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e Department of Anaesthesia and Critical Care, Groupe Hospitalier Sud, CHU Bordeaux, Pessac, France 
f Cardiac Intensive Care Unit, Groupe Hospitalier Sud, CHU de Bordeaux, Pessac, France 
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A B S T R A C T   

Purpose: High-resolution free-breathing late gadolinium enhancement (HR-LGE) was shown valuable for the 
diagnosis of acute coronary syndromes with non-obstructed coronary arteries. The method may be useful to 
detect COVID-related myocardial injuries but is hampered by prolonged acquisition times. We aimed to intro-
duce an accelerated HR-LGE technique for the diagnosis of COVID-related myocardial injuries. 
Method: An undersampled navigator-gated HR-LGE (acquired resolution of 1.25 mm3) sequence combined with 
advanced patch-based low-rank reconstruction was developed and validated in a phantom and in 23 patients 
with structural heart disease (test cohort; 15 men; 55 ± 16 years). Twenty patients with laboratory-confirmed 
COVID-19 infection associated with troponin rise (COVID cohort; 15 men; 46 ± 24 years) prospectively un-
derwent cardiovascular magnetic resonance (CMR) with the proposed sequence in our center. Image sharpness, 
quality, signal intensity differences and diagnostic value of free-breathing HR-LGE were compared against 
conventional breath-held low-resolution LGE (LR-LGE, voxel size 1.8x1.4x6mm). 
Results: Structures sharpness in the phantom showed no differences with the fully sampled image up to an 
undersampling factor of x3.8 (P > 0.5). In patients (N = 43), this acceleration allowed for acquisition times of 
7min21s ± 1min12s at 1.25 mm3 resolution. Compared with LR-LGE, HR-LGE showed higher image quality (P =
0.03) and comparable signal intensity differences (P > 0.5). In patients with structural heart disease, all LGE- 
positive segments on LR-LGE were also detected on HR-LGE (80/391) with 21 additional enhanced segments 
visible only on HR-LGE (101/391, P < 0.001). In 4 patients with COVID-19 history, HR-LGE was definitely 
positive while LR-LGE was either definitely negative (1 microinfarction and 1 myocarditis) or inconclusive (2 
myocarditis). 

Abbreviations: HR-LGE, High-resolution late gadolinium enhancement; CMR, Cardiovascular magnetic resonance; LR-LGE, Low-resolution late gadolinium 
enhancement; LGE, Late gadolinium enhancement; MINOCA, Myocardial infarction with non-obstructed coronary arteries; 3D, Three-dimensional; PCR, Polymerase 
chain reaction; ECG, Electrocardiogram; LV, Left ventricle; TI, Inversion time; RV, Right ventricular; EF, Ejection fraction; TTE, Transthoracic echocardiography; ROI, 
Regions-of-interest; BMI, Body mass index. 
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Conclusions: Undersampled free-breathing isotropic HR-LGE can detect additional areas of late enhancement as 
compared to conventional breath-held LR-LGE. In patients with history of COVID-19 infection associated with 
troponin rise, the method allows for detailed characterization of myocardial injuries in acceptable scan times and 
without the need for repeated breath holds.   

1. Introduction 

One major concern related to the recent COVID-19 pandemic lies in 
the impact of the infection on the myocardium [1]. Several large series 
have reported high rates of myocardial injuries in hospitalized patients 
(20–36%), with cardiac involvement being a major factor of adverse 
outcome [2–4]. Multiple mechanisms can lead to cardiac damage, 
including type 1 myocardial infarction, type 2 myocardial infarction, 
stress cardiomyopathy, microvascular ischemia, and myocarditis [5]. 
Cardiovascular magnetic resonance (CMR) plays a pivotal role in iden-
tifying the underlying mechanism in myocardial infarction with non- 
obstructed coronary arteries (MINOCA) [6], and was thus proposed to 
detect and characterize COVID-related myocardial injuries. A recent 
study reported than 49% of patients with history of COVID-19 and 
troponin rise had positive late gadolinium enhancement (LGE) on CMR 
[7,8]. The burden that these scars may weigh on the infected population 
over the long term remains uncertain. Considering the prognostic role of 
LGE in structural heart diseases and acute coronary syndromes, LGE 
CMR may play an important role to stratify the risk of future adverse 
outcomes after COVID-19 infection. 

All prior CMR studies in COVID patients have employed conven-
tional LGE techniques acquired during breath holds. While providing 
good contrast between the injured and healthy myocardial tissue, these 
techniques have inherently low spatial resolution, which can affect their 
ability to resolve small myocardial defects (14). In addition, conven-
tional LGE techniques require repeated breath-holds, which can be 
difficult to perform in COVID-19 patients. High resolution three- 
dimensional (3D) LGE methods acquired during free-breathing were 
shown valuable to improve the sensitivity of CMR in the context of 
MINOCA and to enhance the diagnostic value in atrial fibrosis assess-
ment as well as for the detection of small myocardial scars in ischemic 
and non-ischemic cardiomyopathies [9–11]. These methods may be 
useful to detect subtle COVID-related myocardial injuries, particularly 
in patients with persistent dyspnoea, but remain restrained by quite 
prolonged acquisition times (~8–12 min for anisotropic resolution [9] 
and ~ 16 min at 1.4 mm3 isotropic resolution [12,13]). The increasing 
need for CMR in the context of COVID imposes an optimization of 
clinical workflows, and accelerated techniques are thus critically 
needed. 

