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Robust recovery of temporal overlap between
network activity using transient-informed

spatio-temporal regression
Daniela M. Zöller, Thomas A. W. Bolton, Student Member, IEEE, Fikret Işık Karahanoğlu, Stephan Eliez,

Marie Schaer, Dimitri Van De Ville, Senior Member, IEEE

Abstract—Functional magnetic resonance imaging (fMRI) is
a non-invasive tomographic imaging modality that has provided
insights into systems-level brain function. New analysis methods
are emerging to study the dynamic behavior of brain activity.
The innovation-driven co-activation pattern (iCAP) approach is
one such approach that relies on the detection of timepoints with
significant transient activity to subsequently retrieve spatially and
temporally overlapping large-scale brain networks. To recover
temporal profiles of the iCAPs for further time-resolved analysis,
spatial patterns are fitted back to the activity-inducing signals.
In this crucial step, spatial dependencies can hinder the recovery
of temporal overlapping activity. To overcome this effect, we
propose a novel back-projection method that optimally fits
activity-inducing signals given a set of transient timepoints and
spatial maps of iCAPs, thus taking into account both spatial
and temporal constraints. Validation on simulated data shows
that transient-based constraints improve the quality of fitted time
courses. Further evaluation on experimental data demonstrates
that over- and underfitting are prevented by the use of optimized
spatio-temporal constraints. Spatial and temporal properties of
resulting iCAPs support that brain activity is characterized
by the recurrent co-activation and co-deactivation of spatially
overlapping large-scale brain networks. This new approach opens
new avenues to explore the brain’s dynamic core.

Index Terms—fMRI, dynamic functional connectivity,
innovation-driven co-activation patterns, large-scale brain
network dynamics, spatio-temporal regression
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I. INTRODUCTION

DURING the past two decades, investigations using
resting-state functional magnetic resonance imaging

(fMRI) found evidence that normal brain function is charac-
terized by fluctuations in the activity of large-scale brain net-
works, that is, of distributed sets of brain regions that are co-
herently fluctuating [1], [2]. Functional connectivity (FC) mea-
sures statistical interdependency between two time courses,
conventionally by pairwise correlation. Another widely used
methodology to study networked brain activity is independent
component analysis (ICA) that relies on a surrogate measure
for statistical independence [3], [4]. While FC and ICA most
commonly assume stationarity over the whole resting-state
run, recent findings suggest that it is meaningfully variable
over time [5], and that the consideration of dynamic features
is promising when studying brain function and its alterations
in mental disorders [6], [7].

Multiple approaches exist for the retrieval and analysis of
dynamic FC (dFC) networks; for extensive reviews see [7],
[8], [9]. Sliding-window approaches track dynamic changes
by restraining the computation of second-order correlation to a
temporal interval which is gradually shifted over time [5], [10],
[11], [12]. However, this approach is limited to the detection
of FC changes at much slower rate than the sampling rate,
whereas actual FC changes might take place at a faster rate.
Several novel approaches have been proposed to go beyond
sliding-window correlations and detect rapid changes in FC.
Window-less ICA-based approaches propose to analyze the
dynamics of independent components (ICs) using for exam-
ple dictionary learning [13] or hidden Markov models [14].
In parallel, so-called first-order techniques were developed,
which identify fMRI frames that reflect key activity patterns
in a point process analysis (PPA); e.g., by the detection of
significantly strong activity in a seed region [15]. An extension
of this approach applies temporal clustering on the selected
frames to establish whole brain co-activation patterns (CAPs)
occurring during those moments defined by a single seed’s
time series [16]. This seed-driven approach has further been
extended for the whole-brain by including multiple seeds [17],
[18].

Yet another approach has been to incorporate a change point
detector to retrieve timepoints of significant transient activity;
e.g., by identifying moments of maximal brain-state changes
[19] or using derivatives [20], [21], [22]. Combining this
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idea with principles from CAP analysis, temporal clustering
on significant transient timepoints yields innovation-driven
CAPs (iCAPs) [23], which are illustrated in Fig. 1. These
spatial patterns reminiscent for known functional networks
are simultaneously transitioning rather than simultaneously
activating, which provides unique advantages over other com-
monly used methods. ICA, for instance, imposes statistical
independence either in space or in time and CAPs are per
definition temporally segregated, with only one active CAP at
a time. This flexibility in spatial and temporal representation
makes iCAPs thus especially well suited for the investigation
of the resting state where there is no prior information on
timing of brain-state transitions and strong temporal overlap
of functional components is likely given the hemodynamic
nature of fMRI signals [6].

