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Abstract. Perfusion CT is widely used in acute ischemic stroke to deter-
mine eligibility for acute treatment, by defining an ischemic core and
penumbra. In this work, we propose a novel way of building on prior infor-
mation for the automatic prediction and segmentation of stroke lesions.
To this end, we reformulate the task to identify differences from a prior
segmentation by extending a three-dimensional Attention Gated Unet
with a skip connection allowing only an unchanged prior to bypass most
of the network. We show that this technique improves results obtained
by a baseline Attention Gated Unet on both the Geneva Stroke Dataset
and the ISLES 2018 dataset.
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1 Introduction

Ischemic stroke is a leading cause of mortality and disability worldwide [5]. In
the last decade, advances in stroke imaging have enabled a more targeted app-
roach to treatment and reperfusion. Perfusion CT (pCT) is widely used in acute
ischemic stroke to determine eligibility for treatment by providing perfusion
parameter maps informing about voxelwise cerebral blood flow, cerebral blood
volume, transit time and time to maximum of the residue function (CBF, CBV,
MTT and Tmax respectively) [8]. Necrotic tissue defining the ischemic core, as
well as hypoperfused but still salvageable tissue, the ischemic penumbra, are
commonly delineated by threshold-based tools [6]. These techniques have shown
to be of great benefit to select patients for treatment in several clinical trials
[2,21]. However, accurate segmentation of the ischemic core on pCT, as well
as prediction of the final infarct is challenging, and diffusion weighed magnetic
resonance imaging (MRI) remains the gold standard.
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With the advent of deep convolutional neural networks (CNNs), significant
improvements in stroke prediction and segmentation have been made [18]. Cur-
rent methods take as input acute imaging sequences and learn a tissue outcome
prediction function from labelled data obtained from follow-up imaging. Many
currently presented models rely on a Unet backbone [9,10,15,18,28], allowing
for multi-scale localisation and contextualisation through an encoder-decoder
structure with skip-connections. In the setting of the ISLES 2018 challenge, the
best performing submissions achieved a Dice score ranging from 0.48 to 0.51 for
the segmentation of the ischemic core on perfusion CT [1,12,17]. Current meth-
ods for the prediction of the final lesion often use a combination of perfusion
MRI and diffusion weighed imaging leading to a Dice score of up to 0.53 [20,30].
Predicting the final lesion from perfusion CT alone has been attempted through
the use of baseline perfusion images and infarct growth estimations [16,26] with
Dice scores of up to 0.48.

Incorporating prior knowledge has proven useful in many medical image seg-
mentation tasks [22]. Indeed, the inclusion of a prior can simplify a model’s
task by reducing the amount of information to be learnt. Atlas models, distance
boundaries, shape and topology specifications as well as edge polarity have been
successfully used as regularisation terms in region growing segmentation meth-
ods. Recent work has used prior constraints in the form of adjacency, boundary
or learned anatomical conditions [23].

In acute ischemic stroke, tissue of the penumbra is progressively recruited
into the core, contributing to the growth of the lesion. Previous models have
successfully used prior manual ischemic core and penumbra segmentations to
obtain a representation of ischemic stroke growth directions [16]. Using stan-
dardized thresholds for the automated segmentation of the ischemic core could
potentially leverage the strengths of a largely clinically validated model. Inte-
grating this information as a prior can be used as a starting point to either refine
the segmentation of the ischemic core or to predict the final lesion. In this work
we aim to efficiently integrate prior information obtained by a standard thresh-
old segmentation of the ischemic core directly into the commonly used Attention
Gated 3D Unet [23,27,30].

2 Materials and Methods

2.1 Data

Geneva Stroke Dataset. This dataset comprises acute pCT images and final
lesion labels of 144 patients who have benefitted from treatment by thrombec-
tomy and/or thrombolysis as described in prior work [13]. For every subject a
full-volume CBF, CBV, MTT, Tmax and non-contrast CT (NCCT) image is
available. Manually annotated labels for the final infarct have been obtained
from follow-up MRI in the sub-acute phase by expert neurologists. Briefly, a
model has to learn the prediction of the final infarct after treatment.
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ISLES 2018 Dataset. The Ischemic Stroke Lesion Segmentation 2018 dataset
contains pCT images and acute lesion labels of patients before undergoing treat-
ment [12,17]. Every subject has the main slices containing the acute lesion of
CBF, CBV, MTT, Tmax and NCCT sequences. The gold-standard ischemic
cores were defined on the subsequent MRI, performed in the acute setting and
manually annotated. We used the publicly available training subset comprising
94 data points. In this setting, a model has to learn the segmentation of stroke
lesions before treatment.

