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Abstract: The ability to detect single trial responses in functional magnetic resonance imaging (fMRI)
studies is essential, particularly if investigating learning or adaptation processes or unpredictable
events. We recently introduced paradigm free mapping (PFM), an analysis method that detects single
trial blood oxygenation level dependent (BOLD) responses without specifying prior information on the
timing of the events. PFM is based on the deconvolution of the fMRI signal using a linear hemody-
namic convolution model. Our previous PFM method (Caballero-Gaudes et al., 2011: Hum Brain
Mapp) used the ridge regression estimator for signal deconvolution and required a baseline signal pe-
riod for statistical inference. In this work, we investigate the application of sparse regression techni-
ques in PEM. In particular, a novel PEM approach is developed using the Dantzig selector estimator,
solved via an efficient homotopy procedure, along with statistical model selection criteria. Simulation
results demonstrated that, using the Bayesian information criterion to select the regularization parame-
ter, this method obtains high detection rates of the BOLD responses, comparable with a model-based
analysis, but requiring no information on the timing of the events and being robust against hemody-
namic response function variability. The practical operation of this sparse PFM method was assessed
with single-trial fMRI data acquired at 7T, where it automatically detected all task-related events, and
was an improvement on our previous PFM method, as it does not require the definition of a baseline
state and amplitude thresholding and does not compromise on specificity and sensitivity. Hum Brain
Mapp 34:501-518, 2013.  © 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Measuring the brain’s response to single trial events with
blood oxygenation level dependent (BOLD) functional mag-
netic resonance imaging (fMRI) [Menon et al., 1998; Richter
et al., 1997] opens up the possibility of investigating learn-
ing or adaptation effects [Grill-Spector et al., 2001]. In recent
work, we introduced a novel method to detect and charac-
terize the hemodynamic response to single-trial events with-
out prior information about their timing: paradigm free
mapping (PFM) [Caballero-Gaudes et al., in press]. This
allows the investigation of unpredictable events, such as
interictal events in epilepsy [Bagshaw et al., 2005; Vulliemoz
et al, 2010] or signal changes in pharmacological fMRI
[Wise and Tracey, 2006], and provides a new method of
studying activity in the resting state when there is no inter-
action with the subject [Petridou et al., 2011]. The PFM
method does not require definition of the onset and dura-
tion of the event as is usually required for standard model-
based analyses [Friston et al., 1998a]. Our previous PFM
approach was based on the linear deconvolution of the
BOLD fMRI signal assuming a particular hemodynamic
response function (HRF), the use of the Ly-norm regularized
estimator of ridge regression, and statistical assessment
against a baseline state [Caballero-Gaudes et al., 2011]. In
this work, we refine the PFM method by incorporating
sparse regression techniques, specifically the Dantzig selec-
tor (DS) [Candes and Tao, 2007] in combination with model
selection criteria [Zou et al., 2007], to take account of the
fact that individual single-trial events occur sparsely in
time. The proposed method, named sparse PFM (SPEM),
avoids the definition of a baseline period and the need for
amplitude thresholding of the deconvolved signal, thereby
enhancing the detection of significant changes of the under-
lying signal driving the BOLD response with no prior infor-
mation on timing.

PFM approaches assume a linear hemodynamic model.
Linear deconvolution of the underlying signal was initially
proposed in Gitelman et al. [2003] to enhance the sensitivity
of fMRI to psychophysiological interactions rather than he-
modynamic responses. Substantial advances have recently
been made in using dynamic filtering methods for the
deconvolution of the unknown neuronal-related signal and
the estimation of the physiological variables and parameters
governing the BOLD signal [Friston et al., 2008b; 2010; Hav-
licek et al., 2011; Riera et al., 2004] based on a nonlinear he-
modynamic model, such as the Balloon-Windkessel model
[Buxton et al.,, 1998; Friston et al., 2000]. However, here
SPEM uses a linear model to gain computational speed and
detect the BOLD events at a single-voxel level.

Sparse regression estimates are found by imposing an
Li-norm regularization penalty on the magnitude of the
weights of the model regressors or features so that the

weights of irrelevant regressors or features are reduced to
zero [Bruckstein et al., 2009; Park and Casella, 2008; Tib-
shirani, 1996; Tipping, 2001]. Sparse regression methods
have been shown to be superior to L,-norm regularized
techniques in a wide range of fMRI, magnetoencephalogra-
phy (MEG), and electroencephalography (EEG) applica-
tions due to their improved model interpretability and
estimation accuracy. To date, they have mainly been used
for multivariate classification purposes where a classifier is
trained (e.g., using LASSO, sparse Bayesian learning,
sparse logistic regression or Elastic Net) to select those
voxels or features that better discriminate between experi-
mental conditions or states [Carroll et al., 2009; De Martino
et al., 2008; Friston et al., 2008a; Grosenick et al., 2008; Liu
et al., 2009; Michel et al., 2010; Raizada et al., 2010; Ryali
et al., 2010; Valente et al., 2011; Van Gerven et al., 2009;
2010]. Analysis approaches promoting sparse solutions, ei-
ther based on variational Bayesian frameworks with spar-
sifying priors or L;-norm regularization, have been
proposed for spatiotemporal fMRI models [Flandin and
Penny, 2007; Long et al., 2004; Van De Ville et al., 2007] or
MEG and EEG inverse problems [Friston et al., 2008c;
Gramfort and Kowalski, 2009; Ou et al., 2009; Valdes-Sosa
et al., 2009; Wipf and Nagarajan, 2009], but only in the
spatial dimension to enhance the spatial localization of
cortical activations. To our knowledge, little work has
used temporal sparse models to detect the activations ei-
ther in fMRI [Khalidov et al., 2011] or MEG and EEG [Bol-
stad et al., 2009].

In this article, SPFM is first evaluated with simulated
fMRI data, and compared with standard general linear
model (GLM) analysis and the empirical Bayes estimation
(EBE) approach for hemodynamic deconvolution proposed
in Gitelman et al. [2003]. Its feasibility and usefulness is
then demonstrated with the same experimental data from
a visuomotor paradigm analyzed previously in Caballero-
Gaudes et al. [2011] to allow direct comparison between
both PEM approaches.

THEORY

In BOLD fMR], the signal from a voxel is usually mod-
eled as a signal x(f) resulting from the convolution of an
“input” signal related to neuronal activity s(f) and a re-
gional HRF h(t) [Boynton et al., 1996; Glover et al., 1999],
summed with an additional term e(f), representing noise
arising from instrumental noise, pulsatile cardiac and re-
spiratory fluctuations, other endogeneous hemodynamic
fluctuations of non-neuronal origin, and motion-related
effects [Lund et al.,, 2006]. In fMRI, these continuous sig-
nals are sampled every TR seconds (f = nTR), so that the
measured signal in fMRI acquisitions can be defined in
discrete time as follows:
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y(n) = x(n) +e(n) =Y~ h()s(n —i) +e(m) (1)

where L is the discrete-time length of the HRF and n =1,
..., N, where N is the number of observations in the fMRI
time series. This model can be rewritten as

y = Hs + e, )

where y, s, and e are column vectors of length N repre-
senting the voxel signal time series, the input signal and
the noise, respectively. H is the Toeplitz convolution ma-
trix of dimension N X N defined from the shape of
the HRF [Caballero-Gaudes et al., 2011; Gitelman et al.,
2003].

