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Abstract. The development of new diagnostic criteria for Alzheimer’s disease (AD) requires new in vivo markers reflecting
early pathological changes in the brain of patients. Magnetic resonance (MR) spectroscopy has been shown to provide useful
information about the biochemical changes occurring in AD brain in vivo. The development of numerous transgenic mouse
models of AD has facilitated the evaluation of early biomarkers, allowing researchers to perform longitudinal studies starting
before the onset of the pathology. In addition, the recent development of high-field animal scanners enables the measurement
of brain metabolites that cannot be reliably quantified at lower magnetic fields. In this report, we studied a new transgenic
mouse model of AD, the 5xFAD model, by in vivo proton and phosphorus MR spectroscopy. This model, which is characterized
by an early-onset and a robust amyloid pathology, developed changes in the neurochemical profile, which are typical in the
human disease, i.e., an increase in myo-inositol and a decrease in N-acetylaspartate concentrations, as early as in the 40th week
of age. In addition, a significant decrease in the �-aminobutyrate concentration was observed in transgenic mice at this age
compared to controls. The pseudo-first-order rate constant of the creatine kinase reaction as well as relative concentrations of
phosphorus-containing metabolites were not changed significantly in the 36 and 72-week old transgenic mice. Overall, these
results suggest that mitochondrial activity in the 5×FAD mice is not substantially affected but that the model is relevant for
studying early biomarkers of AD.

Keywords: 5xFAD, Alzheimer’s disease, in vivo NMR spectroscopy, metabolic profile, transgenic mice

INTRODUCTION

Transgenic mouse models of Alzheimer’s disease
(AD) are useful for studying disease mechanisms and
for therapy testing. The design of such models has been
based on the early discovery of dominant mutations
in rare familial AD cases (FAD) [1–3] and in familial

∗Correspondence to: Vladimı́r Mlynárik, PhD, Laboratory of
Functional and Metabolic Imaging, Station 6, 1015 Lausanne,
Switzerland. Tel.: +41 21 6937685; Fax: +41 21 6937960;
E-mail: vladimir.mlynarik@epfl.ch.

fronto-temporal dementia cases linked to chromosome
17 (FTDP-17) [4]. Most of transgenic mouse mod-
els of AD are based on the overexpression of mutated
forms of human amyloid-� protein precursor (A�PP)
alone or in combination with mutated human prese-
nilin 1 (PS1) or 2 (PS2) genes (see [5] for an extensive
review of transgenic mouse models of AD). These
models are characterized by a progressive accumula-
tion of amyloid-� (A�) in the brain, which leads to
the age-dependent formation of extracellular amyloid
deposits, one of the neuropathological hallmark of AD.
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Although these transgenic mice reproduce well sub-
sets of histopathological features typical for AD, most
of them do not show the complete phenotype of AD
including neurofibrillary tangles and massive neuronal
loss. To overcome these limitations, double or triple
transgenic mouse models overexpressing the human
tau gene carrying FTDP-17 mutations together with
mutated A�PP and/or PS1/2 have been generated with
various neuropathological outcomes [6, 7]. However,
despite these efforts, none of these models recapitulates
the full spectrum of the disease. Therefore, each mouse
model has to be critically evaluated and compared to
the human disease in order to assess its relevance to
AD [8, 9].

Neurochemical profile in AD patients

In vivo magnetic resonance spectroscopy (MRS) is
a non-invasive method, which provides information on
the neurochemical profile in various neurodegenerative
diseases. This method enables studying various brain
metabolites in a defined volume of interest (VOI) that
can cover brain regions as small as 1 milliliter in human
brain and several microliters in rodents [10]. It can
be used in human neurological patients as well as in
animals modeling various brain pathologies.

Proton (1H) MR spectroscopy is capable of provid-
ing relative or absolute concentrations of about 15 to
19 metabolites in the brain. Some of them are con-
sidered markers of myelination and cell proliferation
such as phosphorylcholine, glycerophosphorylcholine,
and phosphoethanolamine because they are precur-
sors of essential structural components of the plasma
membrane (phospholipids) and the myelin sheath
(sphingolipids). Others, such as creatine (Cr), phos-
phocreatine (PCr), glucose, lactate, and alanine, are
related to energy metabolism. Taurine and myo-inositol
(mIns) are osmoregulators; they are notably involved in
calcium signaling. Glutamate (Glu), glutamine (Gln),
�-aminobutyrate (GABA), aspartate, and glycine are
involved in neurotransmitter metabolism; glutathione
and ascorbate are antioxidants. N-acetylaspartate
(NAA) has various biological functions (osmoregula-
tion, energy metabolism, myelinization) and is mainly
produced by the mitochondria of neurons in the brain.