To precisely detect timepoints with transient activity, fMRI
signals must be deconvolved from the hemodynamic response
function (HRF). For this the total activation (TA) framework
has been developed [24] (Fig. 1, green box), resulting into the
activity-inducing signals. The derivative of activity-inducing
signals, so-called innovation signals, are then temporally clus-
tered into representative spatial patterns (Fig. 1, blue box). To
obtain the activation time courses of the iCAPs, these spatial
patterns are then fitted back to the activity-inducing signals.

Even though the possibility of spatial overlap is one of
the key advantages of iCAPs, spatial dependence may hinder
the recovery of temporal overlap in the regression procedure.
Here, we address this issue and propose a new back-projection
method to optimally fit activity-inducing signals given a set of
transient timepoints and spatial maps of iCAPs. This approach
takes into account both spatial and temporal constraints to
retrieve iCAPs’ temporal profiles, which gives access to their
dynamics for further analysis.

In the following, we first briefly describe the TA and iCAPs
pipeline. Then, we introduce our novel transient-informed
spatio-temporal regression approach and validate the proposed
method on simulated data. Finally, we evaluate it on experi-
mental data to demonstrate the benefits of our approach.

II. METHODS

A. Methods Implementation

An open repository containing the full code for the
application of processing steps including TA, iCAPs re-
trieval and spatio-temporal regression is available at
https://c4science.ch/source/iCAPs.git.

B. Total Activation and Innovation-Driven Co-Activation Pat-
terns

a) Total Activation: The TA framework uses spatio-
temporal regularization to deconvolve the fMRI signal from
the HRF (see Fig. 1, green box). The signal model explains
the measured fMRI signal y(v, t) as a convolution of an
underlying neural signal a(v, t), assumed to be block-type at
the timescale of fMRI (that is seconds), with the HRF h(t),
and is corrupted by additive white Gaussian noise ε(v, t):

y(v, t) = (h ? a)(v, t) + ε(v, t).

Here and throughout, the index v ∈ N indicates the voxel with
1 ≤ v ≤ Nv , Nv being the total number of grey matter voxels,
and index t ∈ N indicates the timepoint with 1 ≤ t ≤ Nt, Nt
being the total number of timepoints. Using vector notation
y(v, ·) = [y(v, 1), ..., y(v,Nt)], we write

y(v, ·) = (h ? a)(v, ·) + ε(v, ·),

where ε is distributed asN (0, INtσ
2
v), where INt is an Nt×Nt

identity matrix. We designate x = h ? a the activity-related
signal at voxel v, and a its activity-inducing signal. The
complete data matrix of activity-related signals is denoted as
X ∈ RNv×Nt and the fMRI signal matrix Y ∈ RNv×Nt , see
Table I for an overview of the notations.

Then, as illustrated in Fig. 1 (green box), the spatio-
temporal regularization problem can be written as

X∗ = arg min
X

1

2
||Y− X||2F +RT (X) +RS(X),

where

RT (X) =

Nv∑

v=1

λT (v)

Nt∑

t=1

|∆L{x(v, ·)}[t]|,

RS(X) = λS

Nt∑

t=1

Nv∑

v=1

√ ∑

u∈S(v)
(x(v, t)− x(u, t))

2
.

Here, λT (v) is the temporal regularization parameter at
voxel v, and λS is the spatial regularization parameter, which
is the same at every timepoint t. The differential operator
∆L = ∆DH

−1 combines HRF deconvolution H−1 and
derivative ∆D, and S(v) denotes the surrounding neighbors
of voxel v. The temporal regularization term RT (X) imposes
sparsity on the innovation signal i(v, ·) = ∆L{x(v, ·)}; i.e.,
on the derivative of the activity-inducing signal, and thereby
favors a piecewise-constant activity-inducing block signal
a(v, ·). The spatial regularization term RS(X) promotes local-
ized activations that are smooth in space [25]. The HRF h(t)
is modeled by first-order Volterra series approximation of the
balloon model [26], [27] and is assumed to be constant across
the whole brain. For more details on the TA implementation,
we refer to [28], [24], [25].

