkage of “burst-like” Poisson intensities [21]. This pair of thresholds can be seen as an

adapted version of Donoho’s et al. universal threshold that was designed for AWGN [22]. This approach

was generalized to arbitrary kinds of Poisson-distributed data by Charles and Rasson [23]. Based on

the statistical method of cross-validation, Nowak et al. derived a wavelet shrinkage, whose threshold is

locally adapted to the estimated noise variance [24]. The modulation estimator devised by Antoniadis and

Spatinas [25], which is based on cross-validation as well, covers all univariate natural exponential families

with quadratic variance functions, of which Gaussian and Poisson distributions are two particular cases.

Sardy et al. proposed a generalization of Donoho and Johnstone’s wavelet shrinkage for a broad class

of exponential noise distributions, including the Poisson case [26]. Their estimator is the solution of a

log-likelihood problem, regularized by the addition of a wavelet-domain `1-penalty. Using the concept of

multiscale likelihood factorizations, Kolaczyk and Nowak introduced complexity-penalized estimators that
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can also handle a wide class of distributions (Gaussian, Poisson, and multinomial) [27]. This methodology

was further exploited by Willett et al. who proposed a platelet-based penalized likelihood estimator that

has been demonstrated to be particularly efficient for denoising piecewise-smooth signals [28]. Recently,

the VST-based approach has been revitalized thanks to the contributions of Jansen, who combined VST

with multiscale Bayesian models [29], and Zhang et al., who proposed a multiscale VST that can

better stabilize very low intensity signals, and showed how it can be efficiently used with the latest

multiresolution transformations (e.g., curvelets) [30]. This latter VST solution can also stabilize Poisson

data embedded in AWGN [31].

Most of the denoising algorithms discussed in this section have been carefully evaluated by Besbeas et

al. [32] using 1D data. Most of them are specifically designed for pure Poisson noise. To the best of our

knowledge, there are very few denoising algorithms that can properly handle mixed Poisson-Gaussian

noise.

B. Contributions

In this work, we extend the PURE-LET approach in three main directions. First, we lift the restricted

use of the unnormalized Haar wavelet transform by generalizing to arbitrary (redundant) transform-

domain (nonlinear) processing. Second, we consider a more realistic noise model: a Poisson random

vector degraded by AWGN, for which we derive a new theoretically unbiased MSE estimate; this new

estimate, for which we keep the name PURE, combines both SURE and PURE. Third, we show that

PURE can be used to globally optimize a LET spanning several (redundant) bases.

Because we are dealing with transformations that are not necessarily orthonormal anymore, the de-

noising process has to be optimized in the image domain, to ensure a global MSE minimization [3], [33].

To make tractable the optimization of arbitrary transform-domain processing, we also need a practical

approximation of the PURE. All these extensions allow us to get the best (in the minimum PURE

sense) linear combination of the processed subbands coming from complementary transforms, such as

the undecimated wavelet transform (appropriate for piecewise-smooth images) and the overcomplete
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Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 ACCEPTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING

block-discrete cosine transform (effective in sparsely representing textured images).

The paper is organized as follows: In the next section, we introduce the theoretical basis of this work.

We first derive an unbiased estimate of the MSE for an arbitrary processing of Poisson data degraded

by AWGN, and then propose a practical approximation of this general result. A pointwise estimator for

undecimated filterbank transforms is presented in Section III and compared with some state-of-the-art

approaches in Section IV. Results on real fluorescence-microscopy data are finally shown in Section V.

II. THEORY

A. Definitions and Notations

• A random variable z follows a Poisson distribution of intensity x ∈ R+ if and only if its conditional

probability density function is p(z = k|x) = xk

k!
e−x. We use the standard notation z ∼ P(x).

• A random variable b follows a Gaussian distribution with zero-mean and variance σ2 if and only if

its probability density function is q(b) =
1√
2πσ2

e−
b2

2σ2 . We use the standard notation b ∼ N (0, σ2).

Throughout this paper, for a given vector v ∈ RN , we use the notation vn to refer to its nth component,

where n ∈ {1, . . . , N}. The variable z denotes a vector of N independent Poisson random variables

zn of underlying intensities xn, with zn ∼ P(xn). A realization of z can be thought of as a noisy

measurement of the intensity signal x. Note that, in contrast with Bayesian approaches, x is considered

to be deterministic in the present work.

We further assume that the noisy measurements zn are degraded by i.i.d. AWGNs bn of known variance

σ2, so that b ∼ N (0, σ2I). The final observation vector y is therefore given by

y = z + b. (1)

Our goal is then to find an estimate x̂ = f(y) that is the closest possible to the original signal in the

minimum MSE sense. That is, we want to minimize

MSE =
1

N
‖x̂− x‖2 = 1

N

N∑
n=1

(x̂n − xn)2.
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B. Useful Properties of the Poisson and Gaussian Random Variables

Property 1 (Stein’s Lemma). Let y = z + b, where z is independent of b ∼ N (0, σ2I) and let

f : RN → RN be a (weakly) differentiable real-valued vector function such that ∀n, Eb {|∂fn(y)/∂yn|} <

∞. Then

Eb

{
bTf(y)

}
= σ2Eb {div {f(y)}}

where div {f(y)} =
N∑
n=1

∂fn(y)

∂yn
is the divergence of the function f and Eb {·} stands for the mathematical

expectation taken over all realizations of the random variable b.