Phosphorus (31P) MR spectroscopy has lower sen-
sitivity than 1H MR spectroscopy and requires larger
VOIs to be measured [11]. The most important
cerebral metabolites that can be measured by 31P
spectroscopy are nucleotide triphosphates, mainly
adenosine triphosphate (ATP), which is the principal
energy source for cell metabolism, and PCr, which

serves as an ATP replenisher via the creatine kinase
reaction. Other peaks seen in the 31P brain spectra
can be assigned to phosphomonoesters (PME) consist-
ing of poorly resolved signals of phosphoethanolamine
and phosphorylcholine, to inorganic phosphate (Pi),
to phosphodiesters (PDE) consisting of peaks of
glycerophosphorylethanolamine and glycerophospho-
rylcholine, and to nicotinamide adenine dinucleotide
and its phosphate (NAD+NADP). PME and PDE are
precursors and breakdown products, respectively, of
membrane phospholipids; Pi is a product of ATP
hydrolysis; and NAD and NADP are involved in redox
reactions. It should be noted that the role of many
metabolites detected by 1H or 31P spectroscopy is not
completely clear and some of them have multiple roles.

Changes in concentrations of several brain metabo-
lites were reported in AD patients. In particular, a
decrease in the concentration of NAA and an increase
in mIns were consistently found not only in patients
with clinical symptoms of AD but also in people with
the syndrome of mild cognitive impairment, which
present a higher risk to develop AD [12].

NAA is considered a marker of neuronal function-
ality and integrity and its concentration is decreased in
both grey and white matter of the AD patients [13–17].
Moreover, the decrease in NAA demonstrating gradual
neuronal loss was found to correlate with severity of
neuropathological findings [18, 19]. In contrast, mIns
is believed to be a marker of glial cell numbers because
it is highly concentrated in astrocytes. The concentra-
tion of this metabolite is elevated in grey matter even in
the earliest stages of AD [20], probably due to gliosis.

There are other metabolites easily detectable in MR
spectra of human brain. The peak of total choline
corresponds mainly to phosphorylcholine and glyc-
erophosphorylcholine. The changes in the total choline
concentration are probably associated with increased
membrane turnover due to neurodegeneration. The
reports on the choline concentration in AD are con-
tradictory. Various authors found increased [21, 22] or
decreased [23, 24] total choline levels in some brain
regions, whereas most studies reported no change in
its concentration [25–27].

The methyl peak of total creatine (tCr) is com-
posed of PCr and Cr. The PCr/Cr system acts as a
source of energy reserve for neurons and glial cells.
An unchanged concentration of tCr was assumed in
most human and animal MR studies and concentra-
tions of other metabolites were generally expressed as
relative ones, i.e., as ratios to tCr. However, a decrease
[24, 28], as well as an increase [20], in tCr has also
been reported in AD.
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Glu is a key excitatory neurotransmitter. It can be
quantified in human brain at higher static magnetic
fields separately from Gln. At lower magnetic fields,
a sum of Glu and Gln concentrations (Glx) is usually
obtained. In AD patients, a decrease of Glx or Glu
was reported in the occipital cortex [16], the frontal
lobe [29], the posterior cingulate [30], and in the hip-
pocampus [27], respectively.

Lactate is a product of anaerobic glycolysis. The
peak of lactate can be seen in spectra of human brain
in disorders connected with hypoxia.

Neurochemical profile in AD transgenic mouse
models

Several types of AD mouse models were studied
by MRS (see [31] for an excellent review). Tg2576,
a single-transgenic mouse model overexpressing the
human A�PP carrying the Swedish mutation (K670N,
M671L) develops amyloid plaques predominantly in
the neocortex and the hippocampus by 10–16 months
of age [32]. In this model, a decrease of NAA, Glu,
and glutathione concentrations and an increase in tau-
rine was found in the cerebral cortex at 19 months of
age [33]. A decreased level of NAA is consistent with
decreased neuronal viability. The authors proposed that
the role of taurine in rodent brain might be similar to
that of mIns in human brain, and that an increased level
of taurine could reflect increased glial volume.

The Tg2576 model was crossed with a transgenic
mouse overexpressing mutated human PS1 (M146L)
and double transgenic animals (A�PP/PS1) showed
accelerated amyloid deposition [34]. Oberg and col-
leagues [35] measured MR spectra in hippocampus of
these mice at 2.5, 6.5, and 9 months of age. The first
plaques were seen at 6.5 months and statistically signif-
icant lower relative concentrations of NAA, Glu, and a
macromolecule component at 1.2 ppm were observed
at 9 months of age. Another MRS study on the same
transgenic model was conducted by Marjanska et al.
[36, 37]. At 16, 20, and 23 months of age, they found
that the levels of NAA and Glu decreased, and the level
of mIns increased with animal aging. At 16 months, the
levels of NAA and Glu were lower and the mIns level
was higher than the corresponding levels observed in
the wild-type animals. Interestingly, an increase in
taurine concentration similar to that observed in the
Tg2576 mice was not seen.