The aim of the present study was to introduce an accelerated free- 
breathing high-resolution 3D LGE technique to optimize the detection 
and characterization of COVID-related myocardial injuries. 

2. Material and methods 

2.1. Study design and patients 

The study design consisted of 3 steps. Firstly, the accelerated high 
resolution free breathing 3D LGE sequence was tested and optimized in a 
resolution phantom. Secondly, it was validated in a series of patients 
with known structural heart disease (test group; N = 23) to document its 
incremental value over a conventional LGE method in detecting 
myocardial injuries. These patients were imaged between June 2020 
and September 2020 and were not consecutive as the inclusion depen-
ded on the clinical workflow. The inclusion criteria were an indication 
for CMR as part of standard care, and a history of structural heart disease 
of ischemic or non-ischemic origin. Exclusion criteria were any contra-
indications to CMR. Thirdly, the method was applied in patients with 
history of COVID-19 infection associated with troponin rise (COVID 

group; N = 20), to assess the spectrum of COVID-related myocardial 
injuries at high spatial resolution. These were consecutive patients 
prospectively included from May 2020 to November 2020. Inclusion 
criteria were laboratory confirmed COVID-19 infection associated with 
troponin rise. Patients requiring mechanical ventilation and those with 
persistent positive polymerase chain reaction (PCR) testing were not 
considered for inclusion. The study was approved by an ethics com-
mittee, and all patients provided informed consent. 

2.2. Whole-heart high-resolution diaphragmatic navigated undersampled 
3D LGE 

HR-LGE was performed using a free-breathing, three-dimensional, 
inversion-recovery-prepared, electrocardiogram (ECG)-gated, 
respiration-navigated gradient-echo pulse sequence (Fig. 1). A SPIR 
(spectral presaturation with inversion recovery) fat saturation pulse was 
used to minimize fat-related artefacts. The sequence was accelerated 
using a 3D variable density Cartesian trajectory [14,15] that samples the 
ky-kz phase-encoding plane following approximate spiral interleaves on 
the Cartesian grid with variable density along each spiral arm (i.e., the k- 
space center being fully sampled with exponentially increased under-
sampling towards the periphery). This pseudo-random sampling scheme 
results in noise-like artefacts in the image domain, which are desired 
from a reconstruction and compressed-sensing point of view [16]. A 
spectrally selective crossed-pair navigator preceded each spiral-like 
interleave to dynamically track the respiratory motion of the heart. An 
acceptance window of ± 3 mm was placed in end-expiration. 

Imaging parameters are provided in Table 1. As opposed to our 
previous HR-LGE sequence [9], where 3D data was acquired with mild 
undersampling factors (GRAPPA x2) and anisotropic resolution (1.25 ×
1.25 × 2.5 mm), our proposed isotropic (1.25 mm3) HR-LGE sequence 
exploits higher undersampling factors (3.8-fold) to achieve clinically 
feasible (sub-10 min) acquisition times. With such undersampling fac-
tor, the image reconstruction pipeline needs to be adapted to compen-
sate for the increased noise due to the ill-posed nature of the 
reconstruction problem. A patch-based low-rank reconstruction was 
used to recover high quality LGE images [14]. This reconstruction 
framework assumes that the 3D HR-LGE data contains a rich amount of 
redundancy on a local (i.e., within a small patch) and non-local (i.e., 
between similar patches within a spatial neighbourhood) scales. This 
redundancy information can be exploited through patch-based matrix 
representation and singular value truncation to regularize the overall 
reconstruction problem. The different steps of the reconstruction algo-
rithm are detailed in [14,17]. To assess the full clinical performance of 
the proposed HR-LGE sequence, the patch-based reconstruction was 
written in C++ and integrated into the scanner reconstruction software 
(Image Calculation Environment, Siemens Healthcare, Erlangen, 
Germany). 

2.3. Phantom study 

A multi-purpose resolution phantom (Siemens Healthcare, Erlangen, 
Germany) was imaged with the proposed HR-LGE framework to eval-
uate the impact of undersampling on image sharpness and resolution. 
The phantom contains 55 holes with varying diameters in a range of 
[1.1; 11.5 mm] (Fig. 2). Data was acquired assuming 100% respiratory 
scan efficiency at a simulated heart rate of 70 beat-per-minute. Different 
undersampling factors were tested ([1, 2.5, 3.8, 5.2]). The relevant 
imaging parameters are reported in Table 1. The nominal field-of-view 
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was chosen to be 23 cm3 for a spatial resolution of 1.25 mm3. Sharpness 
was measured for each undersampled image at holes’ edges as 1

d (in 
mm− 1) with d being the distance transitioning from 80% to 20% of the 
intensity profile (given by the minimum and maximum intensities of the 
profile). Sharpness values were averaged over different positions on the 
phantom. 