This is a standard result in the statistical literature, known as “Stein’s lemma”, which was first

established by Charles Stein [20]. An alternative proof can also be found in [3].

Property 2. Let z ∼ P(x) and let f : RN → RN be a real-valued vector function and let the family of

vectors (en)n=1...N be the canonical basis of RN . Then,

Ez

{
xTf(z)

}
= Ez

{
zTf−(z)

}
where f−(z) = [fn(z− en)]n=1...N .

This property can be thought of as the “Poisson’s equivalent” of Stein’s lemma. A proof of a similar

result can be found for instance in [19], [34], [35].

C. PURE: An Unbiased MSE Estimate for Poisson Data Degraded by AWGN

In practice, we obviously do not have access to the original noise-free signal x. Therefore, we cannot

compute the actual MSE and minimize it. However, we can rely on its unbiased estimate given in the

following theorem:

Theorem 1. Let y be the random variable defined in (1) and let f(y) = [fn(y)]n=1...N be an N -

dimensional (weakly) differentiable real-valued vector function such that ∀n = 1 . . . N : Ey {|∂fn(y)/∂yn|} <

∞. Then, the random variable

ε =
1

N

(
‖f(y)‖2 − 2yTf−(y) + 2σ2div

{
f−(y)

})
+

1

N

(
‖y‖2 − 1Ty

)
− σ2 (2)
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is an unbiased estimate of the expected MSE, that is, Ey {ε} =
1

N
Ey

{
‖f(y)− x‖2

}
.

Proof: By expanding the expectation of the squared error between x and its estimate f(y), we obtain

Ey

{
‖f(y)− x‖2

}
= Ey

{
‖f(y)‖2

}
− 2Ey

{
xTf(y)

}︸ ︷︷ ︸
(I)

+ ‖x‖2︸︷︷︸
(II)

. (3)

We can now evaluate the two expressions (I,II) which involve the unknown data x.

(I) Since b is independent of x and z, we can write the following sequence of equalities:

Ey

{
xTf(y)

}
= Eb

{
Ez

{
xTf(z + b)

}}
Prop. 2
= Eb

{
Ez

{
zTf−(z + b)

}}
(1)
= Ey

{
yTf−(y)

}
− Ez

{
Eb

{
bTf−(y)

}}
Prop. 1
= Ey

{
yTf−(y)

}
− σ2Ey

{
div
{
f−(y)

}}
. (4)

(II) We notice that:

‖x‖2 = Ey

{
xTy

}
(4)
= Ey

{
‖y‖2 − 1Ty

}
−Nσ2. (5)

Putting back (4) and (5) into (3) finally demonstrates Theorem 1.

In the remainder of this paper, the unbiased MSE estimate for mixed Poisson-Gaussian noise defined

in Equ. (2) will be referred to as PURE (Poisson-Gaussian Unbiased Risk Estimate). It is a generalization

of SURE (Stein’s unbiased risk estimate) [20], which was derived for AWGN only, and the PURE we

recently exposed in [19], which was devised for pure Poisson noise reduction in the unnormalized Haar

wavelet domain. Note that the result of Theorem 1 was given in [36] without proof, where it was applied

to linear image deconvolution.

The variance of the PURE estimator notably depends on the number of samples yn, as well as on

the number of parameters (degrees of freedom) involved in f . Therefore, provided that the solution is

sufficiently constrained, PURE remains very close to the actual MSE in image processing, due to the

high number of available samples.
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D. Taylor-Series Approximation of PURE

Unfortunately, the presence of the term f−(y) in Theorem 1 makes PURE impractical to evaluate for

an arbitrary nonlinear processing. Indeed, in order to compute just one component fn(y− en) of f−(y),

one would need to apply the whole denoising process to a slightly modified version of the noisy input.

This operation would have to be repeated N times to get the full vector f−(y). Such a “brute force”

approach is thus prohibitive in practice, considering that a typical image contains N = 256× 256 pixels.

Instead, we propose to use the first-order Taylor-series approximation of f−(y) given by

fn(y − en) ' fn(y)−
∂fn(y)

∂yn

for all n = 1 . . . N . Consequently, provided that the above approximation is reasonable (i.e., that fn varies

slowly), the function f−(y) is well approximated by f(y)− ∂f(y), where ∂f(y) = [∂fn(y)∂yn
]n=1...N is the

N × 1 vector made of the first derivative of each function fn with respect to yn. The PURE unbiased

MSE estimate defined in (2) is, in turn, well approximated by2

ε̂ =
1

N

(
‖f(y)‖2 − 2yT(f(y)− ∂f(y)) + 2σ2div {f(y)− ∂f(y)}

)
+

1

N
(‖y‖2 − 1Ty)− σ2. (6)

Note that, if the processing f is linear, then the two MSE estimates (2) and (6) are identical.

E. PURE for Transform-Domain Denoising

In this section, we derive an expression for the MSE estimate given in (6), in the particular case of a

transform-domain pointwise processing Θ. The principle of transform-domain denoising is illustrated in

Fig. 2: once the size of the input and output data are frozen, the linear decomposition and reconstruction

operators are characterized by the matrices D = [di,j ](i,j)∈[1...L]×[1...N ] and R = [ri,j ](i,j)∈[1...N ]×[1...L],

respectively, that satisfy the perfect reconstruction property RD = I.