A rather similar A�PP/PS1 mouse model was stud-
ied by Choi et al. [38]. This model was generated by
crossing the Tg2576 mice with another transgenic line
overexpressing mutated human PS1 (M146V) [38, 39].

They measured proton spectra in cortex and hippocam-
pal regions at 6 and 16–18 months of age. At 6 months
of age, a small plaque accumulation was observed with
no significant changes in the neurochemical profile
compared to wild-type controls. At 16–18 months, a
large plaque burden was accompanied by a decrease in
NAA and Glu and by an increase of Gln and mIns con-
centrations (in vitro, as �mol/g wet weight) in cortex.
However, only a decrease in NAA was seen in vivo
at 17–20 months of age in the hippocampus. In the
same study, the effect of anti-inflammatory drugs on
MR spectroscopic changes in A�PP/PS1 mice was also
assessed. Ibuprofen treatment reverted the decrease in
NAA and Glu, and celecoxib reverted the decrease in
NAA.

Chen and co-workers [40] studied another
A�PP/PS1 mouse model, with human PS1 carrying
the �E9 mutation [41–44], at 3, 5, and 8 months of
age. Surprisingly and contrary to previous observa-
tions on other A�PP/PS1 mice, they found a very
early increase in mIns/tCr in both the hippocampus
and the cortex at the age of 3 months and a decrease in
NAA/tCr at the age of 5 months. Changes in relative
concentrations of both metabolites progressed with
age.

Brain metabolites changes were also studied in
another double transgenic mouse model of AD, the so-
called PS2A�PP line, which overexpresses the mutant
A�PP (K670N, M671L) and human PS2 (N141I)
genes [45]. In frontal cortex of 24-month old animals
a significant decrease in NAA/tCr and Glu/tCr was
observed compared to wild-type mice while no signifi-
cant change in mIns/tCr was observed at this time point
[46]. These spectroscopic changes correlated with the
amount of plaques in the frontal cortex. A summary of
metabolic changes in mouse models of amyloid pathol-
ogy measured by in vivo proton MR spectroscopy is
given in Table 1.

Recently, two other transgenic models were studied.
In the first, triple-transgenic model (3xTg-AD) har-
boring PS1 (M146V), A�PP (K670N, M671L), and
tau (P301L) transgenes [6], a decrease in NAA and
taurine and an increase in lactate concentrations were
observed in hippocampus at 3 and 15 months of age
[47]. In an earlier study of this model, a decline in NAA
was observed in hippocampus at 6 months of age [48].
In the second model, a transgenic mouse overexpress-
ing the tau gene carrying the P301L mutation [49],
which develops neurofibrillary tangles and present an
early neurodegeneration, a decrease in taurine and also
NAA and Glu was seen in hippocampus and olfac-
tory bulb, respectively, at 5 months of age [50]. In
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Table 1
Summary of metabolic changes measured in mouse models of amyloid pathology by in vivo proton MR spectroscopy

Strain Transgene Promoter Kinetics of
amyloid
depositiona

(months)

Age of
MRS
analysis
(months)

VOI position
and size

Neuropathology
in the VOIb

Main metabolite
changesc

Tg2576
[32, 66,
67]

Human A�PP695
with Swedish
mutation
(K670N/M671L)

Hamster
PrP

6–7, 12, ≥19 19
[33]

Neocortex
fronto-parietal
6 × 2 × 3 mm3

Sparse amyloid
deposition with
large amyloid
plaques and
plaque associated
gliosis

↑Taud

↓NAA, GSH,
Glud

A�PP/PS1e

(Tg2576
×PS1M146L)
[34, 39,
68]

Human A�PP695
with Swedish
mutation
(K670N/M671L)
× Human PS1
with M146L
mutation

Hamster
PrP for
A�PP ×
PDGF�2
for PS1

4, 6, ≥9 2.5, 6.5, 9
[35]

Dorsal
hippocampus
2 × 2 × 2 mm3

No pathology at
2.5 months.
Presence of few
amyloid deposits
at 6.5 with a small
increase at 9
months

↓NAA/tCr
↓Glu/tCr
↓M1.2/tCrf (6.5–9
months)

16, 20, 23
[36]

Dorsal
hippocampus
and cortex
18 mm3

n/a ↓NAA/tCr (with
age) ↓Glu/tCr
(with age)
↑mIns/tCr (20
months)

A�PP/PS1e

(Tg2576
×PS1M146V)
[38, 39]

Human A�PP695
with Swedish
mutation
(K670N/M671L)
× Human PS1
with M146V
mutation

Hamster
PrP for
A�PP ×
PDGF�2
for PS1

4, 6, ≥9 6, 16–20
[38]

Frontal cortex
and
hippocampus
(subiculum)
2 × 2.2 × 2 mm3

Significant plaque
number at 6
months, large
burden at 16–18
months in the
frontal cortex