2.4. Clinical CMR studies 

CMR was performed on a 1.5 T clinical scanner (MAGNETOM Aera, 
Siemens Healthcare, Erlangen, Germany) with a dedicated 32-channel 
spine coil and an 18-channel body coil. The CMR protocol (Supple-
mentary Fig. 1) comprised Cine SSFP imaging in 2-chamber, 3-chamber, 
4-chamber views, and in a stack of contiguous short axis slices encom-
passing the ventricles. T2, T1 and ECV mapping were also performed in a 
stack of contiguous short axis slices covering the whole left ventricle 
(LV). 

LR-LGE (reconstructed spatial resolution of 1.5 × 1.5 × 4.0 mm) 
imaging was performed 10 min after the administration of 0.2 mmol/kg 
gadoteric acid using a breath-held and inversion recovery-prepared 
turbo FLASH sequence in 3 stacks of contiguous slices encompassing 
the ventricles in short-axis, 2-chamber, 3-chamber and 4-chamber ori-
entations. HR-LGE imaging was initiated 15–20 min post contrast at 
higher isotropic spatial resolution (reconstructed voxel size 0.6 mm3), as 
detailed above. For HR-LGE imaging, an additional inversion time (TI) 
scout scan was performed after conventional LR-LGE imaging. Acquisi-
tion times and scan efficiency (i.e., percentage of data within the res-
piratory gating window) for HR-LGE imaging were recorded. 

2.5. CMR analysis 

LV and right ventricular (RV) volumes, ejection fraction (EF) and 
wall motion abnormalities were analysed by experienced observers (S.S. 
and H.C.) using a dedicated software (CVI42, Circle Cardiovascular 
Imaging, Calgary, Canada). The distribution of LGE was categorized as 
subendocardial, subepicardial, and/or midwall. LGE was considered 
transmural if involving the entire myocardial thickness on at least one 
location. The criteria to diagnose myocardial infarction were the pres-
ence of subendocardial or transmural LGE [18]. The criteria to diagnose 
myocarditis were the presence of definite midwall and/or subepicardial 
LGE in the absence of subendocardial LGE [19]. Arrhythmogenic right 
ventricular cardiomyopathy was diagnosed according to the Task Force 
Criteria [20]. The criteria to diagnose takotsubo cardiomyopathy were 
either a wall motion abnormality involving the entire apical or basal 
levels in the absence of myocardial LGE, or a similar wall motion ab-
normality documented on acute transthoracic echocardiography (TTE) 
in a patient with normal wall motion and negative LGE on CMR [18]. 

CMR results were interpreted in combination with the clinical his-
tory, and after reviewing the results from acute ECG, TTE and biological 

tests. CMR was categorized as conclusive when patients fulfilled the 
criteria for a definite diagnosis, and as non-conclusive otherwise. 

2.6. LR-LGE versus HR-LGE analysis 

LGE images were analysed by 2 readers in consensus (S.S. and A.B., 
two and seven years’ experience in CMR, respectively), with LR-LGE and 
HR-LGE being reviewed separately 2 months apart, in order to ensure 
independent analysis of the 2 datasets. Images were reviewed on a 
clinical PACS-system (Carestream Health, Rochester, New York, USA), 
where image magnification and windowing could be optimized. Con-
ventional LR-LGE images were reviewed in the four acquired orienta-
tions. Owing to its isotropic resolution, the HR-LGE volume could be 
reviewed in multiplanar reformations of any desired orientation, 
depending on the LGE pattern and distribution. 

The overall quality of all LGE images acquired in the test and COVID- 
19 cohorts was graded using a four-point ordinal system (1: poor quality 
with large artefacts, 2: fair quality with moderate artefacts, 3: good 
quality with small artifacts, 4: excellent quality with no artifacts). For 
scores lower than 4, impaired image quality was classified as a) 
incomplete myocardial nulling due to sub-optimal TI, b) motion arte-
facts, c) noise artefacts, or d) folding artefacts. For each dataset, the 
presence of LGE was assessed using a three-point ordinal scale (0: 
definitely absent, 1: definitely present, 2: inconclusive) in each of the 17- 
segment of the American Heart Association model [21]. Therefore, a 
total of 1462 myocardial segments were analysed in patients. 

Regions-of-interest (ROI) placed in the hyperenhancement area, the 

Fig. 1. Schematic overview of investigated free- 
breathing motion-corrected three-dimensional 
(3D) whole-heart high-resolution myocardial 
LGE framework (HR-LGE). A non-selective 
inversion recovery (IR) pulse is applied imme-
diately after electrocardiogram (ECG) R wave. 
Image acquisition is gated to account for the 
diaphragmatic respiratory displacement of the 
heart. A variable-density Cartesian under-
sampling is used to achieve clinically feasible 
scanning times (undersampling factor of x3.8). 
The HR-LGE volume is reconstructed with an 
undersampled patch-based low-rank recon-
struction exploiting local patch similarities in 
the 3D volume. Abbreviations: FAT SAT = fat 
saturation, kx = readout, ky = phase encoding, 
kz = slice encoding, TI = inversion time.   

Table 1 
Acquisition parameters for conventional breath-hold low-resolution LGE (LR- 
LGE) and proposed free-breathing high-resolution LGE (HR-LGE).   