Dealing with a signal-dependent noise makes it generally difficult to express the observation model in

the transformed domain. Therefore, we assume here that a (coarse) “map” of the signal-dependent noise

2To be fully rigorous, we must further assume that each fn is twice differentiable with respect to yn.
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Transform Domain Image Domain

(Nonlinear)
Processing

Image Domain

Linear
Decomposition

Linear
Reconstruction

RDy w = Dy
Θ

Linear Noise
Variance Estimation

Fig. 2. Principle of transform-domain denoising for signal-dependent noise.

variance can be obtained in the transformed domain, by applying a linear transformation (typically, a

smoothing) D = [di,j ](i,j)∈[1...L]×[1...N ] to the noisy data y, as shown in Fig. 2. The denoised estimate x̂

can be thus finally expressed as a function f of the noisy input signal y as

x̂ = f(y) = RΘ(Dy︸︷︷︸
w

, Dy︸︷︷︸
w

) (7)

where Θ(w,w) = [θl(wl, wl)]l∈[1...L] is a pointwise (nonlinear) processing.

Note that the PUREshrink and the PURE-LET algorithms introduced in [19] belong to the general

class of processing defined in (7). In that case, D and R implement the (unnormalized) Haar wavelet

decomposition and reconstruction, respectively (see Fig. 1). w and w then represent the Haar wavelet d

and scaling coefficients s, respectively.

Corollary 1. For the transform-domain pointwise processing defined in (7), the MSE estimate given in (6)

can be reformulated as

ε̂ =
1

N
‖f(y)− y‖2 + 2

N

(
Θ1(w,w)T(D •RT)y + Θ2(w,w)T(D •RT)y

)
+

2σ2

N

(
diag {DR}TΘ1(w,w) + diag

{
DR

}T
Θ2(w,w)

)
− (8)

2σ2

N

(
diag {(D •D)R}TΘ11(w,w)− diag

{
(D •D)R

}T
Θ22(w,w)−

2 diag
{
(D •D)R

}T
Θ12(w,w)

)
− 1

N
1Ty − σ2
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where

� The L × 1 vector Θ1(w,w) =
[
∂θl(wl,wl)

∂wl

]
l∈[1...L]

is made of the first derivative, with respect

to its first variable, of each function θl.

� The L × 1 vector Θ2(w,w) =
[
∂θl(wl,wl)

∂wl

]
l∈[1...L]

is made of the first derivative, with respect

to its second variable, of each function θl.

� The L× 1 vector Θ12(w,w) =
[
∂2θl(wl,wl)
∂wl∂wl

]
l∈[1...L]

is made of the first derivative, with respect

to its first variable and second variable, of each function θl.

� The L × 1 vector Θ11(w,w) =
[
∂2θl(wl,wl)

∂w2
l

]
l∈[1...L]

is made of the second derivative, with

respect to its first variable, of each function θl.

� The L × 1 vector Θ22(w,w) =
[
∂2θl(wl,wl)

∂w2
l

]
l∈[1...L]

is made of the second derivative, with

respect to its second variable, of each function θl.

� The operator “•” denotes the Hadamard (element-by-element) product between two matrices.

Proof: Using the result given in (6) and the fact that Θ(w,w) = [θl(wl, wl)]l∈[1...L], we can further

develop ∂f(y) =
[
∂fn(y)
∂yn

]
1≤n≤N

as

∂fny)

∂yn
=

L∑
l=1

rn,l

( ∂θl(wl, wl)
∂wl︸ ︷︷ ︸

[Θ1(w,w)]l

dl,n +
∂θl(wl, wl)

∂wl︸ ︷︷ ︸
[Θ2(w,w)]l

dl,n

)
. (9)

Similarly, we have that

∂2fn(y)

∂y2n
=

L∑
l=1

rn,l

( ∂2θl(wl, wl)
∂w2

l︸ ︷︷ ︸
[Θ11(w,w)]l

d2l,n +
∂2θl(wl, wl)

∂w2
l︸ ︷︷ ︸

[Θ22(w,w)]l

d
2
l,n + 2

∂2θl(wl, wl)

∂wl∂wl︸ ︷︷ ︸
[Θ12(w,w)]l

dl,ndl,n

)
, (10)

and consequently that

yT∂f(y) =

L∑
l=1

[Θ1(w,w)]l

N∑
n=1

dl,nrn,l︸ ︷︷ ︸
[D•RT]l,n

yn +

L∑
l=1

[Θ2(w,w)]l

N∑
n=1

dl,nrn,l︸ ︷︷ ︸
[D•RT]l,n

yn

= Θ1(w,w)T(D •RT)y + Θ2(w,w)T(D •RT)y (11)

div {f(y)} =

L∑
l=1

[Θ1(w,w)]l

N∑
n=1

dl,nrn,l︸ ︷︷ ︸
[DR]l,l

+

L∑
l=1

[Θ2(w,w)]l

N∑
n=1

dl,nrn,l︸ ︷︷ ︸
[DR]l,l

= diag {DR}TΘ1(w,w) + diag
{
DR

}T
Θ2(w,w) (12)
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div {∂f(y)} =

L∑
l=1

[Θ11(w,w)]l

N∑
n=1

d2l,nrn,l︸ ︷︷ ︸
[(D•D)R]l,l

+

L∑
l=1

[Θ22(w,w)]l

N∑
n=1

d
2
l,nrn,l︸ ︷︷ ︸

[(D•D)R]l,l

+

2

L∑
l=1

[Θ12(w,w)]l

N∑
n=1

dl,ndl,nrn,l︸ ︷︷ ︸
[(D•D)R]l,l

= diag {(D •D)R}TΘ11(w,w) + diag
{
(D •D)R

}T
Θ22(w,w) +

2 diag
{
(D •D)R

}T
Θ12(w,w). (13)

Putting back (11), (12) and (13) into (6) finally leads to the desired result (8).