2.2 Data Pre-processing

We normalize by subtracting the mean and dividing by the standard deviation
all input sequences, which are subsequently scaled to a 0–1 range. To ensure
divisibility by 16 necessary for our Unet architecture we pad by 0 along every
dimension. All data used for training is augmented ad hoc by applying random
flip, random elastic transform, random shift, random scale and Gaussian noise
[25]. Every individual transformation has a 50% probability of being applied on
each batch.

Ischemic core is commonly defined as relative CBF < 0.3 (rCBF). In our work
we have chosen a slightly more inclusive threshold at 0.38 for greater sensitiv-
ity. rCBF is defined as relative (by ratio) to the mean CBF of the contralateral
hemisphere after smoothing with a 3D Gaussian kernel of 2 voxels width [7].
Cerebral spinal fluid (CSF) is segmented on NCCT images by applying a 5th
percentile threshold on voxels bounded between 0 and 100 Hounsfield units (HU).
A segmentation of the skull is obtained with the bet2 algorithm of the FMRIB
Software Library (FSLv.5) [11,19] on NCCT images with the same bounds.
Finally, major blood vessels are segmented by applying a 99th percentile thresh-
old on CBF images. The resulting CSF, skull and vessel segmentations were then
extended slightly by binary dilation with a spheroid structuring element of width
2 voxels. They were then removed from the initial ischemic core segmentations.
A similar pipeline is implemented by the commercially available RAPID software
package (RAPID, Ischemaview Stanford University, Stanford, USA) and widely
used in clinical practice [29]. The final ischemic core segmentation is defined as
prior segmentation (Fig. 1).

2.3 Network Architecture

Attention Gated Unet. A 3D Unet with attention gated skip connections
is used as the baseline model. This encoder-decoder architecture makes use of
contextual information by down-sampling input volumes. Spatial details are then
recovered by up-sampling. The information bottleneck is classically overcome by
skip connections spanning between down-sampling and up-sampling layers of
corresponding scale to provide more contextual information to the model [31].
Attention gates applied to the skip connections extract features from coarse scale
to highlight salient regions on a finer scale [24]. Every convolutional module is
composed of two layers with a 3D-convolution with a 3× 3 × 3 kernel followed by
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Fig. 1. From left to right: axial view of CBF (A.), thresholded relative CBF at 0.38
overlaid in magenta on CBF (B.), skull segmentation (C.) and ventricle segmentation
(D.) overlaid in blue on NCCT, vascular noise filter in orange (E.) and the final ischemic
core segmentation in magenta (F.) overlaid on CBF of a representative subject of
the Geneva Stroke Dataset. The final threshold-based ischemic core segmentation is
subsequently used as prior. (Color figure online)

batch-normalisation and a Rectified linear unit (ReLU) as activation function.
Four convolutional modules are used respectively during down- and up-sampling
with an additional central module. Deep supervision is used to enhance the
transition between feature space and semantically relevant segmentation [14].

Bayesian Skip for Attention Gated Unet. The above described Unet cre-
ates large receptive fields by successive down-sampling of input information to
model relationships at a gradually coarser scale. It remains however challeng-
ing to reduce false-positive rates for small and patchy segmentations of varying
shape. To address this issue, we propose to allow selected input channels defined
as prior to bypass the main part of the model, before being reintegrated at the
final layer. The network thus effectively learns to model the difference relative
to the prior given all inputs. To this end we add an additional skip connection
spanning the network from its input to its final layer, termed bayesian skip.
There, it is integrated by Method A) summation with the output or Method B)
by convolution with the output. In Method B) a 1× 1 × 1 convolution is used
to reduce computational overhead. The network can thus be described as the
function U(x) with u(x) defined as the skipped part of the network and p the
prior. Note that at any given step, p ∈ x as the prior is not removed from the
input. Thus, for the baseline model U(x) = u(x). The Methods A) and B) can
be respectively described by Eqs. 1 and 2.

U(x)A = u(x) + p (1)

U(x)B = u(x) ∗ p (2)

Subsequently, u(x) learns to fit the difference between U(x) and p in Method A)
and the deconvolution in Method B) (Fig. 2).