Sparse Regression With the DS

With Gaussian noise that is identically distributed and
independent at each time point, the maximum likelihood
estimate of the hemodynamic response to the input signal
is obtained using the ordinary least squares (OLS) estima-
tor that minimizes the residual sum of squares (RSS)
between the modeled (Hs) and measured (y) time series
[Hastie et al., 2001]. Because the number of HRF-shaped
regressors in H is equal to the number of observations N,
it is appropriate to regularize the OLS estimator with a
penalization term based on the L,-norm of the vector s,
IIs[l,= (52N, Isi[P)?, such that the estimate (8) is given by

§ = min|jy — HsH% subject to [[s||,< a, 3)
S

where the Lop-norm of s gives the number of nonzero
coefficients and the L..-norm gives max(!s;!).

Previously, the ridge regression estimate with P = 2 (L,-
norm) was used for PFM [Caballero-Gaudes et al., in
press]. However, if it is assumed that single trial BOLD
responses are generated by brief (on the fMRI time scale)
bursts of neuronal activation, then in Eq. (2) the neuronal-
related signal s is a sparse vector with few coefficients,
whose amplitudes are significantly different from zero. We
consider that the vector s is sparse if its Ly-norm |[|s|jp < N
[Bruckstein et al., 2009] and sparse estimates of s can be
obtained by solving Eq. (3) with P = 0. Unfortunately, this
problem is nondeterministic polynomial-time-hard for the
convolution model defined in Eq. (2) and solving it
requires an exhaustive search for the optimal solution
across all possible combinations of the columns of H
[Bruckstein et al., 2009]. A practical solution is to solve Eq.
(3) with p = 1, known as the least absolute shrinkage and
selection operator (LASSO) [Tibshirani, 1996] or basis pur-
suit denoising (BPDN) [Chen et al., 1998], as the L;-norm
is a convex function and therefore it allows the use of effi-
cient convex optimization solvers with rapid convergence

to the global solution [Bach et al., in press; Tropp and
Wright, 2010].

The DS [Candes and Tao, 2007] is an alternative to the
LASSO or BPDN estimators that computes an estimate of
s by solving the following optimization problem:

§ = min||s||; subjectto |[H" (y — Hs)||_<3, 4)

[

which can be equivalently rewritten in the same form as
Eq. 3) as

s = msinHHT(y - Hs)HOO subjectto [|s||; < a, 5)

with one-to-one correspondence between the non-negative
regularization parameters o and ¢. Importantly, the L..-
norm term used in the DS in Eq. (4) or (5) is equivalent to
the differentiation of the RSS (L,-norm term used in Eq.
(3)) with respect to s. This highlights the theoretical and
practical similarity of DS to LASSO or BPDN [Bickel et al.,
2009; Bickel, 2007; James et al., 2009].

The rationale behind the DS is to ensure that the model
residuals are only weakly linearly dependent on the col-
umns of the model matrix H, regardless of the probability
distribution of the noise, that is, the correlation between
the residuals and the shape of the HRF at any time point
is below a certain threshold imposed by the regularization
parameter 5. A nonzero coefficient in § implies that an
activation event is detected in the fMRI time series because
the corresponding HRF-shaped regressor in H explains an
important component of the variability of the voxel time
series. Minimization of the L;-norm forces the least inform-
ative coefficients of § to exactly zero as § increases, so that
only the most relevant regressors of the model remain at
the estimate. From Eq. (4), it can be seen that the null esti-
mate, that is, § = 0, becomes a valid solution when 6 >
|HY]..

Selection of the Regularization Parameter

Often, an appropriate value of § is not known in
advance and is chosen from a set of candidate values.
Homotopy continuation procedures for sparse regression
can be useful for that purpose [Efron et al., 2004; James
et al., 2009; Osborne et al., 2000] because they enable the
computation of the complete set of possible estimates for
the L-norm regularization problem in Eq. (4), also known
as the regularization path. In particular, the homotopy
continuation algorithm developed in Asif and Romberg
[2009] for the DS was used to obtain our results. The use
of homotopy procedures along with model selection crite-
ria [Zou et al., 2007] was found useful to choose an appro-
priate value of d.

Hereafter, we use the subscript 6 to denote that a vari-
able depends on the regularization parameter. For a given
9, let 85 = {5; # 0} be the vector containing the nonzero
coefficients of the estimate s, also known as the support
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set of s, and let Hs be the matrix including the subset of
columns of H corresponding to these nonzero coefficients.
The homotopy algorithm is initialized with § = |[H"y||.,
which corresponds to the null estimate of 8. As & decreases
toward zero, the procedure alternatively updates the solu-
tion to the DS problem in Eq. (4) (the primal problem) and
its dual [Asif and Romberg, 2009]. The algorithm can be
divided in two main phases: the primal update and the
dual update. In the primal phase, the solution to the DS
problem in Eq. (4) (the primal solution) is updated using
the conditions established by the DS constraint and the
current dual solution (i.e., the vector of Lagrange multi-
pliers of the DS problem). In the second phase, the dual
solution is updated based on the current primal solution
and constraints in the dual variables. Specifically, at criti-
cal values of & one coefficient of the DS solution is either
included or removed from the support set (i.e., coefficient
becomes different or equal to zero). The amplitudes and
signs of the nonzero coefficients are then adapted accord-
ingly to optimize fit to data [Asif and Romberg, 2009].
Since more HRF-shaped regressors are fitted to the fMRI
voxel time series as & decreases, the number of degrees of
freedom to fit the time series also increases. This could
result in overfitting of the voxel time series at very low
values of 3.

To avoid overfitting, the choice of  was based on model
selection criteria that accounted for the effective degrees of
freedom used to fit the voxel time series and the estimated
residuals. An analytical expression for the effective
degrees of freedom for the DS is not obvious because it is
a nonlinear subset selection procedure [Hastie et al., 2001].
Mimicking the definition of the effective degrees of free-
dom for linear estimators, such as least-squares or ridge
regression [Hastie et al., 2001], we propose approximating
the degrees of freedom of the DS as

dfs — Tr(H8 (Hgﬁg)’lﬂg) ©6)

based on numerical simulations and building on theoreti-
cal results for the closely related LASSO technique [Bickel
et al., 2009; Candes and Tao, 2007; James et al., 2009; Zou
et al., 2007]. The rank of the matrix in Eq. (6) is, at most,
the number of columns in Hj, that is, the number of non-
zero coefficients of the DS estimate. The effective number
of degrees of freedom dfs is computed with Eq. (6) for all
estimates in the regularization path. Subsequently, the
optimal value of & (8*) is selected via adaptive model
selection criteria [Zou et al., 2007]:

" . . K
) =m61nLn<Hny5S5H§> +Ndf5' (7)

In this work, we compared two traditional model selec-
tion criteria: the Akaike information criterion (AIC) with K
= 2 [Akaike, 1974] and the Bayesian information criterion
(BIC) or minimum description length with K = Ln(N)
[Schwarz, 1978]. Once & is chosen, the corresponding opti-

mal estimate of the DS is automatically selected from the
regularization path.