LR-LGE HR-LGE 

Repetition time, ms 3.9 5.2 
Echo time, ms 1.7 2.5 
Flip angle, degrees 10 19 
Field of view, mm 360 × 290 × 101 360 × 360 × 120 
Acquired resolution, mm 2.0 × 1.5 × 7.4 1.25 × 1.25 × 1.25 
Reconstructed resolution, mm 1.5 × 1.5 × 4.0 0.63 × 0.63 × 0.63 
Number of slices, range 11–16 96–160 
Phase oversampling, % 15 20 
Slice oversampling, % 0 16.7 
Asymmetric echo Yes Yes 
Acquisition window, ms 236 156 
Average number of k-space lines per 

heartbeat 
60 30 

Inversion time, ms 210–300 270–350 
Trajectory & Acceleration Cartesian 

GRAPPA x2 
Cartesian variable 
density x3.8 

Trigger pulse, RR interval 1 1 
Bandwidth, Hz/pixel 360 255 
Breath-hold Yes No  
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remote myocardium, the blood pool and in a background region were 
extracted for each patient. Injured areas were defined as regions with 
LGE (based on the two standard deviations segmentation method [22]), 
while remote areas were defined as regions with no LGE. Mean signal 
intensity differences and signal ratios were determined by subtracting 
(respectively dividing) the signal-to-noise ratios (i.e., mean signal level 
divided by the noise level) of two corresponding tissues. 

2.7. Statistical analysis 

Results are presented using conventional descriptive statistics. The 
Shapiro-Wilk test was used to assess for normality. Continuous data are 
expressed as mean ±standard deviation when following a normal dis-
tribution, and as median [interquartile range Q1-Q3] otherwise. Cate-
gorical data are expressed as fraction (percentage). Image quality scores 
of the LR-LGE and HR-LGE datasets were compared using Mann- 
Whitney U tests. Differences in the detection of LGE segments between 
the two sequences were tested using the McNemar test. The influence of 
body mass index (BMI) and heart rate on image quality, presence of 
artefacts and presence of LGE was assessed using regression analysis. 
Continuous variables were compared using independent-sample para-
metric (unpaired Student’s t-test). Statistical tests were 2-tailed. A P 
value < 0.05 was considered to indicate statistical significance. Statis-
tical analysis was performed using IBM SPSS Statistics (version 26.0). 

3. Results 

3.1. Phantom study 

The total scan times, assuming 100% respiratory gating efficiency, 
were 15 min 10 sec (x1), 6 min 4 sec (x2.5), 4 min 3 sec (x3.8) and 3 min 
3 sec (x5.2) with 1.25 mm3 isotropic resolution. Reconstructed images 
using the proposed patch-based reconstruction are shown in Fig. 2 in 
comparison with the reference fully sampled image. Aliasing artifacts 
can be observed for high undersampling factors (x5) whereas high image 
quality can be appreciated for undersampling factors up to x3.8, with 
clear depiction of the phantom structures. Structure sharpness was 
preserved with the proposed approach (Supplementary Fig. 2) showing 
no statistical differences with the reference fully sampled image (P >

0.5), as opposed to the standard zero-filling reconstruction (P < 0.01). 

3.2. Image characteristics in patients 

The mean acquisition time for HR-LGE was 7 min 21 sec ± 1 min 12 
sec [min: 3 min 58 sec, max: 9 min 0 sec], with a mean scan efficiency of 
42 ± 10 %. The typical image reconstruction time was 1 min. 

The overall image quality was significantly higher on HR-LGE 
compared with LR-LGE (3.65 ± 0.59 vs. 3.09 ± 0.85, P = 0.03). It was 
graded as excellent (score 4) in 26/41 (63 %) in HR-LGE and 17/41 
(41%) in LR-LGE. Reasons for lower image quality were residual motion 
artefacts (17 vs. 4 patients), sub-optimal TI (7 vs. 6 patients), folding (7 
vs. 1 patients), missing slices (3 vs. 0 patients) and residual noise (0 vs. 5 
patients) for LR-LGE and HR-LGE, respectively. Nondiagnostic image 
quality (score 1) was not found in either dataset. On both LR- and HR- 
LGE, heart rate and BMI did not significantly relate to the image qual-
ity, the presence of artefacts, or the presence of LGE (Supplementary 
Fig. 3). 

In terms of contrast, mean signal intensity differences between scar 
and blood pool and between scar and remote myocardium did not 
significantly differ between LR and HR-LGE images (P = 0.51 and P =
0.88, respectively). Corresponding signal ratios for LR-LGE relative to 
HR-LGE were 1.13 for scar/blood pool, 1.01 for scar/remote myocar-
dium, and 1.61 for remote myocardium/blood. 

3.3. CMR findings in the test cohort 

Baseline characteristics of the test cohort (N = 23; 15 males; mean 
age 55 ± 16 years) are shown in Table 2. The final diagnosis was 
ischemic heart disease in 8 (35%) and non-ischemic heart disease in 15 
(65%), including 8 (35%) myocarditis, 3 (13%) hypertrophic cardio-
myopathy, 3 (13%) dilated cardiomyopathy, and 1 (4%) arrhythmo-
genic cardiomyopathy with LV involvement. A total of 391 segments 
were analysed in both datasets (LR-LGE and HR-LGE). Myocardial LGE 
was found in 23/23 patients (100%) among which 4 (17%) showed 
transmural patterns, 5 (22%) sub-endocardial, 13 (57%) mid-wall and 1 
(4%) sub-epicardial. All enhanced segments that were visible on LR-LGE 
were also detected on HR-LGE (80/391, 20%) with 21 additional 
enhanced segments visible only on HR-LGE (101/391, 26%, P < 0.001). 