2.4 Experimental Setup

We rearrange our data in a three-way split, with 70% used for training, 15% for
validation and 15% for testing. Volumes of size 96× 96 × 96 and 256 × 256 × 22
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Fig. 2. A bloc diagram of the proposed Bayesian Skip Net, building on the previously
designed Attention Gated Unet. The bayesian skip connection enables the prior to
bypass the network unchanged. The prior is then reintegrated with the output of the
final layer via Method A) summation or Method B) convolution.

are used respectively for the Geneva Stroke Dataset and the ISLES 2018 Dataset.
We use a batch-size of 2 and 4 respectively for the datasets, dictated by compu-
tational limitations. Stochastic gradient descent is used with an initial learning
rate of 0.0001 and Nesterov momentum. Weight decay is used as regularisation.
The learning rate is reduced by a factor of 2 every 200 epochs. We optimize the
commonly employed smooth Sorensen-Dice loss defined as follows:

LDice = 1 − 2|X ∩ Y | + ε

|X| + |Y | + ε
(3)

where a smoothing factor ε of 0.01 is used. Early stopping on the validation loss
is used with a patience of 20 after 200 epochs. The best model is selected based
on best Dice score on the validation set and is subsequently evaluated on the
independent test set. No hyperparameter optimisation is attempted as absolute
results are not the objective of this work. A baseline Attention Gated Unet, as
well as two Attention Gated Unets with bayesian skip integrated through Method
A) or B) respectively, have been trained and evaluated using CBF, CBV, MTT,
Tmax and NCCT sequences, as well as the prior segmentation as input channels
of the Geneva Stroke Dataset. We then validated the experiments for the baseline
network and Method B) on the ISLES 2018 Dataset. All computations were
done on a single Nvidia Tesla P100 GPU (Nvidia Corporation, Santa Clara,
California, USA). Our Pytorch implementation for the proposed architecture is
publicly available here.

Impact of Prior Quality. To evaluate the impact of the quality of the prior
segmentation on the performance of the Bayesian Skip Net, we computed the

https://github.com/JulianKlug/PerfusionCT-Net
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correlation between the Dice score obtained by the prior alone and the score
obtained by the model making use of the prior using Pearson’s correlation coef-
ficient.

We further evaluated the performance of the proposed model given a
degraded prior. To this aim we added random binary noise where p(1) = 0.002
on the prior segmentation used for training and testing. On average, this results
in a noisy prior in which 25% of the total volume corresponds to randomly seg-
mented voxels. For both datasets, a Bayesian Skip Net was trained and tested
using the resulting noisy segmentation as prior.

3 Results

Experimental results on validation and test splits for the Geneva Stroke Dataset
and ISLES 2018 Dataset are reported respectively in Tables 1 and 2. Overall, the
Bayesian Skip Net with Method B) performs better than the baseline Attention
Gated Unet on both datasets. It consistently achieves better Dice and precision
scores on the Geneva Stroke Dataset as well as on the test split of the ISLES
2018 Datatset. On the ISLES 2018 validation split a performance similar to
baseline is achieved. The baseline model mostly remains superior in terms of
recall. All evaluated methods outperform the prior segmentation. Furthermore,
the proposed method greatly speeds up the training process, as the Bayesian Skip
Net with Method B) achieves convergence after about 300 epochs, compared to
a baseline convergence of 450 epochs when evaluated on the ISLES 2018 dataset
as shown in Fig. 3. The proposed model with Method A) does not yield any
increase in performance and was therefore not further evaluated on the second
dataset.

Correlation between the quality of the prior used and Dice scores obtained
by the proposed model with Method B) on the test splits of both datasets are
shown in Fig. 4. For both the Geneva Stroke Dataset (Pearson’s R = 0.82, p <
10−5) and the ISLES 2018 Dataset (Pearson’s R = 0.76, p < 10−2), Dice scores
obtained by the prior and by the Bayesian Skip Net correlate strongly.

Evaluation of the Bayesian Skip Net with Method B) given a prior with and
without added noise on the test splits for the Geneva Stroke Dataset and ISLES
2018 Dataset are reported in Table 3. On both tasks, adding noise to the prior
slightly reduces model performance. When comparing with the baseline Unet,
the proposed model achieves comparable or better results even when using a
noisy prior.

Example predictions are shown in Fig. 5. A case-by-case visual analysis of
the predicted lesions of all evaluated methods revealed that the proposed model
consistently produced more precise segmentations and was less likely to produce
false positive results than the baseline method. A selective analysis of cases
where both models failed to segment the lesion revealed small infarcts along the
midline, in the brainstem or the cerebellum. The prior segmentation did not
include any of these lesions.
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Table 1. Experimental results on test and validation splits for the Geneva Stroke
Dataset. The results are reported in terms of mean and standard deviation for Dice
score, precision and recall. The proposed Unet with bayesian skip with Method A) and
B) is benchmarked against the baseline Attention Gated Unet. The prior segmentation’s
performance is reported as reference. Best model results in bold.