Debiasing

Once an estimate is obtained with the DS for each voxel
time series (selected with either BIC or AIC in this study),
a debiasing step was performed to overcome the tendency
of sparse estimators to underestimate the true value of the
nonzero coefficients [Candes and Tao, 2007; James et al.,
2009]. Before debiasing, additional effects of noninterest
that can explain some variability of the voxel time series
(e.g., the realignment parameters accounting for move-
ment-effects) were included into the model in the form of
a matrix X. A new signal model can be written conditional
on the DS estimate as y = Hpsp + e, where the debiasing
design matrix is Hp = [Hs X] and the weights are
sp = [s1s]". The coefficients of this model were computed
using simple OLS, that is, §p = (HgHg)legy. The zero
coefficients that were not included in the support set of
the selected DS estimate remained as zero. Figure 1 shows
an example of the operation of the SPFM method for a
simulated fMRI time series.

METHODS

Simulated and experimental fMRI data were used to
evaluate the performance of the DS algorithm for SPFM
and to investigate the differences between using AIC or
BIC to select the regularization parameter 6. In all cases,
the convolution matrix H was defined using a two I'-vari-
ate canonical HRF with standard SPM parameters includ-
ing a time-to-peak of 5 s and duration 32 s [Friston et al.,
1998a], sampled at the corresponding TR. The discrete
length of the HRF was equal to L = 17 samples.

Simulated Data

Three simulation experiments were performed using
simulated fMRI time series y(t) created according to Eq.
(1). Each time series was characterized by the number of
events in the neuronal-related input signal s(f), the shape
of the HRF with which s(t) is convolved h(t) (and corre-
sponding convolution matrix ﬁ), which may be different
from the HRF used for the deconvolution (h(t) and convo-
lution matrix H) when investigating the effect of mis-
matches between the simulated and deconvolved HREF,
and the temporal signal-to-noise ratio of the time series.
The duration of the simulated fMRI time series was 256 s,
and s(f) and h(t) were initially created at 200 ms intervals.
For the input signal s(t), data sets containing zero events
(no events) to 10 events, each of duration 2 s and constant
amplitude but random polarity were generated. The onsets
of the events were randomly positioned along the time se-
ries, without enforcing a minimal time interval between
simulated events. Varying the number of events in the
input signal allows an evaluation of the performance of
the SPEM method with AIC and BIC criteria with variable
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lllustration of the SPFM method. (a) For each fMRI voxel time
series (simulated here with six activation events of duration 2 s
convolved with the canonical HRF with time-to-peak of 5 s,
tSNR of 50, TR 2 s and 128 time points), the regularization path
of possible DS estimates of the neuronal-related signal is com-
puted by iteratively solving the DS algorithm with decreasing val-
ues of & (b). As the size of the support set of nonzero
coefficients increases with decreasing §, the effective degrees of

levels of sparsity in the vector s. Three different shapes
were simulated for the hemodynamic response h(t), based
on the canonical HRF [Friston et al., 1998a] with variable
time-to-peak of the first gamma function (a; = 35, 5 s
(identical to the HRF model used for the DS fitting), and 8 s).
This allowed assessment of the robustness of the SPFM
method to HRF variability.

A noise term, e(t), was added to the simulated signal
time series. Noise was created as the sum of uncorrelated
Gaussian noise and sinusoidal signals to simulate a realis-

freedom also increase because more canonical HRF are fitted to
the fMRI time series. (c) The appropriate estimate of the neuro-
nal-related coefficients (red) and the neuronal-related haemody-
namic signal (blue) are chosen according to model selection
criteria. The BIC correctly detected the six activation events,
whereas the AIC completely fails to estimate the stimulus signal
and overfits the fMRI time series. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

tic noise model with both thermal noise and cardiac and
respiratory physiological fluctuations, respectively. The si-
nusoidal term was generated as

4
Z Z}j(sin (2nfrit + br ;) + sin(2nfeit + d;)) (8)
i1

with up to fourth-order harmonics per cardiac and respira-
tory component. Each harmonic f;; and f.; was randomly
generated following Normal distributions with variance
0.04 and mean if, and if, for i =1, ..., 4, and where the
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fundamental frequencies were f, = 0.3 Hz for the respira-
tory component [Birn et al., 2006] and f. = 1.1 Hz for the
cardiac component [Shmueli et al., 2007]. The phases of
each harmonic ¢ were randomly selected from a Uniform
distribution between 0 and 27 radians. A range of tempo-
ral signal-to-noise ratios (tSNR) between 30 and 80 was
simulated, which corresponds to a range of contrast-to-
noise ratios between 1.8 and 4.8 assuming a BOLD signal
change of 6% typically observed at 7T (as used in the ex-
perimental work described here) [van der Zwaag et al,,
2009a]. To simulate physiological noise that is proportional
to BOLD signal change, a variable ratio between the physi-
ological noise (op) and the thermal (op) was modeled as
op/ay = a(tSNR)® + ¢, where a = 5.01 X 107°, b = 2.81,
and ¢ = 0.397. This physiological-thermal noise model was
extracted following the experimental measures of the
physiological-to-thermal noise ratio at 7T in Table 3 in Tri-
antafyllou et al. [2005]). The noise term, e(f), was then
added to the simulated time series, s(t), to create an fMRI
time series, y(t), which was then downsampled to a TR of
2 s (N = 128 time points).

Each voxel time series was analyzed with the SPFM pro-
cedure described in Theory section. For comparison, the
simulated time series were also analyzed with the EBE
method introduced in Gitelman et al. [2003], which also
enables deconvolution of the underlying signal from the
fMRI BOLD time series without prior information on the
timing of the events. This approach is based on a two-
stage hierarchical model that imposes Gaussian priors on
the coefficients of the underlying signal. Posterior esti-
mates are iteratively computed via EBE and restricted
maximum likelihood [Gitelman et al., 2003]. In our simula-
tions we wused the functions spm_peb_ppim and
spm_PEB.m implemented in SPM8 (FIL, UCL, UK). The
time resolution used for the EBE deconvolution was set
equal to the TR, as it was done for SPFM.

We also analyzed these data with a standard GLM fitted
with OLS. The GLM included one regressor per nonzero
coefficient in the simulated input signal. Each regressor was
created as the convolution of Dirac impulses at the time of
the nonzero coefficients in the simulated input signal with a
canonical HRF with time-to-peak of 5 s as used in the
model for SPFM. The GLM analysis allowed comparison
with the results that could be achieved if perfect knowledge
of the timing of the events were available a priori (i.e., in a
non paradigm free scenario). This information is required
neither for SPFM nor for EBE, where the analysis is carried
out blind to onsets and duration of neural stimuli.

Simulation |

The first simulation was designed to evaluate the ability
of SPFM to detect active voxels. A pattern of 36 x 36 vox-
els was created comprising nine squares of 12 x 12 voxels
distributed in three rows and three columns. This layout is
shown on the left of Figure 2. In the centre of each 12 x
12 square, a smaller 4 x 4 square was simulated as having

“active” voxels and the surrounding pixels were simulated
as “non active” with zero events. The active pixels in each
4 x 4 square were characterized by the number of events
(2, 6, or 10) simulated in the neuronal-related input signal
and the HRF shape (canonical HRF with time-to-peaks (a;)
of 3,5, and 8 s). A noise term with random Gaussian noise
and sinusoidal noise was added to each time series as
described in Eq. (8). We generated 1,000 repetitions of this
pattern at three different tSNRs (30, 55, and 75) with ran-
dom noise realizations across repetitions. For the GLM
analysis, the information about the onsets and number of
events that is required to define the regressors was pro-
vided accordingly. We computed the average rate that
each pixel was labeled as active (detection rate) across the
1,000 repetitions, where a pixel was labeled as active based
on an F-statistic (P < 10" *, uncorrected) of the hypothe-
sized model for the GLM analysis or estimated model for
the SPFM analysis. As each square comprised 12 x 12 pix-
els this threshold would correspond to a P value of 1.44 x
102 with Bonferroni correction.