In this study, TA was applied separately for every subject
on preprocessed fMRI data in subject space.

b) Innovation-Driven Co-Activation Patterns: After reg-
ularized deconvolution of the BOLD signal, K-means cluster-
ing is applied to innovation frames to retrieve spatial patterns
of simultaneously transitioning voxels [23]. First, positive and
negative innovations are split into two separate frames iP (·, t)
and iN (·, t), where the sign of negative innovation frames is
flipped. Then, significant transient frames were determined
using a two-step thresholding approach: in the first step
(temporal thresholding), the null distribution of every subject’s
innovation signal was determined by running TA on a phase-
randomized surrogate dataset, and a subject-specific threshold
at a 5 %-95 % confidence interval was applied. In the second
step (spatial thresholding), an innovation frame was considered
significant if at least 5% of all considered voxels showed
a significant innovation. With these thresholding parameters,
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�k,2
<latexit sha1_base64="TZNYp/3D0bYGqjuzM2/nv3npSgk=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKFnyIangBePEYwJTIbQ0+lJmvQsdNcIYchnePGgiFe/xpt/Y2cRVPRBweO9KqrqBakUGgj5sApr6xubW8Xt0s7u3v5B+fDoTieZYrzDEpmoXkA1lyLmHRAgeS9VnEaB5N1gcjX3u/dcaZHEtzBNuR/RUSxCwSgYyesHHOggn1y4s0G5QmzSqNYcgontOrV6s25Ite4aDTs2WaCCVmgPyu/9YcKyiMfAJNXac0gKfk4VCCb5rNTPNE8pm9AR9wyNacS1ny9OnuEzowxxmChTMeCF+n0ip5HW0ygwnRGFsf7tzcW/PC+DsOnnIk4z4DFbLgoziSHB8//xUCjOQE4NoUwJcytmY6ooA5NSyYTw9Sn+n9y5tkNs56ZaaV2u4iiiE3SKzpGDGqiFrlEbdRBDCXpAT+jZAuvRerFel60FazVzjH7AevsEUnaRQQ==</latexit><latexit sha1_base64="TZNYp/3D0bYGqjuzM2/nv3npSgk=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKFnyIangBePEYwJTIbQ0+lJmvQsdNcIYchnePGgiFe/xpt/Y2cRVPRBweO9KqrqBakUGgj5sApr6xubW8Xt0s7u3v5B+fDoTieZYrzDEpmoXkA1lyLmHRAgeS9VnEaB5N1gcjX3u/dcaZHEtzBNuR/RUSxCwSgYyesHHOggn1y4s0G5QmzSqNYcgontOrV6s25Ite4aDTs2WaCCVmgPyu/9YcKyiMfAJNXac0gKfk4VCCb5rNTPNE8pm9AR9wyNacS1ny9OnuEzowxxmChTMeCF+n0ip5HW0ygwnRGFsf7tzcW/PC+DsOnnIk4z4DFbLgoziSHB8//xUCjOQE4NoUwJcytmY6ooA5NSyYTw9Sn+n9y5tkNs56ZaaV2u4iiiE3SKzpGDGqiFrlEbdRBDCXpAT+jZAuvRerFel60FazVzjH7AevsEUnaRQQ==</latexit><latexit sha1_base64="TZNYp/3D0bYGqjuzM2/nv3npSgk=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKFnyIangBePEYwJTIbQ0+lJmvQsdNcIYchnePGgiFe/xpt/Y2cRVPRBweO9KqrqBakUGgj5sApr6xubW8Xt0s7u3v5B+fDoTieZYrzDEpmoXkA1lyLmHRAgeS9VnEaB5N1gcjX3u/dcaZHEtzBNuR/RUSxCwSgYyesHHOggn1y4s0G5QmzSqNYcgontOrV6s25Ite4aDTs2WaCCVmgPyu/9YcKyiMfAJNXac0gKfk4VCCb5rNTPNE8pm9AR9wyNacS1ny9OnuEzowxxmChTMeCF+n0ip5HW0ygwnRGFsf7tzcW/PC+DsOnnIk4z4DFbLgoziSHB8//xUCjOQE4NoUwJcytmY6ooA5NSyYTw9Sn+n9y5tkNs56ZaaV2u4iiiE3SKzpGDGqiFrlEbdRBDCXpAT+jZAuvRerFel60FazVzjH7AevsEUnaRQQ==</latexit><latexit sha1_base64="TZNYp/3D0bYGqjuzM2/nv3npSgk=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKFnyIangBePEYwJTIbQ0+lJmvQsdNcIYchnePGgiFe/xpt/Y2cRVPRBweO9KqrqBakUGgj5sApr6xubW8Xt0s7u3v5B+fDoTieZYrzDEpmoXkA1lyLmHRAgeS9VnEaB5N1gcjX3u/dcaZHEtzBNuR/RUSxCwSgYyesHHOggn1y4s0G5QmzSqNYcgontOrV6s25Ite4aDTs2WaCCVmgPyu/9YcKyiMfAJNXac0gKfk4VCCb5rNTPNE8pm9AR9wyNacS1ny9OnuEzowxxmChTMeCF+n0ip5HW0ygwnRGFsf7tzcW/PC+DsOnnIk4z4DFbLgoziSHB8//xUCjOQE4NoUwJcytmY6ooA5NSyYTw9Sn+n9y5tkNs56ZaaV2u4iiiE3SKzpGDGqiFrlEbdRBDCXpAT+jZAuvRerFel60FazVzjH7AevsEUnaRQQ==</latexit>