F. The PURE-LET Strategy

Similarly to what has been proposed for SURE-based denoising [2], [3], [33], [37], we describe the

denoising function f as the linear expansion of thresholds (LET) defined as

f(y) =

K∑
k=1

ak RΘk(w,w)︸ ︷︷ ︸
fk(y)

. (14)

Thanks to this linear parameterization, PURE becomes quadratic in the ak’s. Therefore, the search for

the optimal (in the minimum PURE sense) vector of parameters a = [a1 a2 . . . ak]
T boils down to the

solution of the following system of K linear equations

K∑
l=1

fk(y)
Tfl(y)︸ ︷︷ ︸

[M]k,l

al = yTf−k (y)− σ2div
{
f−k (y)

}︸ ︷︷ ︸
[c]k

for k = 1 . . .K

m (15)

Ma = c.

When using the first-order Taylor-series approximation of PURE defined in Section II-D, we obtain a

similar system of K linear equations that involves the same matrix M and an approximated c given by

ĉ =
[
yT (fk(y)− ∂fk(y))− σ2div {fk(y)− ∂fk(y)}

]
k∈[1...K]

.
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III. POINTWISE ESTIMATOR FOR UNDECIMATED FILTERBANK TRANSFORMS

In this section, we show how to use the result of Corollary 1 to globally optimize a subband-dependent

pointwise thresholding applied to the coefficients of the J-band undecimated filterbank depicted in Fig. 3.

In this case, the decomposition and reconstruction matrices are made of J (N×N) circulant submatrices

Dj and Rj given by 
[Dj ]k,l =

∑
n

g̃j [l − k + nN ]

[Rj ]k,l =
∑
n

gj [k − l + nN ].
(16)

Although all the results presented in this section are derived for 1D signals, they can be straightforwardly

extended to higher dimensional signals by considering separable filters.

y

...

G̃J(z
−1) wJ︸ ︷︷ ︸

D = [DT
1 DT

2 . . . DT
J ]

T

...

G̃2(z
−1) w2

G̃1(z
−1) w1

y
⊕

GJ(z)︸ ︷︷ ︸
R = [R1 R2 . . . RJ ]

G2(z)

G1(z)

...

Fig. 3. Undecimated J-band analysis–synthesis filterbank.

A. Choice of D—Group-Delay Compensation (GDC)

In an undecimated wavelet transform (UWT), the scaling coefficients of the lowpass residual at a given

scale j could be used as a reliable estimation of the signal-dependent noise variance for each bandpass

subband from the same scale j, up to the scale-dependent factor βj = 2−j/2. However, except for the

Haar wavelet filters, there is a group-delay difference between the output of the lowpass and bandpass

channels that needs to be compensated for. Contrary to the highpass group delay compensation (GDC)

filter derived for interscale prediction in critically sampled orthonormal filterbank proposed in [2], we

are looking here for an allpass filter Q(z) with real coefficients such that Q(z)2 = Q(z)/Q(z−1) and
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y

G(z−1)

H(z−1) Q(z−1)

w1

w1

Fig. 4. Group-delay compensation of the lowpass channel of an undecimated filterbank.

(see Fig. 4)

H(z−1)Q(z−1) = G(z−1)R1(z), (17)

where H(z) and G(z) are the orthonormal scaling and wavelet filters, respectively, and R1(z) = εR1(z
−1)

is an arbitrary symmetric (ε = 1) or anti-symmetric (ε = −1) filter.

In the case of symmetric filters characterized by H(z−1) = zn0H(z), the shortest-support GDC filter

is simply given by Q(z) = zn0−1. Note that this result can also be used for nearly symmetric filters,

such as the Daubechies symlets. From a theoretical point of view, considering arbitrary wavelet filters

would be interesting as well, but would probably be less useful here because, in our observations, the

best denoising performances are achieved by symmetric (Haar) or nearly symmetric (sym8) filters.

The L×N matrix D is then defined as D = [D
T
1 D

T
2 . . .D

T
J+1]

T, with

[
Dj

]
k,l

=
∑
n∈Z

hj [l − k + nN ] ,

where hj [n] is the nth coefficient of the filter Hj(z) = 2jQ(z2
j−1

)Hj(z) = Q(z2
j−1

)H(z)H(z2) . . . H(z2
j−1

), for j = 1 . . . J

HJ+1(z) = 2JHJ(z) = H(z)H(z2) . . . H(z2
J−1

).

In an overcomplete M -block discrete cosine transform (BDCT) representation, the lowpass residual

band can directly serve as a coarse estimate of the noise variance3 for each bandpass subband, since the

filters of the BDCT all have the same group delay.

3Up to the scaling factor βj =M−1/2.
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B. Computation of Transform-Dependent Terms

To compute the MSE estimate (8), we need to evaluate several terms that depend only on the choice

of transformation.