To label a pixel as active for the EBE approach, we com-
puted the posterior probability of the EBE model and com-
pared it with the posterior probability of a “null model”
comprising a single column of ones (NULL). The log-evi-
dence of the model m for a time series y (a measure which
indicates the preference shown by the data for the given
model) is L(m) = log P(y|m), which can be approximated
by the “free energy” (a measure that expresses the uncer-
tainty of the data averaged over instances of the generative
model and the complexity of the model) after convergence
of the EBE estimation [Penny et al., 2007]. Assuming that
both models are equiprobable, it can be shown that the
posterior probability of the EBE model given the time se-
ries y is given by (see Eq. (16) in Penny et al. [2007])

exp(L(EBE))

exp(L(EBE)) + exp(L(NULL)) ©)

p(EBEly) =

where the model evidences, L(EBE) and L(Null), were
computed using spm_PEB.m. A pixel was labeled as active
when P(EBEly) > 099, that is, when the difference
between both model evidences was L(EBE) — L(NULL) >
4.6 [Penny et al., 2007].

Simulation 2

The second experiment evaluated the sensitivity and
specificity of the SPFM method to detect the exact location
in time of the simulated events, that is, the time of the
nonzero coefficients in the simulated neuronal-related
input signal. We generated 1,000 fMRI time series for each
simulation scenario (number of events in the simulated
neuronal-related signal (2, 6, and 10 events of duration 2s),
HRF shape (canonical HRF with time-to-peaks (a;) of 5
and 8 s), and tSNR (30-80)). A false positive (FP) event
was defined as occurring when a nonzero coefficient in
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Figure 2.

Detection rates of Simulation |. A pattern of 36 x 36 pixels was
created comprising nine squares of 12 x 12 pixels distributed in
three rows and three columns, as shown at the left of the figure.
One thousand repetitions of this pattern were generated at three

the estimated signal § did not correspond to a nonzero
coefficient in the simulated input signal s after subsam-
pling it to TR, and a false negative (FN) event as when a
nonzero coefficient in s did not correspond with a nonzero
coefficient in 8. The FP rate (FPR = number of false posi-
tives/number of positives (nonzero coefficients in §)) and
FN rate (FNR = number of false negatives/number of neg-
atives (zero coefficients in 8)) were used to calculate the
temporal sensitivity (1-FNR) and specificity (1-FPR). The
tradeoff between temporal sensitivity and specificity was
summarized in terms of Receiver Operating Characteristics
(ROC) curves.

For the EBE approach, the assumption of Gaussian pri-
ors in addition to the use of cosine bases to expand the
representation of the underlying signal (Gitelman et al.,
2003) cause the estimated signal to be smooth and those
nonrelevant coefficients to not be reduced to exactly zero
as achieved with Li-norm regularization. Therefore, some
type of thresholding procedure is required to decide
whether an event has occurred at a given time point i.
Assuming a prior expectation equal to 0, we computed the
marginal posterior probability that the coefficient s; ggg of
the posterior mean computed with EBE at time point i
exceeds a threshold y. This posterior probability is given
by P(si,EBEl]/) = 1'q)(('Y'Si,EBE)/\/C—ii)/ where C,‘,‘ is the i-th
coefficient of the main diagonal of the posterior covariance
matrix of the estimate (see Friston et al. [2002] for analyti-
cal expressions), and ®(.) is the cumulative distribution

different tSNRs (30, 55, 80). The information about the onsets and
number of events for the GLM-based analysis was adapted accord-
ingly within each 12 x 12 square. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

function of the Normal distribution with zero mean and
unit variance. Note that a time series of posterior probabil-
ities is computed for each simulated time series, giving
rise to “temporal” posterior probability maps [Friston and
Penny, 2003]. The threshold y, which determines what is a
relevant estimate, was set at one standard deviation of the
posterior residuals. An event was detected at time point i
if P(siepely) > 0.9.

Simulation 3

Using the same simulated fMRI data as in Simulation 2,
we computed the mean square error (MSE) between the
simulated hemodynamic signal Hs at TR resolution and its
estimate HS:

1 ok~ 2

MSE Nb,; ‘Hs Hst. (10)
Therefore, this third simulation investigated the per-
formance of SPFM, EBE and GLM in estimating the hemo-
dynamic events that were simulated in the fMRI time
series in case of a perfect HRF model or HRF model mis-
matches. For SPFM, mismatches in the HRF model may
lead to FPs or FNs in the detection of the nonzero coeffi-
cients of the simulated input signal. For example, if the
simulated HRF exhibits a shorter time to peak than the
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HRF used in the model, the simulated BOLD events could
still be detected by the SPFM method and the voxel be la-
beled as active as evaluated in Simulation 1, but with an
earlier onset than simulated, which could result in a FP
and FN as evaluated in Simulation 2.

Computational cost

To compare the computational cost of SPFM, EBE, and
GLM, we measured the time in seconds required to fit a
single voxel time series as a function of the number of
scans (N), where N ranged between 64 and 1,024 scans.
All algorithms were implemented in Matlab R2009b and
the simulations were done using a 2.8-Ghz Intel Core 2
Duo MacBook Pro with 4GB RAM.

Experimental Data

The SPFM method was evaluated on the same five indi-
vidual fMRI datasets that were previously used to evalu-
ate the PFM approach [Caballero-Gaudes et al., 2011]. The
five subjects provided informed consent under the ap-
proval of the University of Nottingham ethics committee.

Data acquisition and paradigm

fMRI data were acquired on a 7T Philips scanner (Best,
Netherlands) using a 16-channel head coil (Nova Medical,
MA) and a single-shot gradient-echo EPI sequence (2 mm
isotropic resolution, SENSE factor = 1.5, TE = 30 ms, TR
= 2 s, flip angle = 80°, N = 342 time points). Twenty
oblique slices were acquired at approximately +15° to the
canto-meatal line above the corpus callosum extending
from the superior frontal to occipital cortices. A T2*-
weighted scan was also acquired as anatomical reference
(three-dimensional spoiled FLASH, 1 mm isotropic resolu-
tion). Subjects” heads were secured in place using foam
pads inside the head coil. Cardiac and respiratory data
were recorded using a respiratory belt and a pulse oxime-
ter for physiological noise correction. Electromyography
(EMG) measurements were acquired for both hands (left
extensor (LE), right extensor and right flexor (RF) muscles)
[Caballero-Gaudes et al., 2011].

The fMRI experimental paradigm lasted 684 s and con-
sisted of single-trial finger-opposition tapping events inter-
leaved with three periods of rest. After an initial rest
period of 140 s, the subject was visually cued to perform
finger tapping at 140 and 180 s (trial duration: 4 s). A sec-
ond rest period of 200 s followed in the time interval from
184 to 384 s. At 384 s, a message (“TAP at will”) was pro-
jected onto a screen instructing subjects about the begin-
ning of a period of 300 s when they had to perform two
self-paced finger tapping trials of 4 s, at a time of their
choosing, until the end of the run. Subjects were asked to
fixate on a cross during rest periods. The visual instruc-
tions were projected from an LCD projector onto a screen
located inside the scanner room, which subjects viewed

through prism glasses with angled mirrors. Subjects were
instructed on the paradigm prior to the scanning session.
The EMG recordings captured that Subject A performed
an additional self-paced tapping at the end of the run, and
Subject B performed four self-paced finger tapping events
instead of the two events instructed. Both cases were also
confirmed by personal questionnaire after the MRI session.