↓NAA, Glu
↑mIns, Gln in
cortexd (16–18
months)
↓NAA/tCr in
hippocampus
(17–20 months)

A�PP/PS1
line 85g

[41–44]

Chimeric
mouse/human
A�PP695 with
Swedish mutation
(K670N/M671L)
& Human PS1
with �E9
mutation

Mouse PrP
for both
transgenes

4–6, 9, ≥12 3, 5, 8
[40]

Dorsal
hippocampus
and adjacent
cortex

No amyloid
plaques at 3
months. Sparse
amyloid
deposition at 5
months

↑mIns/tCr (3–8
months, with age)
↓NAA/tCr (5–8
months, with age)

PS2A�PPe

[45]
Human A�PP751
with Swedish
mutation
(K670N/M671L)
× Human PS2
with N141I
mutation

Thy1.2 for
A�PP ×
Mouse PrP
for PS2

5–6, 9, ≥13 4–24
[46]

Frontal cortex
1.5 × 1.7 × 3.4
mm3

High content of
amyloid pathology
at 23 months.
Correlation
between plaque
load and
metabolites
changes

↓NAA/tCr
↓Glu/tCr (20, 24
months)

5×FADg

(Tg6799)
[52, 62]

Human A�PP695
with Swedish
(K670N/M671L),
Florida (I716 V),
London (V717I)
mutations &
Human PS1 with
M146L and
L286 V mutations

Thy1
promoter
for both
transgenes

1.5–2, 2–3, ≥4 9, 10, 11
this work

Dorsal
hippocampus
1.2 × 1.9 × 1.9
mm3

High amount of
amyloid plaques
with massive
gliosis

↓NAA
↓Glu (9 months)
↓NAA ↓GABA
↑mIns (10,11
months)

aNumbers denote the age (in months) of three stages of amyloid deposition, onset, mild and severe amyloid deposition, respectively.
bNeuropathology in the VOI as described in the MR study. cSignificant differences between wild-type and transgenic animals at a particu-
lar age (trends in age are also indicated). dIn vitro data, differences in the values in vivo were not significant. eTwo different strains were
breed to generate this mouse model. f M1.2 denotes a signal of macromolecules at 1.2 ppm. gBoth transgenes were integrated at the same locus.
GABA, �-aminobutyrate; Gln, glutamine; Glu, glutamate; GSH, glutathione; mIns; myo-inositol; MRS, magnetic resonance spectroscopy; NAA,
N-acetylaspartate; tCr, total creatine; VOI, volume of interest.



V. Mlynárik et al. / MR Spectroscopy of an AD Mouse Model S91

the same model, Yang and collaborators [51] observed
an increase in mIns/tCr in transgenic mice compared
to wild-type controls at 5 and 8 months of age, how-
ever, no significant change in NAA/tCr was observed
at these time points.

Besides the decrease in NAA, the other typical
change of the neurochemical profile in the human
AD brain, i.e., the increase in mIns, was observed
only in elderly A�PP/PS1 mice. In attempt to find
a transgenic model showing the neurochemical pro-
file closer to the human one in younger animals,
a 5xFAD transgenic mouse model was used in the
present study. Localized 1H spectra in brain of these
transgenic mice were measured at 36–44 weeks of
age and their metabolic profiles were compared to
those of wild-type animals. Furthermore, 31P MR spec-
tra providing additional information on cell energy
metabolism were measured from brains of the trans-
genic and wild-type mice. Relative concentrations of
phosphorus-containing metabolites in the brain were
evaluated, and the pseudo-first order forward rate con-
stants kfor of the creatine kinase reaction (PCr ↔
ATP) were obtained by localized phosphorus satura-
tion transfer experiment. Spectroscopic results were
compared with histology.

MATERIALS AND METHODS

Animal model

The 5xFAD mouse line was generated in the labora-
tory of Dr. Robert Vassar at Northwestern University,
Chicago [52] and was transferred to our institute from
Jackson Laboratories, US (Stock number: 006554).
This transgenic line overexpresses both the A�PP and
the PS1 genes, carrying familial AD (FAD) mutations:
A�PP K670N/M671L (Swedish), I716V (Florida),
and V717I (London); PS1 M146L and L286V. Both
transgenes are driven by the Thy1 promoter. Ani-
mals were maintained on a mix genetic background
(C57/B6SJL) and wild-type littermates were use as
controls mice. All procedures were approved by the
Committee on Animal Experimentation for the can-
ton of Vaud, Switzerland, in accordance with Swiss
Federal Laws on Animal Welfare and the European
Community Council directive (86/609/EEC) for the
care and use of laboratory animals.