1) Computation of diag {DR}:

In the case of periodic boundary conditions, we have that

diag {DjRj} =


1

Mj
[1 1 . . . 1︸ ︷︷ ︸
N times

]T , for j = 1 . . . J

1

MJ
[1 1 . . . 1︸ ︷︷ ︸
N times

]T , for j = J + 1

where, for multiscale filterbanks, Mj = 2j is the downsampling factor. For an overcomplete BDCT,

Mj =M , where M is the size of the considered blocks.

2) Computation of diag
{
DR

}
, diag {(D •D)R}, diag

{
(D •D)R

}
, and diag

{
(D •D)R

}
:

Contrary to diag {DR}, the computation of the remaining terms does not generally lead to simple

expressions that are independent from the coefficients of the underlying filters. However, all diagonal

terms presented in this section can still be easily computed offline, using the numerical Monte

Carlo-like algorithm described in [3]. In particular, this numerical scheme applies when the various

matrices are not explicitly given, or when non-periodic boundary extensions are performed.

Note that the vectors (D •D)y, (D •D)y, (D •RT)y, and (D •RT)y are obtained by analyzing the

noisy data y with the considered undecimated filterbank using modified analysis filters with coefficients

g̃2j [k], h
2
j [k], g̃j [k] · gj [−k], and hj [k] · gj [−k], respectively.

C. Thresholding Function

We propose to use a subband-dependent pointwise thresholding function defined by

Θ(w,w) = [θj(wj,n, wj,n)](j−1)N+n , (j, n) ∈ [1 . . . J ]× [1 . . . N ] (18)

For the sake of conciseness, we drop the subband subscripts (n, j) in this section and denote by w (resp.

w) any of the wj,n’s (resp. wj,n’s).
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In the case of Poisson data, we need a signal-dependent transform-domain threshold to take into

account the non-stationarity of the noise. If we consider unit-norm filters, the variance σ2 of the AWGN

is preserved in the transformed domain. An estimation of the variance of the Poisson-noise component

is given by the magnitude of |w| (built as described in Section III-A), up to the scale-dependent factors

βj = 2−j/2 and βj = M−1/2 for a multiscale transform and for an overcomplete BDCT, respectively.

Therefore, we propose the signal-dependent threshold

tj(w) =
√
βj |w|+ σ2 (19)

which is then embedded in a subband-dependent thresholding function, similar to the one proposed in [3]

for AWGN reduction in redundant representations

θj(w,w) = aj,1 · w︸︷︷︸
θj,1(w,w)

+aj,2 · w exp

(
−
( w

3tj(w)

)8)
︸ ︷︷ ︸

θj,2(w,w)

. (20)

To compute the MSE estimate given in (8), a differentiable (at least up to the second order) approxi-

mation of the absolute-value function is required. In practice, we suggest to use tanh(kw)w (k = 100,

typically) instead of |w| in the threshold defined in (19). As observed in Fig. 5, the proposed thresholding

function can be perceived as a smooth hard-thresholding. Thanks to the use of a signal-dependent

threshold, each transformed coefficient is adaptively thresholded according to its estimated amount of

noise.

D. Implementation

In the generalized PURE-LET framework for J-band undecimated filterbank, the whole transform-

domain thresholding is rewritten as

f(y) =

J∑
j=1

2∑
k=1

aj,k RjΘj,k(Djy,Djy)︸ ︷︷ ︸
fj,k(y)

+RJ+1DJ+1y︸ ︷︷ ︸
lowpass

. (21)
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Fig. 5. A possible realization of the proposed thresholding function (20) in a particular subband of an undecimated Haar

wavelet representation.

The parameters aj,k that minimize the MSE estimate ε̂ given in (6) are then the solution of the system

of 2J linear equations Ma = ĉ, where, for k, l ∈ [1 . . . J ]× [1 2],
M =

[
fk(y)

Tfl(y)
]
2(k1−1)+k2,2(l1−1)+l2

ĉ =
[
fk(y)

T(I−RJ+1DJ+1)y−(
yT∂fk(y) + σ2div {fk(y)− ∂fk(y)}

) ]
2(k1−1)+k2

.

(22)

For very low intensity signals (typically such that xn < 5, ∀n), the first-order Taylor-series ap-

proximation of some nonlinear functions f−j,2 might be inaccurate, leading (22) to be an unreliable

approximation of the (j, 2)th component of the PURE vector c given in (15). To illustrate this scenario

in the case of an undecimated Haar wavelet representation, we have plotted in the first row of Fig. 6 the

SNR = 10 log10
c2j,2

(ĉj,2−cj,2)2 between cj,2 (for j = 1 and j = 3) and its approximation ĉj,2, as a function

of the average noise-free signal energy Emean = ‖x‖2/N = Ey

{
‖y‖2 − 1Ty

}
/N−σ2. Any nonlinearly

processed subband fj,2(y) for which the SNR of the approximation is below a given threshold (around
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40 dB, typically), should be disregarded from the LET (i.e., its LET coefficient aj,2 set to zero). In practice,

we need to identify the badly approximated functions without knowing the SNR of the approximation.

For this identification, we propose an empirical approach that is based on the following observation:

We notice in the first row of Fig. 6 that the SNR of the approximation is an increasing function of

the average signal energy. We further observe that, for a given average signal energy, the quality of the

approximation increases as the iteration depth j increases. Consequently, we suggest to keep only those

nonlinearly processed subbands fj,2(y) for which Tj = MjEmean is above a given threshold T . We

experimentally found that any value T ∈ [5, 15] was a reasonable choice4 (see the second row of Fig. 6).