SPFM data analysis

fMRI datasets were initially corrected for motion,
physiological cardiac and respiratory fluctuations with
RETROICOR [Glover et al., 2000], and detrended via
deconvolution for sine and cosine waveforms with period
equal to the scan duration and up to fourth-order Legren-
dre polynomials, reducing the serial correlations of the
time series. Finally, voxel time series were normalized to
give percent signal change. These steps were performed
using AFNI (NIMH/NIH, Cox, [1996]).

The preprocessed time series were then analyzed with
the SPFM method described above that was implemented
using in-house programs written in Matlab (The Math-
works, Natick, MA). The BIC criterion was used to select
the regularization parameter of the DS because the simula-
tion results showed that the SPFM method performed bet-
ter with BIC rather than with AIC (see Results). To reduce
computational cost, the homotopy procedure was stopped
when the regularization parameter was below the maxi-
mum absolute deviance (MAD) estimate of the noise
standard deviation [Donoho and Johnstone, 1994], or
when the number of nonzero coefficients in the estimated
input signal was more than half the fMRI time points. The
six rotation and translation realignment parameters esti-
mated during motion correction were also included as nui-
sance regressors (X) in the debiasing model Hp. Spatial
clustering with a minimum cluster size of two contiguous
voxels with nonzero coefficients (no amplitude threshold)
of the estimate (extent-threshold) was applied at each time
point to reduce possible isolated FPs.

As for PFM [Caballero-Gaudes et al., 2011], the outcome
of the SPFM analysis is a sequence of brain activation
maps that depicts the spatiotemporal dynamics of the esti-
mated neuronal-related signal at each time point. To
reduce the dimensionality of the four-dimensional results
and to assist in identifying of periods when significant
brain activation occurs, two activation time series (ATS)
were created for each dataset, counting the number of vox-
els with positive and negative nonzero coefficients at each
time point [Caballero-Gaudes et al., 2011].

For each peak in the ATS corresponding to a finger tap-
ping event, a statistical map was created to illustrate the
spatial relevance of the peaks. We first computed t-statis-
tics for each of the detected events (nonzero coefficients in
the input signal) estimated by the DS (i.e., the regressors
in H; based on the debiasing model) and assumed zero t-
statistics for the zero coefficients. Next, f-statistics were
converted to z-scores because the number of detected
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events differed between voxels and consequently the
degrees of freedom of the t-statistics varied between vox-
els. To condense the whole sequence of maps correspond-
ing to the finger tapping event into a single map, the
value in each voxel was set to the maximum of the z-
scores during the period around a finger tapping event
when more than 100 voxels showed positive or negative
activation in the ATS.

GLM analysis

The preprocessed datasets were also analyzed with a
GLM-based approach. For each event, two regressors were
created from the convolution of impulse events with the
SPM-canonical HRF and its temporal derivative [Friston
et al., 1998a], with onset corresponding to the start of tap-
ping as recorded in the EMG. Two regressors were simi-
larly created at the time of the visual cue “TAP AT
WILL”. Additionally, the six translation and rotation pa-
rameters estimated during rigid-body realignment for
motion correction were included as nuisance regressors.
This GLM was fitted without modeling noise serial corre-
lations (three-dimensional-Deconvolve function in AFNI)
in concordance with the SPFM model. To capture the po-
larity of the BOLD signal change, statistical GLM maps
were created for each event depicting the T-statistic of the
canonical HRF regressor. Each map was thresholded
according to an F-test of the two regressors (P < 0.01) after
FDR correction for multiple comparisons [Benjamini et al.,
2006; Benjamini and Hochberg, 1995]. A minimum cluster
size of two contiguous voxels was used for spatial
clustering.

To quantify the agreement between the SPFM and GLM
maps, for each tapping event, we measured the number of
voxels showing activations in each map (IGLMI| and
ISPFM 1) and the number of overlapping voxels (|SPFM
N GLM ). Then, we computed the Dice measure (D = 2*
ISPFM N GLM | / ISPEM | + IGLMI).

RESULTS
Simulated Data

Figure 1 shows an example of the SPFM method for a
simulated fMRI time series with six events each of dura-
tion 2 s (Fig. 1a). The corresponding regularization path is
depicted in Figure 1b. As the regularization parameter &
decreases from ||[H'y||,, = 0.15 to 0, the number of non-
zero elements in the support set increases (left graph in
Fig. 1b), more HRFs are fitted to the time series and more
degrees of freedom are used to fit the data (right graph in
Fig. 1b). As shown in Figure 1c, selecting 6 according to
BIC results in the correct detection of the six simulated
activation events therefore obtaining an accurate deconvo-
lution of the original simulated hemodynamic component
of the signal, whereas the use of AIC leads to overfitting

of the fMRI time series since an excessive number of he-
modynamic events are detected.

Simulation |

The results of Simulation 1 are shown in Figure 2 which
maps the average rate of labeling a voxel as active over
1,000 repetitions (F-test, P < 10~* uncorrected) for SPFM
(BIC and AIC) and EBE (P(EBEly) > 0.99) without prior
knowledge of the timing of any events, and GLM with
timing of events given in the model, for various tSNR val-
ues and simulated HRF shapes.

With simulated parameters typical of 7T, little difference
in the detection rate is observed between those squares for
which the simulated and fitted HRF were the same (mid-
dle row in each block) and those with an HRF mismatch
(top and bottom rows), which illustrates the robustness of
the method to HRF mismatches. The pattern of activations
revealed with the SPFM method using BIC at tSNR of 55
and 80 resemble the ideal pattern, and the detection rate
obtained for SPFM with BIC and GLM are similar. SPFM
with BIC and GLM showed high specificity since, on aver-
age, those voxels in the background with no events were
not declared as activations. In contrast, larger detection
rates can be observed in the background for the patterns
computed with AIC and the EBE approach, indicating that
both EBE and SPFM with AIC feature lower specificity
than SPFM with BIC. Very low detection rates are
achieved with BIC at a tSNR of 30 in the true activated
voxels. The use of AIC increases the sensitivity in detect-
ing true positives at a low tSNR of 30, but this is achieved
at cost to decreasing specificity, that is, augmenting FPs in
the background compared with BIC. The patterns obtained
with SPEM AIC illustrate higher sensitivity than those
computed with EBE without decrease in specificity. With
GLM, knowing the timing of the events improves the
detection rate of the true active voxels at tSNR of 30 when
the time series have six or 10 events, but not with two
events. This shows that at low tSNR, the large level of
noise existing in the true active voxels limits the power of
the F-statistics of the model estimated with SPFM using
BIC so that the voxel is not labeled as active, even though
the detected events have a high probability of being true
events (see ROC values of SPFM with BIC at low {SNR in
Simulation 2).

Simulation 2

The temporal specificity and sensitivity results of Simu-
lation 2 are shown in the ROC curves of Figure 3. The
SPFM method using BIC detects the nonzero coefficients
of the activation events with FPRs lower than 4% (specific-
ity > 0.96) in a nomismatch scenario, that is, when the
simulated HRF is identical to the fitted HRF. If AIC is
adopted, the accuracy in detecting the time of the events
decreases to values of FPR around 10% with little increase
in sensitivity. As the tSNR of the time series decreases, the
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Figure 3.