Fig. 2. Patch-based low-rank reconstructions of the resolution phantom for different undersampling factors. Reconstructed images exhibit sharp edges with faithful 
preservation of small details for undersampling factors up to x3.8 (as shown on the cross-section profiles). 
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In 3 patients, LGE was categorized as definitely absent on LR-LGE while 
HR-LGE showed definite mid-wall LGE. In these 3 patients, myocardial 
LGE was localized in the basal anteroseptal segment, the medial infer-
oseptal segment and the basal inferolateral and medial inferolateral 
segments. In 3 other patients, LGE was categorized as inconclusive on 
LR-LGE, while HR-LGE showed definite LGE (1 mid-wall and 2 trans-
mural patterns). In these 3 patients, myocardial LGE was localized in the 
basal inferolateral and anteroseptal segments, apical lateral segment, 
and basal inferolateral, medial inferolateral and apical lateral segments. 
The benefit of 3D whole-heart isotropic resolution can be appreciated in 
Fig. 3. The spectrum of myocardial injuries found in the test cohort is 
illustrated in Fig. 4. 

3.4. Characteristics of the COVID-19 cohort 

The characteristics of the studied population (N = 20; 15 males; 
mean age 46 ± 24 years) in the acute phase of COVID-19 are shown in 
Table 3. Twenty patients were studied, including 2 with history of 
healed myocardial infarction and 18 with no history of cardiac disease. 
All patients had been hospitalized, including 11 in an intensive care unit, 
with 5 requiring mechanical ventilation. COVID-19 diagnosis was based 
on PCR tests in 16 and serology in 4. The median troponin peak was 305 
[Q1:83 - Q3:1134] ng/L. The acute clinical presentation included chest 
pain in only 7/20 patients. TTE was negative in 11/20. All patients 
showed either negative or non-specific findings on 12-lead ECG. CMR 
was performed 54 [32–64] days after the onset of symptoms. At the time 
of the CMR study, 8/20 patients were asymptomatic, while other pa-
tients showed a variety of persistent clinical symptoms. 

3.5. CMR findings in the COVID-19 cohort 

Cine imaging showed wall motion abnormalities in 4/20, LV dila-
tation in 3/20, LVEF impairment in 4/20, and LV thrombus in 1/20 
(confirmed on LGE imaging). Edema was found on T2 imaging in 10/20 
patients. In 2 patients, HR-LGE imaging could not be completed due to 
claustrophobia. In these, a definite diagnosis could still be retained 
based on LR-LGE only (1 takotsubo cardiomyopathy and 1 acute 
myocarditis). 

CMR results are listed in Table 4. Myocardial LGE was found on HR- 
LGE in 12/18 patients (67%), including 1 (6%) transmural, 3 (17%) sub- 
endocardial, 4 (22%) mid-wall and 4 (22%) sub-epicardial. All segments 
with positive LGE on LR-LGE images were also positive on HR-LGE (40/ 
306, 13%) with 8 additional enhanced segments visible only on HR-LGE 
(48/306, 16%, P < 0.01). In 2 (11%) patients, LGE was definitely absent 
on LR-LGE while HR-LGE showed definite LGE (one microinfarct and 
one sub-epicardial LGE). In 2 (11%) other patients, LGE analysis was 
inconclusive on LR-LGE, whereas HR-LGE showed definite LGE (1 
midwall and 1 subepicardial, Supplementary Fig. 4). 

Fig. 3. Comparisons of reformatted free-breathing 3D HR-LGE and breath-held 3D LR-LGE in three patients (test cohort) with ischemic and non-ischemic LGE 
patterns. Yellow arrows indicate LGE, red arrows indicate artifacts on LR-LGE. Patient 1: 33-year-old male patient with hypertrophic cardiomyopathy associated with 
sub-epicardial and midwall LGE. Patient 2: 56-year-old male patient with ischemic cardiomyopathy showing transmural LGE in the right coronary artery and mid-left 
anterior descending artery territories. Patient 3: 75-year-old male patient presenting with severe hypokinesia and transmural myocardial infarction in the right 
coronary artery territory. 

Table 2 
Baseline characteristics of the test cohort (N = 23).  