MR spectroscopy

Seven AD and seven wild-type mice anesthetized
with 1–2% isoflurane were measured at the age of

36 weeks (31P and 1H spectra), 40 and 44 weeks
(1H only), and 72 weeks (31P only). Measurements
were conducted on a 14.1 T/26 cm horizontal-bore Var-
ian VNMRS scanner (Varian, Palo Alto, CA, USA).
The magnet was equipped with 12-cm inner-diameter
actively shielded gradient sets (Magnex Scientific,
Oxford, UK) allowing a maximum gradient of 400
mT/m in 120 �s. For 1H spectroscopy, a two-loop
quadrature radiofrequency coil with dimensions of
21 mm×14 mm was used as a transceiver. The static
field homogeneity was adjusted using first- and second-
order shims using an EPI version of FASTMAP [53].

Localizer images were obtained in the coronal
plane using a multislice turbo-spin-echo protocol
(TR/TEeff = 5000/52 ms, echo train length = 8, field-
of-view = 24 mm × 24 mm, slice thickness = 0.6 mm, 6
averages, 1282 image matrix). The MRI scan was fol-
lowed by short echo-time (TR/TE = 4000/2.8 ms) spin
echo, full intensity acquired localized (SPECIAL) [54]
proton MR spectroscopy from volumes of interest of
1.2 × 1.9 × 1.9 mm3 centered in dorsal hippocampus
and of 1.7 × 1.5 × 1.7 mm3 centered in its temporal
pole. Outer volume suppression was used, which was
interleaved with water signal suppression by variable-
power RF pulses with optimized relaxation delays
(VAPOR) [55]. Each scan of 4096 complex data
points was acquired with a spectral width of 7 kHz.
Proton spectra were quantified by LCModel [56] using
a database of simulated spectra of metabolites together
with an experimental spectrum of macromolecules
measured in a healthy mouse brain [57]. Absolute con-
centrations of metabolites in �mol/g of tissue were
calculated using an unsuppressed water peak, assum-
ing 80% of water in the tissue.

31P spectra and saturation transfer data were
measured using a dual surface radiofrequency coil
consisting of a proton quadrature coil and a lin-
early polarized 10 mm diameter phosphorus coil, both
used as transceivers. The localization pulse sequence
consisted of outer volume saturation (OVS) using
2.5 ms hyperbolic secant pulses. Afterwards, one-
dimensional ISIS [58] localization was used in the
horizontal direction. It consisted of a 2.5 ms hyper-
bolic secant pulse inverting the magnetization in the
selected region of brain in alternate scans, which was
followed by a 1 ms broadband nonselective adiabatic
half passage pulse and a signal acquisition with alter-
nated phase. The repetition time was 4 seconds.

In the saturation transfer experiment, the �-ATP
signal was saturated by a BISTRO pulse train [59]
interleaved with OVS. The BISTRO pulse sequence
consisted of a series of 40 ms hyperbolic secant pulses
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with variable amplitudes and having a total length tsat
from 0.324 s to 3.24 s. Sixty to eighty scans were col-
lected for each of 6 different saturation times and for a
control scan with irradiation offset in the mirror posi-
tion relative to the PCr peak. A relaxation delay of 4 s
between the last excitation pulse and beginning subse-
quent saturation period was kept constant. The peak
intensities were obtained by fitting to a Lorentzian
function using AMARES [60] from the jMRUI
software (http://www.mrui.uab.es/mrui). The forward
creatine kinase rate constant kfor and the apparent T1
relaxation time of PCr during the �-ATP saturation
(T1sat) were obtained from a nonlinear regression of

relative PCr signal intensities M(tsat)/M(0) as a func-
tion of tsat according to the equation:

M(tsat)/M(0) = (1 − kforT1sat)

+kforT1sat exp(−tsat/T1sat).

The intracellular pH was calculated from the differ-
ence in chemical shifts of peaks of Pi and PCr using
the equation [61]:

pHi = 6.77 + log(�Pi − 3.29)/(5.68 − �Pi),

where δPi is the chemical shift of the Pi resonance
relative to PCr.

Fig. 1. Overview of the neuropathology in 39-week old 5xFAD mice at the level of the dorsal hippocampus. Amyloid pathology was revealed
by Thioflavin S staining in wild-type (A) and transgenic (B) brain (Thioflavin S in green, ethidium bromide in red). The amyloid accumulation is
associated with strong astrogliosis revealed by GFAP immunostaining in wild-type (C) and 5xFAD (D), GFAP staining in green, DAPI in blue.
(E, F) Co-localization of reactive astrocytes and activated microglia with amyloid deposits in the neocortex as revealed by an immunostaining
against amyloid-� peptide (in red) and either GFAP (E) or Iba1 (F) (in green). Scale bar = 100 �m. Localization of the volume of interest for
proton MR spectroscopy is shown in (G).

http://www.mrui.uab.es/mrui
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Unpaired two-tailed Student’s t-test was used to
compare metabolite concentrations in the transgenic
and wild-type mice. The error bars represent standard
deviations.