ROC curves of temporal sensitivity and specificity to detect the
onset of the simulated activation events (Simulation 2) for SPFM
using the BIC and AIC criteria and for EBE. ROC curves were
computed with no HRF mismatch where the simulated BOLD
events were generated with the same HRF as the model (canon-
ical HRF with time-to-peak of 5 s), whereas those corresponding
to a mismatch scenario where the simulated BOLD events were
generated with an HRF different from the model (canonical HRF
with time-to-peak of 8 s). Line markers indicate number of acti-
vation events: 2 (circles), 6 (crosses), and 10 (squares). Decreas-
ing sensitivity in each curve corresponds to tSNR decreasing
from 80 to 30, illustrated by vertical arrow on the graph. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

curves show reduced temporal sensitivity without reduced
temporal specificity. In particular, using the BIC criterion
at tSNR < 35, the sensitivity drops whilst the specificity
remains fairly constant, suggesting strict control of FP
detections with BIC. However, if the simulated HRF has a
time-to-peak of 8 s compared with a fitted HRF with time-
to-peak of 5 s, considerable degradation in both temporal
sensitivity and specificity occurs, as expected because the
time points of the simulated events (nonzero coefficients)
cannot be exactly determined in this situation. With a dif-
ference in the simulated and fitted time-to-peaks of 3 s
and a TR of 2 s, it is probable that any detected event will
apparently be at a time point which is shifted with respect
to its actual timing. Nevertheless, FPR values lower than
5% can be achieved with BIC when there is a mismatch in
the simulated and fitted HRF. As expected in sparse
regression techniques, a comparison between the ROC
curves for varying number of events indicates SPFM pro-
vides better specificity—sensitivity when the input signal
has fewer events (i.e., is more sparse). In case of perfect

knowledge of the HRF, the EBE approach shows consider-
ably lower temporal sensitivity than both SPFM using BIC
and AIC. EBE demonstrates higher temporal specificity
than SPFM with AIC in both HRF situations. However,
the temporal specificity obtained with EBE is generally in-
ferior to that obtained with SPFM with BIC at all tSNR
values particularly for smaller number of events.

Simulation 3

Figure 4 plots the MSE curves computed in Simulation
3. The similarity between the MSE curves computed with
and without mismatches between the simulated and fitted
HRF events also demonstrates that SPFM is robust against
HRF variability and produces accurate estimates of the
neuronal-related hemodynamic component of the signal.

For few simulated fMRI time series, we observed the EBE
algorithm did not converge to sensible estimates of the
simulated signals generating outliers in the distribution of
MSE values. Hence, the EBE curves plot the trimmed mean:
generally this involved excluding the highest and lowest
0.5% MSE values and five values were excluded, but when
no events were simulated in the time series the highest and
lower 5% MSE values and fifty values were excluded
because outliers were more frequently observed.

As anticipated from the ROC curves in Figure 3, the
SPFM method better detects a small number of events
with the BIC criterion, compared with the AIC criterion
(Fig. 4a,)b,d,f). When a mismatch between the simulated
and fitted HRF exists, SPFM obtains a better estimate of
the simulated hemodynamic signal than a GLM analysis
(fitted via OLS) at high tSNR and particularly for low
number of activations (Fig. 4d,f). The MSE curves also
highlight that if numerous events are expected, it may be
beneficial to use the AIC criterion to select 6 in very high
tSNR scenarios (tSNR > 80) (Fig. 4ef). The estimates
obtained with EBE are less accurate than those obtained
with SPFM using BIC in all scenarios except at tSNR < 40
with more than six events. As expected, the EBE approach
always estimates a hemodynamic signal different from
zero although the time series includes no events. Whereas
this undesired behaviour is similar to the one found with
SPFM using AIC at low tSNR, its operation deteriorates
remarkably at high tSNR (Fig. 4a). At very high tSNR the
MSE curves of the SPFM method with BIC converge to the
GLM curves obtained with perfect knowledge of the
onsets of the events and HRF shape (Fig. 4c,e).

Experimental Data

SPFM detected all finger tapping events for all subjects,
which were all evident in the EMG recordings, including
those BOLD signal changes associated to the visual cue
“TAP AT WILL". Figure 5 plots the positive (black) and
negative (red) ATS for the five datasets, along with the
corresponding EMG recordings of the RF and LE muscles.
SPFM also revealed transient activations during periods
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Figure 4.

MSE between the simulated and estimated hemodynamic com-
ponent of the signal (Simulation 3) obtained for SPFM using the
BIC and AIC criteria, EBE and GLM estimated via OLS, as a
function of tSNR for (a) 0, (c) 4, and (e) 10 activation events;
and as a function of the number of events for tSNR of (b) 35,

when the subject was instructed to remain at rest. The spa-
tial maps of these events were not random, but formed
spatial clusters in areas of sensorimotor processing, in
some cases simultaneous to muscle activity recorded in
the EMG. Furthermore, these activation patterns encom-
passed cortical regions typically associated with the visual,

(d) 55, and (f) 75. Dashed lines correspond to HRF Mismatch
(HRF time to peak of 8s), whereas solid lines correspond to no
HRF mismatch. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

default-mode and dorsal attention networks [Petridou
et al., 2011].

Figure 6 shows the SPFM with BIC and GLM maps for
the finger tapping events of Subject E for three representa-
tive slices out of 20 slices, overlaid over the corresponding
T2*-weighted anatomical image. The maps for the rest of
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Figure 5.

ATS computed with SPFM using the DS algorithm with BIC
along with the EMG recordings of the left extensor (LE) and
right flexor (RF). Each ATS counts the number of voxels with
positive activation (black, positive y-axis) and negative activation
(red, negative y-axis) revealed by the SPFM method at each time
point. The blue dashed lines mark the times of the task-related

the datasets are given as Supporting Information. In gen-
eral, the figures illustrate the clusters of activations found
in the SPFM maps were in the same regions as those shown
in the GLM maps. Table I lists the Dice coefficients for each
finger tapping event. Across all finger tapping events and
subjects, we observed an average Dice measure of 50.4%
(std: 13.7%). The ratios varied considerably across trials and
subjects, and individual trial and subject data showed that
some subjects consistently show larger regions for GLM
and others consistently show larger regions for SPFM. The
main clusters of activations related to the finger tapping
events shown both in the SPFM maps and the GLM maps
were located in areas of visual and sensorimotor processing

events (visually cued finger tapping, self-paced finger tapping, and
visual cue “TAP at WILL”). The SPFM method was able to detect
all finger tapping events for all subjects, and timely with the
EMG recordings. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

such as the supplementary motor area, premotor cortex,
primary motor and somatosensory cortices, superior parie-
tal lobule, and occipital cortex.

Computational Cost

Figure 7 plots the median time for 1,000 random simu-
lated time series as a function of the number of scans of
the voxel time series (N), and also indicates the 5% and
95% at each point. Note that the figure is plotted in loga-
rithmic scale.

It can be seen that SPFM using the primal-dual pursuit
algorithm [Asif and Romberg, 2009] to solve the DS is
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Figure 6.