Patient characteristics  

Male gender, N (%) 15 (65) 
Age, years 55 ± 16 
Mean heart rate, beats/min 62 ± 9 
Mean body mass index, kg/m2 25 ± 4 
CMR diagnosis  
Ischemic cardiomyopathy, N (%) 8 (35) 
Non-ischemic cardiomyopathies, N (%) 15 (65) 
Dilated cardiomyopathy, N (%) 3 (13) 
Myocarditis, N (%) 8 (35) 
Hypertrophic cardiomyopathy, N (%) 3 (13) 
Arrhythmogenic right ventricular cardiomyopathy, N (%) 1 (4) 
Negative CMR, N (%) 0 (0) 
Cardiac function  
LVEF, %, mean ± SD 48.2 ± 16.9 
Reduced LVEF, N (%) 13 (57) 
LV EDV / BSA, mL/m2, mean ± SD 109.4 ± 34.6 
LV ESV / BSA, mL/m2, mean ± SD 58.2 ± 31.5 

Note: Data are expressed as mean ± standard deviation unless otherwise spec-
ified. Abbreviations: LVEF, left ventricular ejection fraction; EDV, end-diastolic 
volume; BSA, body surface area; ESV end-systolic volume; LGE late gadolinium 
enhancement. 
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The spectrum of myocardial injuries on LGE imaging is illustrated in 
Figs. 5 and 6. Overall, a definite diagnosis was obtained in 15/20 pa-
tients, including myocarditis in 9, multiple microinfarctions in 2, 
myocardial infarction in 2, takotsubo cardiomyopathy in 2. One addi-
tional patient showed signs of acute pericarditis on LGE and T2 imaging 
but with no signs of myocardial injury. The 4 remaining patients had 
normal findings on CMR, and no definite diagnosis could be retained. 
Edema was found on T2 imaging in 8/9 patients with a diagnosis of 
myocarditis, and in 2/2 patients with a diagnosis of microinfarction. In 
these 10 patients with edema, the median delay since the onset of 
symptoms was 28 [16 –33] days. The 2 patients diagnosed with takot-
subo showed typical wall motion abnormalities on TTE in the acute 
phase, and negative T2, LGE and cine imaging on the CMR study per-
formed 54 and 20 days after the onset of symptoms. The 4 patients with 
no definite diagnosis showed a troponin peak of 414 ± 660 ng/mL, 
normal TTE and ECG findings in the acute phase, and normal CMR re-
sults 40 ± 33 days after the onset of symptoms. 

4. Discussion 

In this study, we demonstrate the feasibility of an accelerated free- 
breathing high-resolution 3D whole-heart LGE technique for the detec-
tion of COVID-related myocardial injuries. The main findings of the 
present study are that undersampled free-breathing isotropic HR-LGE 
improves the detection of myocardial defects as compared to conven-
tional breath-held LR-LGE, and that the method allows for detailed 
characterization of COVID-related myocardial injuries in acceptable 
scan times. 

4.1. Accelerated HR-LGE imaging in the context of COVID 

The present study shows that undersampled (x3.8) free-breathing 
high-resolution isotropic LGE in concert with patch-based reconstruc-
tion enables the identification of more injured myocardial segments and 
improves diagnostic confidence as compared to conventional breath- 
held LGE methods. This improved sensitivity was equally observed in 
patients with structural heart diseases and in COVID patients. This is 
consistent with prior studies applying free-breathing LGE methods to the 
context of MINOCA [9] or to the etiological diagnosis of patients with 
ventricular arrhythmias [23]. 

Several recent studies have introduced isotropic HR-LGE techniques 
and their potential clinical utility in patients with repaired tetralogy of 
Fallot (resolution 1.3 mm3, acquisition time ~ 7 min, [24]) or 
myocardial infarction and referred for ventricular tachycardia ablation 
(resolution 1.4 mm3, acquisition time ~ 16 min, [12,13,25,26]) or 
cardiac resynchronization therapy [27]. 

In the present work, we thought to implement an LGE method spe-
cifically suited to the detection of COVID-related myocardial injuries. 
Because prior reports have shown that cardiac involvement in COVID 
patients is usually asymptomatic [7] and most often missed on TTE [28], 
we have anticipated that efficient scan times would be mandatory to 
allow for the screening of quite large populations on CMR. In addition, 
prior CMR studies in COVID patients showed that myocardial injuries 
are most often of small size [8,29,30], justifying efforts to improve the 
spatial resolution of LGE imaging. Last, the free-breathing approach 
further alleviated the need for repeated breath holds in COVID patients 
with impaired respiratory function. 

The undersampled free-breathing technique proposed here allows 
for LGE imaging with near-millimetric isotropic spatial resolution with 
an overall image quality that favourably compares to the conventional 
breath held LGE method. The choice of using patch-based low-rank 
reconstruction over other non-linear reconstruction tools such as com-
pressed sensing [11,31] was motivated by the fact that HR-LGE images 
contain a rich amount of similar information on a patch scale which can 
be efficiently exploited though patch-based low-rank reconstruction and 
consequently lead to better image quality, as previously demonstrated 
[14,32]. The x3.8 acceleration factor allows for scan times consistently 
below 10 min for HR-LGE, resulting in a complete CMR protocol dura-
tion below 40 min, which is in our opinion compatible with most clinical 
workflows, and acceptable even in frail COVID patients. 

4.2. Spectrum of HR-LGE findings in COVID-19 patients 

This study is the first to report on the use of HR-LGE CMR to diagnose 
the underlying cause of myocardial injury after COVID-19 infection. HR- 
LGE CMR appears to be extremely useful in this indication, identifying a 
cause in the vast majority of patients. In contrast, echocardiography and 
12-lead ECG are poorly sensitive and specific, and our results indicate 
that LR-LGE may also miss subtle defects. Although acute myocarditis is 
the most common diagnosis, ischemic injuries and takotsubo cardio-
myopathy can also be observed. These diagnoses are consistent with 
prior reports [8]. Both ischemic and inflammatory injuries may be 
associated with sub-acute myocardial edema persisting after one month, 
which is also consistent with prior studies [33]. 