Thanks to this restriction, the PURE-based optimization of the parameters gives similar PSNR results

to the MSE-based optimization, even when the latter considers all the nonlinearly processed subbands

fj,2(y), as shown in Fig. 7.

E. Denoising in Mixed Bases

In order to get the best out of several transforms, we propose to make the LET span several transformed

domains with complementary properties (e.g., UWT and overcomplete BDCT)

f(y) =

K1∑
k=1

akf
UWT
k (y) +

K2∑
k=1

bkf
BDCT
k (y) + . . . (23)

PURE is then used to jointly optimize the weights of this linear combination of processed subbands.

In this case, the union of several transforms can be interpreted as an overcomplete dictionary of bases

which sparsely represents a wide class of natural images. The idea of combining several complementary

transforms was exploited in the context of AWGN reduction by Starck et al. in [38] and Fadili et al.

in [39]. The use of an overcomplete dictionary, either fixed in advance (as in our case) or trained, is at

the core of the K-SVD-based denoising algorithm of Elad et al. [40].

4For all the experiments presented in this paper, we have used T = 10.
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Fig. 6. Validity of the first-order Taylor-series approximation of some nonlinear functions f−j,2. The first row shows the SNR

of the approximation of the component cj,2 of the PURE vector c. The values of Tj =MjEmean are plotted in the second row.

IV. SIMULATIONS

In this section, we propose to compare our PURE-LET approach with three multiscale-based methods

in simulated experiments.

• A variant of the Haar-Fisz algorithm described in [10]: The Haar-Fisz variance-stabilizing transform

(VST) is followed by Donoho’s SUREshrink [18] applied to each bandpass subband of an undec-

imated Haar wavelet transform. Since the Haar-Fisz transform is not shift-invariant, 20 “external”
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Fig. 7. Reliability of the PURE-based optimization of the LET parameters. The blue curve (“◦” markers) represents the

output PSNRs obtained by a PURE-based optimization of the LET parameters without restriction, taking all nonlinear terms

into consideration. The red curve (“∗” markers) displays the output PSNRs obtained by a restricted PURE-based optimization

of the LET parameters, where all the nonlinearly processed subband fj,2(y) with Tj < 10 have been disregarded. The output

PSNRs obtained by the MSE-based optimization of the LET parameters (without restriction) is the baseline (“+” markers).

cycle-spins (CS) are also applied to the whole algorithm (Haar-Fisz VST + UWT-SUREshrink +

Haar-Fisz inverse VST), as suggested in [10].

• A standard variance-stabilizing transform followed by a high-quality AWGN denoiser: As VST,

we have retained the generalized Anscombe transform (GAT) [9], which can also stabilize Poisson

random variables degraded by AWGN. For the denoising part, we have considered Portilla et. al.

BLS-GSM [1], which consists of a multivariate estimator resulting from Bayesian least-squares (BLS)

optimization, assuming Gaussian scale mixtures (GSM) as a prior for neighborhoods of coefficients

at adjacent positions and scales5. Applied in a full steerable pyramid, this algorithm stands among

the best state-of-the-art multiresolution-based methods for AWGN reduction.

• A state-of-the-art denoising algorithm specifically designed for Poisson intensity estimation: We have

retained Willett and Nowak’s Platelet approach [28]. Their Poisson intensity estimation consists in

optimizing (through a penalized likelihood) the coefficients of polynomials fitted to a recursive

5Matlab code available at: http://www.io.csic.es/PagsPers/JPortilla/denoise/software/index.htm
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dyadic partition of the support of the Poisson intensity6. The near shift-invariance of their approach

is achieved by averaging the denoising results of several cycle-spins (20, in our experiments).

The tuning parameters of these three methods have been set according to the values given in the

corresponding papers/Matlab codes.

We have tested our PURE-LET approach with three undecimated transformations: the Haar UWT

(suitable for piecewise-smooth images), the 16× 16 overcomplete BDCT (efficient for textured images),

and a dictionary containing the basis functions of both transforms. This latter option allows to take the

best (in the minimum PURE sense) combination of the two complementary transformations. As a measure

of quality, we use the peak signal-to-noise ratio (PSNR), defined as

PSNR = 10 log10

(
I2max

MSE

)
,

where Imax is the maximum intensity of the noise-free image. Various input PSNRs have been obtained

by rescaling the original images between Imax = 1 and Imax = 120.

A. Poisson Noise Reduction

In Table I, we compare our method with the state-of-the-art multiresolution-based denoising algorithms

for Poisson-intensity estimation (no further AWGN degradation). When available, we have also reported

the results recently obtained by Lefkimmiatis et al. with their multiscale Poisson-Haar hidden Markov

tree (PH-HMT) algorithm [14]. As observed, we obtain, on average, the best PSNR results. The Haar-Fisz

algorithm is consistently outperformed by our method, and usually by the two algorithms specifically

designed for Poisson-intensity estimation. We can notice that the Anscombe+BLS-GSM solution becomes

more competitive as the peak intensities increase, whereas the other approaches are not restricted to high-

intensity images. We obtain similar or better results than the Platelet and the PH-HMT methods, which

are also competitive with the recent approach described in [30]. However, the major drawback of these

two recent approaches is their computation time. Denoising the 256× 256 grayscale Cameraman image

6Matlab code available at: http://nislab.ee.duke.edu/NISLab/Platelets.html
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at peak intensity 20 requires around 1300s (65s per cycle-spin) for the Platelet and 92s for the PH-HMT.

