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SynopsisSynopsis
We applied an attention-based convolutional neural network to select discriminating diffusion measures derived fromWe applied an attention-based convolutional neural network to select discriminating diffusion measures derived from
mathematical models of mathematical models of multi-shell diffusion data in the classification of multiple sclerosis lesions. Further, wemulti-shell diffusion data in the classification of multiple sclerosis lesions. Further, we
correlated the selected measures or their combinations with the Expanded Disability Status Scale (EDSS) and the serumcorrelated the selected measures or their combinations with the Expanded Disability Status Scale (EDSS) and the serum
level of neurofilament light chain (sNfL). Our results show that the combinations have stronger correlations with EDSSlevel of neurofilament light chain (sNfL). Our results show that the combinations have stronger correlations with EDSS
and sNfL than the individual measures. The proposed method might be useful for selecting the microstructuraland sNfL than the individual measures. The proposed method might be useful for selecting the microstructural
measures most discriminative of focal tissue damage and identifying the combination most related to clinical disabilitymeasures most discriminative of focal tissue damage and identifying the combination most related to clinical disability
and neuroaxonal damage.and neuroaxonal damage.

IntroductionIntroduction
Multi-shell diffusion-weighted imaging (mDWI) may probe microstructural tissue damage and repair in multiple sclerosis (MS) patients .
From mDWI, biophysical microstructure models can be fitted to measure different water compartments within the brain tissue. However,
different models measure the same compartment differently due to their different biophysical assumptions. Therefore, selecting the most
discriminating quantitative diffusion measures (qDMs) for a given neurological disease remains challenging. In our previous work , we
developed and validated an attention-based convolutional neural network – GAMER-MRI – to rank the importance of the input
quantitative MRI contrasts using attention weights (AWs) in the classification of MS lesions. Here, we further developed the method to
select discriminating inter-correlated qDMs in the classification of MS lesions and perilesional tissue (PeriT). Furthermore, we explored the
relationship between the selected qDM, or their combinations, with the Expanded Disability Status Scale (EDSS) and the neurofilament
light chain in the serum (sNfL), which are respectively (i) a clinical measure of disability in MS patients and (ii) a biological measure of
neuroaxonal damage .

MethodsMethods
One-hundred-and-twenty-three MS patients (84 relapsing-remitting and 39 progressive, 71 females, age range=44.7±14.0, median
EDSS=2.5, EDSS range 0.0-8.0) underwent MRI on a 3T whole-body MR system (Siemens MAGNETOM Prisma). The protocol included:
1mm  isotropic 3D FLAIR and 1.8mm  isotropic mDWI (TR/TE:4500/75ms) with b-values 0/700/1000/2000/3000s/mm  and 137 directions
split among them. Twelve qDMs for the isotropic and intra-axonal compartments were reconstructed from seven models, including Ball
and Stick , NODDI , SMT-NODDI , Microstructure Bayesian approach (MB) , MCMDI , NODDIDA , DIAMOND  and microstructure
fingerprinting . The qDMs were masked by the brain mask and subject-wise normalized. Among 123 patients, 84 patients were used in a
5-fold cross-validation. The other 39 patients were randomly selected into a pure test dataset. White matter lesions (WMLs) were
automatically segmented14 and manually corrected on FLAIR. The PeriT was defined as WM tissue locating within a 3-voxel region around
the lesions. In the end, 1,402 WML patches and 1,665 PeriT patches were in the test dataset, and 4,409 WML patches and 5,289 PeriT
patches were in the cross-validation dataset. 
GAMER-MRI consisted of feature extraction, gated attention mechanism (GAM)  and classification  (Fig. 2). The hyperparameters included
the number of the convolutional filters, of neurons for the hidden feature and of neurons in the layers in the GAM. They were 16, 16 and
8, respectively. The weighted sampler and the cross-entropy loss function were used. The batch size was 256. The evaluation metric was
the area under the receiver operating characteristic curve (AUC). To avoid overfitting, data augmentation, the learning-rate-reduce-on-
plateau scheduler and AdamW  (a regularized optimizer) were used. Intrinsic strong correlation between the qDMs can lead to instability
of the obtained AWs and the ranked order. Therefore, to avoid determination solely based on the AWs, the selection of discriminating
qDMs was an iterative process. It started from the qDM whose AW was dominant in the validation datasets in all the cross-validation folds.
If no qDM was selected, the qDMs whose AWs were ranked 1st or 2nd in all the folds were selected. The iterative selection stopped when
the sum of their AWs was over 0.5, which meant that the selected measures were more important than 50% of the input qDMs. 
To assess which selected subject-wise normalized qDMs, or their combination, was best correlated with patients’ EDSS as well as sNfL in
the test dataset, we first averaged the qDMs within each lesion and then over lesions within each patient. In 31/39 patients of the test
dataset, we quantified sNfL. Then, we performed Spearman’s correlation with two-sided 20,000 permutation tests. The Benjamin-
Hochberg procedure  was performed to control the false discovery rate (FDR) with the threshold 0.05. The flowchart is shown in Fig. 1.