Future research should aim at clarifying the pathophysiological 
mechanisms leading to each pattern of COVID-19-related myocardial 
injury, as well as their prognostic and therapeutic implications. One 
rather alarming aspect lies in the observation that most of the studied 
patients do not present with cardiac-specific clinical symptoms. These 
findings outline the need for systematic troponin tests during the acute 
phase of COVID-19 infection, and for a broader use of HR-LGE CMR in 
patients with history of COVID-19 infection. Indeed, silent scars may be 

Fig. 4. Comparisons of reformatted free- 
breathing 3D HR-LGE and breath-held 3D 
LR-LGE in four patients (test cohort) pre-
senting with various patterns of enhance-
ment. Yellow arrows indicate LGE. Patient 4: 
70-year-old man with hypertrophic cardio-
myopathy associated with focal fibrosis. Pa-
tient 5: 62-year-old woman with inferior and 
inferoseptal myocardial infarction. Patient 6: 
45-year-old man with arrhythmogenic right 
ventricular dysplasia, showing focal septal 
LGE. Patient 7: 48-year-old male patient with 
focal sub-endocardial LGE consistent with 
micro-infarction in the left anterior descend-
ing artery territory.   
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highly prevalent and largely under detected in the infected population, 
particularly considering that a vast majority of patients is managed 
outside of hospitals and without laboratory tests to detect potential 
myocardial injury. Silent myocardial scars are known to be associated 
with adverse outcomes, exposing to higher risks of ventricular 
arrhythmia and sudden cardiac death over the long term [34,35]. Thus, 
there is a critical and urgent need to assess the prevalence of silent scars 
in the population infected by COVID-19, in order to better appreciate the 
cardiac risk that the pandemic may weigh on the global population in 
the near future. In that prospect, the accelerated and high-resolution 

LGE technique proposed here may be key to optimize CMR sensitivity. 

4.3. Study limitations 

A limitation of the current study is the unpredictable scan time given 
by the diaphragmatic navigated technique, where only a fraction of the 
acquired data is accepted for reconstruction (42 ± 10 % in the present 
series). Future work should aim at integrating alternate methods to 
compensate for respiratory motion without impairing scan efficiency, 
such as image-based navigation [36] or self-navigation [37]. 

Unfortunately, there was no reference standard for the detection of 
LGE in this study due to the absence of systematic endomyocardial bi-
opsies to obtain diagnostic confirmation. Endomyocardial biopsy is not 
part of the routine diagnostic workup in our research centre. Instead, 
breath-held LR-LGE was used for comparison as this is the reference 
technique used in our center for assessment of LGE. 

One limitation of the study is that the order of the LR-LGE and HR- 
LGE acquisitions was not randomized, as we could not deviate from 
our standard clinical protocol in these patients. Even though the rela-
tionship between blood and normal myocardium remains in a dynamic 
equilibrium up to 25 min after contrast injection [38], one may expect 
an improved scar-to-blood contrast on HR-LGE images as this sequence 
was always performed after LR-LGE and 15–20 min post injection. 

Moreover, the prolonged acquisition for HR-LGE can be accompa-
nied by a linear decrease in contrast agent concentration in the blood 
which could hamper image contrast. Mechanisms based on a gradually 
increasing TI could be easily integrated into our framework to take into 
account this effect [39]. 

Finally, qualitative comparisons with fully sampled HR-LGE dataset 

Table 3 
Patient characteristics in the acute phase of COVID-19 infection (N = 20).  

Demographics  Transthoracic 
echocardiography  

Age, years 46 ± 24 Negative, N (%) 9 
(45) 

Male gender, N (%) 15 (75) LV wall motion 
abnormalities, N (%) 

3 
(15) 

Risk factors and history  LVEF impairment, N (%) 3 
(15) 

Obesity, N (%) 7 (35) RV dilatation or 
dysfunction, N (%) 

1 (5) 

Mean body mass index, 
kg/m2 

25 ± 7 12-lead electrocardiogram  

Smoking, N (%) 5 (25) Negative, N (%) 12 
(60) 

Hypertension, N (%) 7 (35) Atrial fibrillation, N (%) 1 (5) 
Diabetes, N (%) 2 (10) Non-specific T wave 

changes, N (%) 
5 
(25) 

Chronic heart disease, N 
(%) 

2 (10) Right bundle branch block, 
N (%) 

2 
(10) 

Acute clinical 
presentation  

Monomorphic PVCs, N (%) 2 
(10) 

Fever > 38 ◦C, N (%) 13 (65) Antiviral, N (%) 9 
(45) 

Arthromyalgia, N (%) 9 (45) Antibiotic, N (%) 13 
(65) 

Asthenia, N (%) 14 (70) Corticosteroids, N (%) 6 
(30) 

Anosmia or ageusia, N (%) 7 (35) Tocilizumab, N (%) 5 
(25) 

Chest pain, N (%) 7 (35) Hydroxychloroquine, N (%) 7 
(35) 