By contrast, the execution of 20 cycle-spins of the Haar-Fisz algorithm lasts ∼ 5.7s, the Anscombe+BLS-

GSM takes ∼ 7.7s, whereas our PURE-LET algorithm lasts 1.3s using the Haar UWT, 12.2s in the

16×16 BDCT, and 13.5s considering the UWT/BDCT dictionary, respectively. In most cases, the simple

Haar UWT gives optimal or nearly optimal results, except for textured images at relatively high input

PSNR.

In Fig. 8, we show a visual result of the various algorithms applied on Moon image. We can notice

that the PURE-LET denoised image exhibits very few artifacts, without over-smoothing, contrary to the

other methods.

B. Mixed Poisson-Gaussian Noise Reduction

We show in Table II the PSNR results obtained by GAT+BLS-GSM and by the proposed algorithm,

when estimating Poisson intensity degraded by AWGN. Here again, the best results are obtained by our

PURE-LET approach, on average. In particular, at low intensities, the GAT fails to stabilize the noise

variance and thus, huge gains (>> 1 dB) can be obtained with a direct handling of Poisson statistics.

The visual comparison of both algorithms is given in Fig. 9 for Barbara image. The various textures

present in this particular image are better restored with the proposed PURE-LET algorithm applied in a

BDCT representation than with the competing methods.

V. APPLICATION TO REAL FLUORESCENCE MICROSCOPY IMAGES

We propose now to apply our denoising algorithm to real fluorescence microscopy images (Fig. 10A),

acquired on a Leica SP5 confocal laser scanning microscope at the Department of Biology of the Chinese

University of Hong Kong. The dataset contains 100 instances of 512×512 images of fixed tobacco cells,

labeled with two fluorescent dyes (GFP in the green channel and Alexa568 in the red channel). The

average of the 100 images provides a “ground truth” for visual comparison (Fig. 10B). We refer to [41]

for a general introduction to fluorescence microscopy and to [42] for a detailed investigation on the

various sources of noise in confocal microscopy.
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TABLE I

COMPARISON OF MULTISCALE-BASED POISSON NOISE REMOVAL ALGORITHMS

Peak Intensity 120 60 30 20 10 5 2 1

Image Cameraman 256× 256

Input PSNR 24.08 21.07 18.05 16.29 13.28 10.27 6.29 3.28

Haar-Fisz [10] 29.73 27.98 26.35 25.45 23.70 22.55 20.77 19.77

Anscombe [7] + BLS-GSM [1] 30.85 29.13 27.54 26.56 24.63 22.50 19.07 14.44

Platelet [28] 30.54 29.10 27.66 26.80 25.14 23.56 21.72 20.57

PH-HMT [14] N/A N/A N/A 26.61 24.97 23.37 21.41 20.03

UWT PURE-LET 31.03 29.29 27.67 26.72 25.10 23.50 21.67 20.44

BDCT PURE-LET 30.72 28.92 27.25 26.30 24.77 23.32 21.57 20.40

UWT/BDCT PURE-LET 31.35 29.58 27.91 26.93 25.29 23.65 21.72 20.48

Image Barbara 512× 512

Input PSNR 24.00 20.99 17.98 16.22 13.21 10.20 6.22 3.21

Haar-Fisz [10] 28.36 26.59 25.06 24.28 23.09 22.18 21.24 20.47

Anscombe [7] + BLS-GSM [1] 31.24 29.40 27.55 26.46 24.65 22.61 19.90 14.97

Platelet [28] 28.62 26.53 24.59 23.74 22.96 22.33 21.47 20.65

PH-HMT [14] N/A N/A N/A 24.92 23.45 22.33 21.27 20.48

UWT PURE-LET 29.55 27.52 25.69 24.80 23.56 22.61 21.50 20.74

BDCT PURE-LET 31.75 29.96 28.23 27.23 25.52 23.87 21.83 20.74

UWT/BDCT PURE-LET 31.86 30.08 28.34 27.33 25.59 23.89 21.87 20.79

Image Fluorescent Cells 512× 512

Input PSNR 28.25 25.23 22.22 20.46 17.45 14.44 10.47 7.45

Haar-Fisz [10] 34.15 32.61 31.28 30.43 29.03 27.48 25.96 24.58

Anscombe [7] + BLS-GSM [1] 35.24 33.54 31.67 30.57 28.30 25.51 19.38 13.25

Platelet [28] 34.04 32.50 31.05 30.30 28.86 27.77 26.19 25.11

UWT PURE-LET 34.98 33.29 31.72 30.84 29.41 28.10 26.43 25.22

BDCT PURE-LET 35.17 33.44 31.82 30.92 29.47 28.11 26.39 25.19

UWT/BDCT PURE-LET 35.23 33.52 31.91 31.00 29.52 28.18 26.47 25.25

Image Moon 512× 512

Input PSNR 26.26 23.24 20.25 18.48 15.46 12.46 8.47 5.46

Haar-Fisz [10] 29.70 28.04 26.68 25.44 24.48 24.13 23.71 23.46

Anscombe [7] + BLS-GSM [1] 29.78 27.99 26.27 25.43 24.17 23.17 19.70 13.98

Platelet [28] 28.80 27.40 26.20 25.58 24.74 24.14 23.49 23.29

UWT PURE-LET 29.98 28.35 26.95 26.24 25.21 24.47 23.84 23.47

BDCT PURE-LET 29.78 28.16 26.81 26.14 25.21 24.52 23.85 23.41

UWT/BDCT PURE-LET 30.10 28.46 27.05 26.33 25.30 24.52 23.85 23.49

Output PSNRs have been averaged over 10 noise realizations, except for the Platelet algorithm.
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(A) (B)