Brain processing and histology

Animals were anaesthetized by intraperitoneal
injection of pentobarbital (150 mg/kg) and tran-
scardially perfused with cold phosphate buffered
saline (PBS). Brains were extracted and fixed in
paraformaldehyde 4% in PBS overnight at 4◦C. Then
brains were cryo-protected in a solution of PBS
sucrose 25%(w/v), embedded in OCT compound,
snap-froze and stored at −80◦C until further process-
ing. Coronal sections were performed using a cryostat
(Leica CM3050S). Histology and immunohistochem-
istry were performed on 40-�m-thick free-floating
sections. Thioflavin S staining was performed accord-
ing to the following procedure: sections were washed
twice in PBS (2 × 5 min), then incubated under agi-
tation in a solution of Thioflavin S 0.01% (w/v)
in ethanol 50% (v/v) during 8 min, followed by
two baths in ethanol 50% (2 × 5 min) and PBS
(2 × 10 min). Immunohistochemistry was performed
with the following antibodies according to stan-
dard procedures: anti-amyloid-� (6E10, SIG-39320,
Covance, 1/500), anti-GFAP (Z0334, Dako, 1/500),
anti-Iba1 (019-19741, Wako, 1/100). Secondary anti-
bodies: anti-mouse Cye3 (715-165-151, Jackson
ImmunoResearch Laboratories, 1/1000) and anti-
rabbit Alexa 488 (A21026, Invitrogen, 1/600). Sections
were finally mounted in glycerol 80% and imaged with
an epifluorescent microscope (LEICA DM5500).

RESULTS

As described by Oakley et al. [52], the 5xFAD model
shows a very early onset of amyloid deposition (start-
ing at 2 months in the subiculum and in the frontal
cortex), a concomitant early inflammation and glio-
sis, and a synaptic loss as soon as 4 months of age.
In this regard, this model presents a neuropathology
similar to AD with the exception of the tau pathology,
although the latter has not been fully investigated in
this model [52, 62]. To determine if this model recapit-
ulates the MR spectroscopic features of AD, a cohort
of 5xFAD mice and wild-type littermates were stud-
ied at an advanced age between 8 and 10 months in a
VOI covering the vast majority of the dorsal hippocam-
pus (Fig. 1G). As shown in Fig. 1, numerous amyloid
deposits were observed in transgenic animals at this

age in the selected VOI (Fig. 1A, B). A strong astroglio-
sis was clearly observed in the same region (Fig. 1C,
D) as well as a mild microglial response associated
with amyloid deposits (Fig. 1E, F).

Figure 2 shows typical proton spectra measured
in the hippocampal region of 5xFAD and wild-type
mice. The high quality of spectra exhibiting excellent
resolution and signal-to-noise enabled quantification
of 18 metabolites. Comparison of the neurochemi-
cal profiles in dorsal hippocampus of the 5xFAD and
wild-type mice is shown in Fig. 3, absolute metabo-
lite concentrations and concentration ratios for most
important metabolites are summarized in Table 2. At
the age of 36 weeks, a statistically significant decrease
in NAA, Glu, and glucose and a significant increase
in the lactate concentration was found. At 40 and 44
weeks of age, changes typical for the human form of
the disease, i.e., a decrease in NAA (p < 0.004) and
an increase in myo-inositol (p < 0.007) were observed
(Fig. 3, Table 2). In addition, the GABA concentration

Fig. 2. Representative 1H spectra measured in the dorsal hippocam-
pus of a wild-type (A) and a 5xFAD mice (B).
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Fig. 3. Comparison of the neurochemical profile in dorsal hippocampus of the wild-type (WT) and 5xFAD mice at 36 (A), 40 (B), and 44 (C) weeks
of age. Mac = macromolecules, Ala = alanine, Asp = aspartate, GSH = glutathione, Gly = glycine, Lac = lactate, Tau = taurine, Asc = ascorbate,
Glc = glucose, NAAG = N-acetylaspartylglutamate, PE = phosphoethanolamine, tCho = total choline. Significantly different values are denoted
by *(p < 0.05) and **(p < 0.01).

was also significantly decreased (p < 0.015) in the AD
mice. The differences observed in the temporal part of
hippocampus were similar, with higher p-values due to
lower signal-to-noise ratio (data not shown).