SPFM and GLM maps for the visually cued and self paced finger
tapping events performed by Subject E (see Supporting Informa-
tion for the rest of subjects), overlaid over the corresponding
T2*-weighted anatomical image. SPFM maps display the maxi-
mum z-score (normalized t-statistic) of the coefficients esti-

approximately 15 times faster than the EBE approach
when N is approximately 200, but this difference rises to
30 times at N = 1,024. For 342 scans, as in the experimen-
tal datasets, SPFM takes a median time of 0.56 s to com-
pute the deconvolved estimate, whereas the time for EBE
is 9.42 s. The computational time of GLM is substantially
lower than that of SPFM (118 times faster at N = 64
increasing to 813 times faster at N = 1,024) as the onset
times of the activations and the neuronal related signal
(stimulus function) are known in advance and not blindly
estimated as in SPFM and EBE.

DISCUSSION

Both simulation and experimental results demonstrate
the validity of the SPFM method, using the DS in combi-
nation with BIC, to detect single trial BOLD responses
without prior information on the timing of the events.
SPFM does not require thresholding or the definition of a

mated during each activation event. GLM maps display t-
statistics of the canonical HRF regressor for those voxels where
the F-test of the informed basis set regressors has a P < 0.01,
FDR corrected. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

baseline period, thus enhancing our previous PFM
approach [Caballero-Gaudes et al., 2011]. Additionally,
spatial averaging was necessary in PFM to improve statis-
tical power. As amplitude thresholding is no longer
required, SPFM makes the exploration and interpretation
of the results simpler. Our simulations demonstrated that
this benefit is obtained without compromising temporal
and spatial specificity and sensitivity (Figs. 2 and 3). This
resembles the automatic selection features observed in spa-
tial decoding approaches with sparse regression [Yama-
shita et al., 2008].

SPFM assumes active/nonactive type of underlying ac-
tivity, so no threshold is required, whereas the EBE
approach expands the underlying signal in terms of a set
of cosine functions and establishes Gaussian priors on the
coefficients, which makes the estimates smoother and not
reduced to zero similar to the ridge regression used for
PFM [Caballero-Gaudes et al., 2011]. In contrast to SPFM,
the EBE approach requires a threshold to be set on the
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TABLE I. Dice coefficients between SPFM and GLM
maps for each finger tapping event and subjectDice
coefficients: 2*|SPFM N GLM| / |GLM| + |SPFM|

Tap/subject A B C D E
VC1 0.499 0.568 0.271 0.555 0.671
vC2 0.609 0.642 0.217 0.645 0.471
SP1 0.568 0.469 0.394 0.596 0.636
SP2 0.655 0.437 0.381 0.533 0.626
SP3 0.214 0.451 - - -
SP4 - 0.473 - - -
Average 0.504

computed posterior estimates to decide whether an event
has occurred at a given time point. This decision was
made here adapting the concept of posterior probability
maps [Friston and Penny, 2003]. As hinted in [Gitelman
et al.,, 2003], a wavelet basis could instead be used to
enhance the time-frequency representation of the decon-
volved time series. This option could make the EBE
approach more similar to SPFM. However, our simulations
show that EBE did not show appropriate operation for
voxels with no events. It must be noted that when the EBE
approach is used for the analysis of psychophysiological
interactions its aim is to deconvolve the underlying neural
signal only of time series showing a significant experimen-
tal effect and not to detect activation across the whole
brain [Gitelman et al., 2003].

All the methods evaluated in this work assume a linear
hemodynamic model as this is usually adopted for fMRI
analyses [Friston et al.,, 1998a]. Consequently, when using
SPFM, one must be aware that assuming a linear model
can lead to inaccuracy in delay and amplitude estimates if
nonlinear effects in the BOLD response occur [Birn et al,,
2001; de Zwart et al., 2009; Glover, 1999; Riera et al., 2004].
It would be possible to use SPFM to detect the events, and
subsequently analyze the form of the HRF for that event
in more detail. Another possibility would be to augment
the convolution matrix in Eq. (2) with extra regresssors
that model nonlinear effects (e.g., considering quadratic
[second-order Volterra kernels] or cubic [third-order Vol-
terra kernels] interactions between the linear regressors)
[Friston et al., 1998b]. This would be possible due to the
use of sparse regression methods where the number of
covariates describing the data can be much larger than the
number of observations (the P > N problem) [Candes and
Tao, 2007].

If a particular nonlinear hemodynamic model was
assumed, one could alternatively use methods that implic-
itly build upon a nonlinear description of the hemody-
namic response. Based on the Balloon-Windkessel model
[Buxton et al., 1998; Friston et al., 2000], the methods of
dynamic expectation maximization [Friston et al., 2008b],
generalized filtering [Friston et al., 2010], squared-root
cubature Kalman smoother [Havlicek et al., 2011], and the
local linearization filter used in Riera et al. [2004] are filter-

ing schemes that also furnish dynamic deconvolution of
the input signal, along with time-dependent estimates of
physiological signals (vasodilatory signal, blood flow,
blood volume, and deoxyhemoglobin content) and hemo-
dynamic parameters. These schemes are more computa-
tionally intensive than the EBE approach and thus
considerably slower than SPFM solved via homotopy algo-
rithms (Fig. 7). Moreover, high SNR in the fMRI signal is
required to allow these techniques to achieve appropriate
conditional estimates of the unknown parameters. Conse-
quently, these methods are mainly used for the deconvolu-
tion of region-of-interest fMRI time series.

SPFM can also be compared with independent compo-
nent analysis (ICA) approaches. The analysis of the same
datasets with spatial probabilistic ICA (MELODIC, FSL,
Oxford, UK); [Beckmann and Smith, 2004] was shown in
Caballero-Gaudes et al. [2011]. A fundamental difference
between ICA and PFM approaches is that ICA is a multi-
variate method that blindly decomposes the fMRI data
into independent components, either spatial components
with a common time course (spatial ICA) or temporal
components with a common spatial map (TICA), whereas
PEM approaches are based on the univariate, voxelwise
hemodynamic deconvolution of the fMRI BOLD signal (in
this case assuming a canonical HRF model). Therefore,
TICA or SICA only produce static maps unless selection
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Figure 7.
Computational time in seconds required by SPFM, EBE, and
GLM (estimated using OLS) to calculate the coefficient estimates
of one voxel time series as a function of the number of scans
(N). The value and range at each point are defined by the 50%
(median) and the 5% and 95%, respectively, of 1,000 repetitions.
For SPFM, the DS homotopy procedure was stopped when the
regularization parameter was below the MAD estimate of the
noise standard deviation or the number of elements in the
active set of nonzero coefficients exceeded half of the number
of scans. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]
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and recombination of the relevant components is per-
formed, whereas SPFM features maps displaying the dy-
namics of the underlying activity in a straightforward
manner. Even though temporal ICA has proven its ability
to identify transient events in the fMRI signal [Biswal and
Ulmer, 1999; Seifritz et al., 2002] similar to the detection fea-
tures of SPFM, TICA analyses have been applied only
within reduced regions [Biswal and Ulmer, 1999] or after
dimensionality reduction, for example, either with spatial
ICA or principal component analysis (PCA) [Calhoun et al.,
2001; McKeown et al., 2003; Seifritz et al., 2002]. Biswal and
Ulmer [1999] used TICA to separate CO, global hypercap-
nia effects from transient task-induced effects of bilateral
finger tapping. Also using TICA, Seifritz et al. [2002]
showed a complex pattern of activity in the human audi-
tory cortex comprising sustained and transient effects with
overlapping spatial maps. Crucially, SPFM allows us to
directly study transient BOLD effects.