Results and DiscussionResults and Discussion
In Table 1, we report the average performance on the (i) validation dataset over 5-fold cross-validation and (ii) on the independent test
dataset. The evaluation metrics indicated that GAMER-MRI learned pivotal information for the target classification. As expected, because
of the highly correlated nature of the studied diffusion-based measures, the difference among the obtained AWs was small and their
ranking was fluctuating. This was alleviated by the proposed selection process. The qDMs selected by using the validation datasets were
the neurite density index (NDI) from NODDI, the intra-axonal and isotropic compartment from MB (Intra-MB and Iso-MB) and the intra-
axonal compartment from SMT-NODDI (Inra-SMT). Their average AWs of the corrected predicted samples are also reported in Table 1. 
The correlation coefficients (ρ) and the corresponding p-values of EDSS and the selected normalized qDM, their statistically significant
combinations and conventional lesion load are in Table 2. The correlation with sNfL is in Table 3. The sum of measures quantifying intra-
axonal and isotropic diffusion was best correlated with disability, even stronger than those qDMs alone or even conventional MRI lesion
load.

ConclusionsConclusions
In summary, our work showed that the proposed attention-based neural network and the selection process can select important qDMs,
despite they being highly inter-correlated. Those measures can potentially be combined to enhance the correlation with the clinical
measures. Future work will be required to directly find the best combinations without using a statistical test and to better interpret their
pathological meaning.
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Fig. 1: Flowchart for using GAMER-MRI to select
the most discriminating subject-wise normalized

diffusion measures and correlating the
combinations of selected diffusion measures
with the Expanded Disability Status Scale and
the serum level of neurofilament light chain.

Fig. 2: GAMER-MRI. (A) The neural network. Conv
is a convolutional block consisting of a 3x3x3

convolutional layer, exponential leaky units and
batch normalization. FC is a fully connected

layer. Attention weights are obtained from the
softmax function after the attention blocks. Each

diffusion measure is encoded parallelly before
the softmax function. The hidden features of

diffusion measures are linearly combined with
the attention weights and input to the classifier.

(B) Attention block. ⊙ represents an element-
wise multiplication.

Table 1: Performance of the patch-based
network on MS lesions and the selected

diffusion measures on 5-fold cross-validation
(first row, average mean and standard deviation
are reported) and pure testing set (second row).

Table 2: Spearman’s correlation of selected
normalized diffusion measures, or their

combinations and EDSS. The significance is
controlled by FDR with a threshold of 0.05 and

indicated by *. Only the combinations of
significance are reported. NDI is Neurite Density

Index. Intra-SMT is the measure for the intra-
axonal compartment from SMT-NODDI. Intra-
MB and Iso-MB are the measures for the intra-
axonal and isotropic compartments from the

Microstructural Bayesian approach.

Table 3: Spearman’s correlation of selected
normalized diffusion measures, or their

combinations and sNfL. The significance is
controlled by FDR with a threshold of 0.05 and

indicated by *. Only the combinations of
significance are reported. NDI is Neurite Density

Index. Intra-SMT is the measure for the intra-
axonal compartment from SMT-NODDI. Intra-
MB and Iso-MB are the measures for the intra-
axonal and isotropic compartments from the

Microstructural Bayesian approach.
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