Dyspnea, N (%) 10 (50) Anticoagulation, N (%) 9 
(45) 

Coughing, N (%) 12 (60) Mechanical ventilation, N 
(%) 

5 
(25) 

Abdominal symptoms, N 
(%) 

7 (35) Acute complications  

Cephalalgia, N (%) 5 (25) ARDS, N (%) 5 
(25) 

COVID-19 diagnosis*  Ventricular arrhythmia, N 
(%) 

2 
(10) 

Chest CT suggestive of 
COVID-19, N (%) 

11/13 (85) Atrial arrhythmia, N (%) 2 
(10) 

Positive COVID-19 PCR 
test, N (%) 

16 (80) Pulmonary embolism, N (%) 3 
(15) 

Positive COVID-19 
serology, N (%) 

4 (20) Liver injury, N (%) 2 
(10) 

Laboratory findings  Renal failure, N (%) 3 
(15) 

C-reactive protein, mg/L, 
median [IQR] 

88 [59–175]   

Fibrinogen, g/L, mean ±
SD 

7.1 ± 2.3   

NT-proBNP, pg/mL, 
median [IQR] 

422 
[41–879]   

Troponin I, ng/mL, 
median [IQR] 

305 
[83–1134]    

* Results are expressed as a fraction of the total number of subjects undergoing 
each diagnostic test. ARDS: acute respiratory distress syndrome; CT: computed 
tomography; EF: ejection fraction; IQR: interquartile range Q1-Q3; LV: left 
ventricle; PVCs: premature ventricular complexes; RV: right ventricle; SD: 
standard deviation. 

Table 4 
CMR findings in the COVID-19 cohort (N = 20).  

Timing of the CMR study  Tissue characterization*  

Delay from onset to CMR, 
days, median [IQR] 

30 
[15–58] 

LV native T1, ms, mean ±
SD 

1028 ±
59 

Clinical symptoms at the 
time of CMR  

LV ECV, %, mean ± SD 24.6 ±
2.5 

Fever > 38 ◦C, N (%) 1 (5) LV T2, ms, mean ± SD 49 ± 4 
Arthromyalgia, N (%) 2 (10) Focal edema on T2 

imaging, N (%) 
10 (50) 

Asthenia, N (%) 8 (40) LGE positive, N (%) 13/20 
(65) 

Anosmia or ageusia, N (%) 1 (5) Subendocardial LGE, N 
(%) 

3/20 
(15) 

Chest pain, N (%) 4 (20) Subepicardial or 
intramural LGE, N (%) 

9/20 
(45) 

Dyspnea, N (%) 2 (10) Transmural LGE, N (%) 1/20 
(5) 

Coughing, N (%) 3 (15) LGE burden, N segments, 
median [IQR] 

1 [0–2] 

Abdominal symptoms, N (%) 2 (10) RV LGE, N (%) 0/20 
(0) 

Cephalalgia, N (%) 0 (0) Pericardial LGE, N (%) 1/20 
(5) 

Ventricular function  Final diagnosis  
LVEDVi, mL/m2, mean ± SD 78 ± 19 Myocarditis, N (%) 9 (45) 
LVEF, %, mean ± SD 56 ± 12 Multiple micro-infarction, 

N (%) 
2 (10) 

LV wall motion abnormality, 
N (%) 

4 (20) Myocardial infarction, N 
(%) 

2 (10) 

RVEDVi, mL/m2, mean ± SD 80 ± 14 Takotsubo 
cardiomyopathy, N (%) 

2 (10) 

RVEF, %, mean ± SD 49 ± 9 Pericarditis, N (%) 1 (5) 
RV wall motion 

abnormality, N (%) 
0 (0) Negative CMR, N (%) 4 (20) 

Pericardial effusion, N (%) 1 (5)    

* In 2/20 patients LGE results are based on LR-LGE only because HR-LGE was 
not completed. Abbreviations: CMR, cardiac magnetic resonance; ECV, extra-
cellular volume fraction; EDV, end-diastolic volume index; EF, ejection fraction; 
LGE, late gadolinium enhancement; LV, left ventricle; IQR, interquartile range 
Q1-Q3; RV, right ventricle; SD, standard deviation. 
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could not be performed in vivo since it would have come with the caveat 
of unpractically long (near half an hour) acquisition times and accord-
ingly unfair comparisons due to gadolinium washout and accumulation 
of motion artefacts. However, phantom experiments supported the use 
of acceleration factors up to x3.8 to spatially resolve fine structures and 
recover native image sharpness. 

5. Conclusions 

Undersampled free-breathing isotropic HR-LGE can detect additional 
areas of late enhancement as compared to conventional breath-held LR- 
LGE. In patients with history of COVID-19 infection associated with 
troponin rise, the method allows for detailed characterization of 
myocardial injuries in acceptable scan times and without the need for 
repeated breath holds. Although acute myocarditis is the most common 
diagnosis, ischemic injuries and takotsubo cardiomyopathy can also be 
observed. Additional CMR studies are needed to assess the prevalence of 
occult myocardial scars in the vast majority of infected subjects in whom 
cardiac troponin was not tested. 
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sequence as well as the reconstruction framework are available from the 
corresponding author on reasonable request. 
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