Data Split Method Dice Precision Recall

Validation Prior 0.125 ± 0.135 0.149 ± 0.128 0.171 ± 0.194

Unet 0.270 ± 0.215 0.265 ± 0.299 0.404 ± 0.336

Unet+Method A 0.246 ± 0.206 0.221 ± 0.247 0.300 ± 0.299

Unet+Method B 0.292 ± 0.211 0.348 ± 0.333 0.294 ± 0.257

Test Prior 0.099 ± 0.110 0.109 ± 0.116 0.119 ± 0.163

Unet 0.192 ± 0.156 0.189 ± 0.235 0.271 ± 0.284

Unet+Method A 0.181 ± 0.154 0.132 ± 0.187 0.278 ± 0.324

Unet+Method B 0.212 ± 0.136 0.289 ± 0.333 0.188 ± 0.219

Table 2. Experimental results on test and validation splits for the ISLES 2018 Dataset
compared with the top three submissions in the ISLES 2018 challenge. The results are
reported in terms of mean and standard deviation for Dice score, precision and recall.
The proposed Unet with bayesian skip with Method B) is benchmarked against the
baseline Attention Gated Unet. The prior segmentation’s performance, as well as the
top three submissions of the ISLES 2018 challenge are reported as reference. Best model
results in bold.

Data Split Method Dice Precision Recall

Validation Prior 0.189 ± 0.174 0.214 ± 0.181 0.236 ± 0.230

Unet 0.417 ± 0.072 0.433 ± 0.304 0.419 ± 0.264

Unet+Method B 0.415 ± 0.073 0.431 ± 0.301 0.411 ± 0.264

Test Prior 0.296 ± 0.256 0.251 ± 0.222 0.374 ± 0.307

Unet 0.524 ± 0.182 0.532 ± 0.354 0.560 ± 0.312

Unet+Method B 0.552 ± 0.195 0.561± 0.238 0.573 ± 0.292

ISLES 2018 Challenge Song et al. [28] 0.51 ± 0.31 0.55 ± 0.36 0.55 ± 0.34

Liu et al. [15] 0.49 ± 0.31 0.56 ± 0.37 0.53 ± 0.33

Chen et al. [9] 0.48 ± 0.31 0.59 ± 0.38 0.46 ± 0.33

Table 3. Impact of noise added to the prior on the performance of the Bayesian Skip
Net with Method B). Experimental results on the test splits of the Geneva Stroke
Dataset and the ISLES 2018 Dataset with and without noise added to the prior are
reported in terms of mean and standard deviation for Dice score, precision and recall.

Data set Prior quality Dice Precision Recall

Geneva Stroke Dataset Standard 0.212 ± 0.136 0.289 ± 0.333 0.188 ± 0.219

Noisy 0.191 ± 0.165 0.204 ± 0.277 0.208 ± 0.244

ISLES 2018 Dataset Standard 0.552 ± 0.195 0.561 ± 0.238 0.573 ± 0.292

Noisy 0.538 ± 0.205 0.565 ± 0.282 0.565 ± 0.271



Bayesian Skip Net 175

Fig. 3. Training (A.) and validation (B.) loss during training of the baseline Attention
Gated Unet (blue) and the proposed Bayesian Skip Net with Method B) (orange) on
the ISLES 2018 Dataset. Efficient integration of the prior ensures faster training. Both
models tend to overfit on validation and test data. This is common in deep learning
and generally does not prevent generalisation on test data [4]. (Color figure online)

Fig. 4. Correlation of Dice scores obtained by the prior segmentation and the Bayesian
Skip Net with Method B) on the test splits of the Geneva Stroke Dataset (A.) and the
ISLES 2018 Dataset (B.) For both datasets, the performance of the model strongly
correlates with the quality of the prior.