In vivo 31P spectra (Fig. 4) were also measured at
36 weeks of age from the volume of interest shown
in Fig. 5. We observed a trend for an increase in the
PCr/�-ATP peak intensity ratio which however did not
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Table 2
Concentrations of selected metabolites obtained from 1H spectra, concentration ratios obtained from 31P spectra and forward rate constants of

the creatine kinase reaction in brain of wild-type (WT) and 5xFAD mice

Metabolite or metabolic ratio 1H spectroscopy, c (�mol/g)
36 weeks 40 weeks 44 weeks

WT 5xFAD WT 5xFAD WT 5xFAD

Creatine 5.0 ± 0.2 4.8 ± 0.3 4.8 ± 0.4 5.0 ± 0.3 4.5 ± 0.5 4.3 ± 0.4
Phosphocreatine 3.8 ± 0.6 3.6 ± 0.3 3.8 ± 0.3 3.9 ± 0.6 3.8 ± 0.5 4.2 ± 0.6
�-aminobutyrate 1.9 ± 0.3 1.6 ± 0.3 2.1 ± 0.4* 1.6 ± 0.3* 2.1 ± 0.3* 1.6 ± 0.3*
Glutamine 2.6 ± 0.3 2.8 ± 0.4 2.8 ± 0.2 3.4 ± 0.6 2.8 ± 0.3 3.1 ± 0.7
Glutamate 8.8 ± 0.6** 7.7 ± 0.6** 8.2 ± 0.5 8.0 ± 0.4 8.4 ± 0.6 8.2 ± 0.4
myo-inositol 6.6 ± 0.6 6.6 ± 0.2 6.2 ± 0.6** 7.2 ± 0.3** 6.2 ± 0.3** 7.0 ± 0.5**
N-acetylaspartate 8.2 ± 0.5** 7.4 ± 0.4** 8.1 ± 0.3* 7.4 ± 0.7* 8.3 ± 0.4** 7.4 ± 0.5**
Taurine 10.6 ± 0.6 10.2 ± 0.5 10.2 ± 0.9 10.7 ± 0.8 10.0 ± 0.6 10.5 ± 0.7
Phosphoethanolamine 1.2 ± 0.4 1.1 ± 0.4 1.1 ± 0.1 0.9 ± 0.5 0.7 ± 0.3 0.9 ± 0.2
Total choline 0.9 ± 0.2 0.8 ± 0.2 0.9 ± 0.2 0.9 ± 0.2 1.1 ± 0.2 0.9 ± 0.2

31P spectroscopy
36 weeks 72 weeks

WT 5xFAD WT 5xFAD
kPCr−→ATP (s−1) 0.45 ± 0.08 0.49 ± 0.06 0.49 ± 0.04 0.43 ± 0.06
Phosphocreatine/�-ATP 1.4 ± 0.3 1.6 ± 0.4 1.4 ± 0.1 1.5 ± 0.2
Phosphocreatine/Inorganic phosphate 2.2 ± 0.7 2.0 ± 0.6
Phosphomonoesters/�-ATP 1.3 ± 0.3 1.2 ± 0.4
Phosphodiesters/�-ATP 0.24 ± 0.09 0.18 ± 0.09

*Statistically significant p < 0.05.; **Statistically significant p < 0.01.

Fig. 4. 31P spectrum of brain of an 5xFAD mouse.

reach statistical significance (p = 0.14). There was also
a non-significant trend for a decrease in PDE/ATP
ratio (p = 0.13) in the transgenic mouse brain com-
pared to wild-type controls. No differences (p > 0.4)
in PCr/Pi and PME/�-ATP were observed between
transgenic and wild-type mice (Fig. 6, Table 2). In
addition, the calculated values of the forward rate con-
stant of the creatine kinase reaction kfor did not show
any significant difference (p = 0.2). The measurement
of kfor and PCr/�-ATP was repeated in aged mice at

Fig. 5. Volume of interest selected for 31P spectroscopy by outer
volume saturation (OVS) and by one-dimensional ISIS localization
(1D ISIS).

72 weeks of age. The values were similar to those
obtained in younger animals and no significant dif-
ference between transgenic and wild-type mice was
detected (Fig. 6, Table 2). The intracellular pHi in brain
of the 36-week old transgenic and wild-type mice was
the same within experimental error, 7.03 ± 0.02 and
7.02 ± 0.03, respectively.

DISCUSSION

As it was demonstrated in several reports, trans-
genic mouse models of AD can reproduce some
neuropathological features of this disease. The typical
neurochemical profile of AD is demonstrated by a
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Fig. 6. Rate constant of the creatine kinase reaction kfor and metabolite peak intensity ratios in brain of young and aged wild-type and 5xFAD
mice.

decrease in NAA and an increase in mIns concen-
trations. The lower level of NAA corresponding to
reduction of neurons is consistently replicated in most
studied transgenic models (Table 1). In contrast, most
transgenic mouse models of AD do not show any mIns
changes. One of them, A�PP×PS1M146L, even shows a
decrease of mIns before the onset of the pathology (2.5
months) [35], although an increase is also reported at a
later stage (20 months) [36]. These data suggest that the
increase in mIns is only replicated when the pathology
is severe. In agreement, our study on the 5xFAD mouse
model, which presents a very fast development of the
amyloid pathology, displays neurochemical changes
typical for human AD patients much earlier, at about
9 months of age. Some authors suggest that mIns may
even be an earlier marker than NAA for AD and other
dementia [33, 63]. Thus, the early change in the mIns
level observed in the studied 5xFAD mice may indi-
cate closer similarity of this transgenic model with the
human disease. In this regard, the A�PP×PS1�E9 (line
85) mice measured by Chen et al. [40] might repre-
sent even a better model because it shows an increase
in mIns earlier, at 3 months of age. However, since
this increase in mIns appears before the onset of amy-
loid deposition in this model, it is unclear whether this
phenomenon results from the pathology itself or from
subtle effects of the transgenes during embryogene-
sis. Further studies at earlier time points will allow
clarification of this point.