(C) (D)

(E) (F)

Fig. 8. (A) Part of the original Moon image at peak intensity 20. (B) Noisy version, PSNR = 18.48 dB. (C) Denoised with

a translation-invariant Haar-Fisz [10] algorithm, PSNR = 25.44 dB in 28s. (D) Denoised with Anscombe [7] + BLS-GSM [1],

PSNR = 25.45 dB in 38s. (E) Denoised with translation-invariant Platelet [28], PSNR = 25.66 dB in 2234s. (F) Denoised

with the proposed UWT PURE-LET, PSNR = 26.23 dB in 7.5s.

In order for our data to fit the noise model described in (1), we need to first subtract the offset value δ

of the CCD detectors, and then, divide by their amplification factor α. These two parameters, as well as

the variance σ2 of the AWGN, are determined from the data. In practice, a robust linear regression is first

performed on a collection of local estimates of the sample mean and sample variance [43], [44]; then,
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(A) (B)

(C) (D)

Fig. 9. (A) Part of the original Barbara image at peak intensity 30. (B) Noisy version, PSNR = 15.87 dB. (C) Denoised with

GAT [9] + BLS-GSM [1], PSNR = 26.19 dB in 32s. (D) Denoised with the proposed BDCT PURE-LET, PSNR = 27.00 dB

in 47s.
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TABLE II

COMPARISON OF MULTISCALE-BASED MIXED POISSON-GAUSSIAN NOISE REMOVAL ALGORITHMS

Peak Intensity 120 60 30 20 10 5 2 1

σ 12 6 3 2 1 0.5 0.2 0.1

Image Cameraman 256× 256

Input PSNR 18.56 17.48 15.90 14.75 12.45 9.83 6.11 3.19

GAT [9] + BLS-GSM [1] 27.56 27.02 26.19 25.59 24.43 22.58 19.39 14.63

UWT PURE-LET 27.68 27.14 26.32 25.74 24.56 23.22 21.57 20.42

BDCT PURE-LET 27.17 26.64 25.87 25.35 24.24 23.05 21.47 20.36

UWT/BDCT PURE-LET 27.92 27.37 26.53 25.95 24.74 23.36 21.61 20.44

Image Fluorescent Cells 512× 512

Input PSNR 19.39 18.86 17.96 17.21 15.53 13.38 10.01 7.22

GAT [9] + BLS-GSM [1] 30.85 30.47 29.67 29.12 28.31 25.67 20.07 13.49

UWT PURE-LET 30.68 30.37 29.86 29.46 28.63 27.67 26.23 25.07

BDCT PURE-LET 30.64 30.33 29.83 29.44 28.64 27.67 26.21 25.09

UWT/BDCT PURE-LET 30.82 30.50 29.98 29.56 28.71 27.73 26.28 25.15

Output PSNRs have been averaged over 10 noise realizations.

the slope of the fitted line gives the amplification factor α. The parameters δ and σ2 can be estimated

independently in signal-free regions of the image.

We have applied our UWT PURE-LET algorithm independently on each channel of a single image

from the dataset. As observed in Fig. 10D, the proposed algorithm considerably reduces the level of

noise, and is still able to recover most of the activated red spots. By contrast, we also display in Fig. 10C

the result obtained after 20 CS of the Platelet algorithm, where it can be seen that the noise has been

effectively reduced but fewer activated red spots have been preserved.

VI. CONCLUSION

In this paper, we have provided an unbiased estimate of the MSE for the estimation of Poisson intensities

degraded by AWGN, a practical measure of quality that we called PURE. We have then defined a generic

PURE-LET framework for designing and jointly optimizing a broad class of (redundant) transform-domain

nonlinear processing. To obtain a computationally fast and efficient algorithm for undecimated filterbank
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(A) (B)

(C) (D)

Fig. 10. (A) Observed data: single acquisition (two-color image). (B) “Ground truth” (average of 100 acquisitions). (C) Single

acquisition denoised with Platelets [28] in 1240s. (D) Single acquisition denoised with the proposed UWT PURE-LET in 15s.
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transforms, we have proposed a first-order Taylor-series approximation of PURE. For each nonlinearly

processed subband, the reliability of this approximation can be controlled, ensuring near optimal MSE

performances for the considered class of algorithms.

As an illustrative algorithm, we have devised a pointwise subband-dependent thresholding. In each

bandpass subband, the amount of shrinkage is related to the signal-dependent noise variance, estimated

from suitably chosen lowpass coefficients. The resulting denoising algorithm is faster than other state-of-

the-art approaches that make use of redundant transforms. It gives better results, both quantitatively (lower

MSE) and qualitatively, than the standard VST-based algorithms. The proposed solution also favorably

compares with some of the most recent multiscale methods specifically devised for Poisson data.

Finally, we have shown that our PURE-LET strategy constitutes a competitive solution for fast and

high-quality denoising of real fluorescence microscopy data.
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