4 Discussion and Conclusion

In this paper, we present a novel bayesian skip connection as a way to take into
account a prior in medical image segmentation. By reintegrating prior knowl-
edge at the end of the proposed model, we explicitly let the rest of the network
approximate the divergence from this prior. Having the same information at their
disposal, both the baseline model and the model with the bayesian skip connec-
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Fig. 5. Lesion labels, in blue, and model predictions, in red, projected on Tmax axial
views for four subjects (A-D). The left and middle images show the predicted segmen-
tation by the baseline Attention Gated Unet (upper subimage, 1.) and by the proposed
Unet with bayesian skip with Method B) (lower subimage, 2.) for two patients (A and
B). The two images on the right show subjects were neither method achieves to segment
the lesion (C and D). Small lesions located along the midline and in the posterior fossa
remain difficult for both models and account for most of the variability in performance.
(Color figure online)

tion should be able to approximate the desired segmentation function. However,
the amount of information to be learnt is smaller in the latter, improving its
learning process. This results in faster convergence and better performance on
both the Geneva Stroke Dataset and the ISLES 2018 dataset.

Within our experimental setting, bayesian skip connections with convolution
(Method B) but not with summation (Method A) improve the performance of
an Attention Gated Unet when a prior segmentation is given as input for a task
of ischemic lesion prediction and segmentation. The prior used in our setting is
associated with its own uncertainty. This can be modelled by the convolution
but not by a summation explaining the superiority of Method B) relative to
Method A).

The overall gain in performance is mainly driven by increased precision as the
proposed model focuses on regions already segmented in the prior, thus reducing
its false-positive rate. However, this comes at the cost of a lower recall value.
The results reported here further show that the proposed method greatly speeds
up model convergence which is crucial for rapid model iteration and reduces
computational costs.
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The Bayesian Skip Net compares favourably with the best performing models
of the ISLES 2018 challenge. Although the analysis is somewhat limited as the
test set used for the challenge is not publicly available and does not correspond
exactly to the same subjects used for the test split in our experiments, this
comparison on a same dataset suggests that our proposed model achieves state-
of-the art performance for the segmentation of the ischemic core.

The comparison of results for the prediction of the final lesion from perfusion
CT is more complicated as datasets referenced across the literature are heteroge-
nous and not open-source. Unsurprisingly, the Bayesian Skip Net outperforms
earlier general linear models with receptive fields on the Geneva Stroke Dataset
[13]. Robben et al. use the raw perfusion CT signal as input to a CNN and
report a Dice score of 0.48 on the dataset of the MRCLEAN study compro-
mising globally bigger lesions (mean lesion volume [interquartile range]: 78 cm3

[21-121] vs. 29.4 cm3 [2.5-37.6]) [26]. This highlights the importance of lesion
volume as a component of model performance and could suggest a potential loss
of information due to the conversion from raw perfusion CT images to perfusion
maps (Tmax, MTT, CBF, CBV). In a small sample of the TRAVESTROKE
dataset, Lucas et al. obtain a Dice score of 0.46 by modulating a deformation
model obtained from manual segmentations of the ischemic penumbra and core
[16]. Although manual segmentations are not sustainable in clinical practice, this
underscores the importance of the quality of the prior used and suggests that
adding a threshold-based segmentation of the ischemic penumbra to the prior
might yield further gains in performance.

We show that our model is relatively resistant to added noise as it maintains
similar or greater performance than the baseline Unet when presented with a
degraded prior. Nonetheless, the gain in performance of our model strongly cor-
relates with the quality of the prior given as input. For the prediction of the final
lesion, it also depends on the overlap between ischemic core and final lesion that
strongly depends on clinical intervention. In this work, we choose to use our own
open-source implementation of the ischemic core segmentation to ensure repro-
ducibility. However, this could be improved by using commercially available soft-
ware [3,29]. Moreover, for the prediction of the final lesion, a model segmenting
the ischemic core such as the one proposed for the ISLES 2018 dataset, could be
used to provide a prior of greater quality.

All models evaluated showed great inter-case variability and weak perfor-
mance on small lesions located along the midline, as well as on lesions in the
posterior fossa which remain difficult to detect. The prior segmentation failed
to cover the same lesions and its integration could therefore not improve final
performance. Moreover, results varied substantially between the two datasets,
with greater scores achieved on the ISLES 2018 dataset. This can be explained
by a more complicated task in the Geneva Stroke Dataset which consists of pre-
dicting a segmentation of the final infarct obtained several days after treatment.
Greater inter-subject variability in this dataset mainly stems from a greater
range of treatment administered to the patients, as well as highly divergent
radiological outcomes.
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In a clinical context, medical models rarely stand in isolation but are inte-
grated with a prior representation of the problem. The segmentation and pre-
diction of infarct evolution in acute ischemic stroke are challenging tasks for
humans and machines alike. Threshold-based ischemic core segmentation has
been largely validated and is commonly used as a starting point in this setting.
Our proposed model can effectively leverage this prior segmentation to enhance
the prediction of radiological outcome.
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