The decrease in the concentration of some neuro-
transmitters can also be related to neuronal death. We
observed a significant decrease in GABA at 40 and
44 weeks of age and of Glu in the 36-week old AD
mice relative to the wild-type ones. The GABA lev-
els in brain of AD patients have not yet been reported
due to difficulties in the detection of GABA peaks.
However, improved spectral resolution and increased

signal-to-noise of high-field human scanners would
allow for quantification of metabolites such as GABA,
Glu, and Gln, which may provide additional diagnostic
information for AD.

The increase of lactate and decrease of glucose con-
centration in the 5xFAD mice at 36 weeks of age may
be related to changes in animal physiology caused by
anesthesia. Since no artificial ventilation was used and
plasma glucose levels were not monitored during the
experiments, these changes should be interpreted with
care. In accordance with the A�PP/PS1 mice [36] but
in contrast with the Tg2576 [33], no difference in the
taurine concentration was found in the 5xFAD mice.

There is growing evidence that mitochondrial dys-
function associated with chronic oxidative stress can be
a prominent and early event in AD and might explain
selective degeneration of particular neuronal popula-
tions [64]. 31P spectroscopy confirmed some findings
of 1H MRS experiments. Assuming constant concen-
tration of ATP, the PCr level was unchanged in the
5xFAD mice, which is in accordance with observations
in 1H spectra (Fig. 3). The stable concentrations of PCr
in the 5xFAD mice may indicate the absence of chronic
hypoxia or ischemia in the brain tissue. The same
conclusion can be drawn from the unchanged phos-
phorylation index PCr/Pi and pHi. The peaks of PME
are mainly formed by phosphoethanolamine, which is
also detected in 1H spectra, and phosphorylcholine,
which contributes to the 1H total choline signal (Fig. 3).
The PDE signal is mainly formed by glycerophospho-
rylcholine, which also contributes to the total choline
peak in 1H spectra. None of these peaks changed sig-
nificantly in the 5xFAD mice. In addition, we did not
observe any decrease in the rate constant of the creatine
kinase reaction kfor even in elderly 5xFAD mice. These
results suggest that energy supplies do not appear to
be primarily affected in the brain of the 5xFAD mice,
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whereas energy consumption might be depressed. This
conclusion is supported by a previous finding that the
creatine kinase rate constant decreases under chronic
brain ischemia [65]. Further studies are needed to
explore the role of impaired energy metabolism in the
onset on AD pathogenesis and progression in humans
as well as in transgenic AD models.
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[54] Mlynárik V, Gambarota G, Frenkel H, Gruetter R (2006)
Localized short-echo-time proton MR spectroscopy with
full signal-intensity acquisition. Magn Reson Med 56,
965-970.

[55] Tkáč I, Starčuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR
spectroscopy of rat brain at 1ms echo time. Magn Reson Med
41, 649-656.

[56] Provencher SW (1993) Estimation of metabolite concentra-
tions from localized in vivo proton NMR spectra. Magn Reson
Med 30, 672-679.
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Belan V (1998) Creatine kinase reaction rates in rat brain
during chronic ischemia. Magn Reson Mater Phys 7, 162-165.

[66] Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe
KH, Younkin SG (2001) Age-dependent changes in brain,
CSF, and plasma amyloid � protein in the Tg2576 transgenic
mouse model of Alzheimer’s disease. J Neurosci 21, 372-381.

[67] Sasaki A, Shoji M, Harigaya Y, Kawarabayashi T, Ikeda M,
Naito M, Matsubara E, Abe K, Nakazato Y (2002) Amyloid
cored plaques in Tg2576 transgenic mice are characterized
by giant plaques, slightly activated microglia, and the lack of
paired helical filament-typed, dystrophic neurites. Virchows
Arch 441, 358-367.

[68] Gordon MN, Holcomb LA, Jantzen PT, DiCarlo G, Wilcock
D, Boyett KW, Connor K, Melachrino J, O’Callaghan JP,
Morgan D (2002) Time course of the development of
Alzheimer-like pathology in the doubly transgenic PS1+APP
mouse. Exp Neurol 173, 183-195.

View publication statsView publication stats

https://www.researchgate.net/publication/221982785