Methodological Issues and Simulations

The DS was used in this work to introduce the SPFM
approach, but alternative L;-norm regularized estimators
could be investigated within the same framework of PFM.
In particular, the LASSO [Tibshirani, 1996] or BPDN [Chen
et al., 1998] are widely used sparse regression techniques
that have a close relationship with the DS [Bickel et al.,
2009; James et al., 2009]. We also performed the same sim-
ulation experiments using the LASSO (data not shown)
and found that both estimators provide relatively equiva-
lent performance with the BIC, with the DS showing some
advantage over the LASSO in terms of ROC curves and
accuracy of estimation of the simulated hemodynamic
signal. With the AIC, however, the DS exhibited a signifi-
cantly sparser and better operation in the SPFM approach
than the LASSO, in agreement with theoretical studies
[Bickel et al., 2009; James et al., 2009].

The use of sparse regression is advantageous for sparse
(single-trial and single event) paradigms; however, it
might be inappropriate for other experimental designs
where less sparse patterns of BOLD activations might be
expected, such as block paradigms or experimental
designs with trains of events [Liu et al., 2001]. We tested
the method with simulated signals for which 15% of time
points had event-related activations (20 nonzero coeffi-
cients out of 128 time points) and the DS gave good results
with these less sparse signals, in agreement with the
behavior shown by the DS in relatively nonsparse scenar-
ios [Candes and Tao, 2007; James et al., 2009]. Alternative
regression techniques combining L;- and L,-norm regulari-
zation terms, such as Elastic Net [Zou and Hastie, 2005] or
Ly-reweighted methods [Wipf and Nagarajan, 2010], or
incorporating both spike-like and epoch-like constraints in
the regularization cost function could be future methods
to be investigated within the PFM framework to enhance
the bound on the degree of sparsity of the responses

below which the proposed SPFM approach provides satis-
factory results.

In this study, the regularization parameter & was
selected according to model selection criteria (BIC and
AIC) following the work by Zou et al. [2007]. Our simula-
tion and experimental results demonstrated that the BIC
criterion provided stricter FP control and better estimation
accuracy than the AIC criterion, which exhibited a tend-
ency for data overfitting by detecting more events than
actually existed to minimize prediction error [Zou et al.,
2007]. Furthermore, our simulations demonstrated that the
SPFM approach is robust against HRF variability [Aguirre
et al., 1998, Handwerker et al., 2004] and non-Gaussianity
of noise, which included sinusoidal trends representing
physiological cardiac and respiratory fluctuations [Birn
et al., 2006; Shmueli et al., 2007; Triantafyllou et al., 2005].
Robustness against errors in the temporal characteristics of
the assumed HRF model is observed in the estimation of
the neuronal-related hemodynamic component of the sig-
nal (Fig. 4), and in the spatial specificity and sensitivity of
the technique (Fig. 2) despite the fact the temporal specific-
ity and sensitivity to find the times of the activation events
accurately can be reduced with HRF mismatches (Fig. 3).
This feature suggests that SPFM is a denoising method
that is tailored to estimate the HRF activations of the fMRI
voxel time series [LaConte et al., 2000]. In addition, other
HRF models can be assumed for the hemodynamic decon-
volution with SPFM. Furthermore, the SPFM method pre-
sented in this work can be extended to include correlated
noise provided that serial correlations are accurately esti-
mated [Worsley et al., 2002].

SPFM is more computationally intensive than fitting
GLM via OLS, but faster than the EBE approach. This is
due to the need to compute the regularization path of the
DS to choose the appropriate regularization parameter and
its corresponding solution. At each iteration, the computa-
tional cost of each iteration of the homotopy procedure
can be similar to solving an OLS estimation problem of
the same dimensions as H; [Asif and Romberg, 2009]. Fur-
thermore, the GLM fit can be done simultaneously for
multiple voxel time series, or once for the whole brain,
because the model matrix is the same for every voxel. On
the contrary, SPFM performs the deconvolution on a
voxel-by-voxel basis and it builds the most appropriate
model fitting the time series at each voxel [Pendse et al.,
2010; Razavi et al., 2003]. The computational cost of SPFM
and EBE could be easily reduced with parallelizable
implementations.

Experimental Results

SPFM successfully detected all single trial finger tapping
events without prior knowledge of the timing of the
events (Fig. 5), showing improved performance in detect-
ing the single-trial events than PFM using ridge regression
which was unable to show 5 out of the 23 events in the
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ATS [Caballero-Gaudes et al.,, 2011]. The SPFM maps
showed cortical activations in areas typically involved in
processing visually cued and self-paced finger tapping
tasks [Witt et al.,, 2008] and showed large regional con-
cordance with the GLM maps (Fig. 6 and Supporting In-
formation Figure) and the maps obtained with PFM
displayed in [Caballero-Gaudes et al., 2011]. Good agree-
ment was found between the SPFM and GLM maps de-
spite the absence of spatial smoothing in our analysis. The
variability of the Dice coefficients across trials and subjects
is likely to be related to different physiological characteris-
tics for each subject and due to differences in the power
of each technique for single-trial analysis, and hence
size of the detected ROI [Windischberger et al., 2002].
Furthermore, we note that one could use SPFM as an
exploratory approach such that the onset times when
coordinated clusters of activations occur throughout the
scan can be identified from the peaks of the ATS, and sub-
sequently the activation events could further assessed
using other hypothesis-based analysis methods, such as
GLM.

This work was performed at 7T. The tSNR of our experi-
mental data ranged from 50 to 60 in grey matter for a 2
mm isotropic voxel resolution (8 mm?), in agreement with
the values shown in Table 3 in Triantafyllou et al. [2005].
Assuming a BOLD signal change of 6% [Van Der Zwaag
et al., 2009a], the contrast to noise ratio (CNR) would be
between 3 and 3.6. To obtain a similar CNR range at 3T
assuming a BOLD signal change of 4% [Van Der Zwaag
et al., 2009a], the tSNR should be of 75-90. This increase in
tSNR can be obtained at 3T by augmenting the voxel vol-
ume to 48-75 mm® (Table 3 in Triantafyllou et al., [2005])
or 27-45 mm? if a 32-channel array coil is used [Triantafyl-
lou et al., 2011].

Benefiting from the higher contrast to noise ratio avail-
able at ultra-high MR fields (7T) [Bianciardi et al., 2009;
Van Der Zwaag et al., 2009b], SPFM also revealed tran-
sient and coordinated clusters of cortical activations dur-
ing rest periods. The relevance of these spontaneous
BOLD signal changes and their link to changes in the
functional connectivity of the motor, visual, dorsal atten-
tion and default mode networks are investigated in paral-
lel work [Petridou et al., 2011]. These results depend on
the robustness of SPFM against HRF variability since one
could conjecture that the temporal characteristics of the
BOLD response at rest might differ from the canonical
HRF assumed here. Using a sliding window correlation
analysis, we found that the correlation strength within
these networks considerably varies across time, peaking at
the time of the spontaneous activations detected with
SPFM based on a canonical HRF model. These transient
activations cannot be detected by standard model-based
approaches that require the onset of activation to be speci-
fied, calling for analysis methods that, similar to SPFM,
explore the non-stationary dynamics of the resting fMRI
signal [Chang and Glover, 2011; Majeed et al., 2010] and
go beyond the slow-frequency fluctuations (below 0.1 Hz)

and the long-time scales typically investigated in resting
state studies [Fox and Raichle, 2007; Cole et al., 2010].
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