�k,3
<latexit sha1_base64="++5dCbHebfYazU7AY1xnJqUEAGo=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnZsNTwIvHCGaByRB6Oj1Jk56F7hohDPkMLx4U8erXePNv7CyCij4oeLxXRVU9P5FCAyEfVm5tfWNzK79d2Nnd2z8oHh51dJwqxtsslrHq+VRzKSLeBgGS9xLFaehL3vUn13O/e8+VFnF0B9OEeyEdRSIQjIKR3L7PgQ6yycXlbFAsEZvUK1WHYGKXnWqtUTOkUisbDTs2WaCEVmgNiu/9YczSkEfAJNXadUgCXkYVCCb5rNBPNU8om9ARdw2NaMi1ly1OnuEzowxxECtTEeCF+n0io6HW09A3nSGFsf7tzcW/PDeFoOFlIkpS4BFbLgpSiSHG8//xUCjOQE4NoUwJcytmY6ooA5NSwYTw9Sn+n3TKtkNs57ZSal6t4sijE3SKzpGD6qiJblALtRFDMXpAT+jZAuvRerFel605azVzjH7AevsEU/uRQg==</latexit><latexit sha1_base64="++5dCbHebfYazU7AY1xnJqUEAGo=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnZsNTwIvHCGaByRB6Oj1Jk56F7hohDPkMLx4U8erXePNv7CyCij4oeLxXRVU9P5FCAyEfVm5tfWNzK79d2Nnd2z8oHh51dJwqxtsslrHq+VRzKSLeBgGS9xLFaehL3vUn13O/e8+VFnF0B9OEeyEdRSIQjIKR3L7PgQ6yycXlbFAsEZvUK1WHYGKXnWqtUTOkUisbDTs2WaCEVmgNiu/9YczSkEfAJNXadUgCXkYVCCb5rNBPNU8om9ARdw2NaMi1ly1OnuEzowxxECtTEeCF+n0io6HW09A3nSGFsf7tzcW/PDeFoOFlIkpS4BFbLgpSiSHG8//xUCjOQE4NoUwJcytmY6ooA5NSwYTw9Sn+n3TKtkNs57ZSal6t4sijE3SKzpGD6qiJblALtRFDMXpAT+jZAuvRerFel605azVzjH7AevsEU/uRQg==</latexit><latexit sha1_base64="++5dCbHebfYazU7AY1xnJqUEAGo=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnZsNTwIvHCGaByRB6Oj1Jk56F7hohDPkMLx4U8erXePNv7CyCij4oeLxXRVU9P5FCAyEfVm5tfWNzK79d2Nnd2z8oHh51dJwqxtsslrHq+VRzKSLeBgGS9xLFaehL3vUn13O/e8+VFnF0B9OEeyEdRSIQjIKR3L7PgQ6yycXlbFAsEZvUK1WHYGKXnWqtUTOkUisbDTs2WaCEVmgNiu/9YczSkEfAJNXadUgCXkYVCCb5rNBPNU8om9ARdw2NaMi1ly1OnuEzowxxECtTEeCF+n0io6HW09A3nSGFsf7tzcW/PDeFoOFlIkpS4BFbLgpSiSHG8//xUCjOQE4NoUwJcytmY6ooA5NSwYTw9Sn+n3TKtkNs57ZSal6t4sijE3SKzpGD6qiJblALtRFDMXpAT+jZAuvRerFel605azVzjH7AevsEU/uRQg==</latexit><latexit sha1_base64="++5dCbHebfYazU7AY1xnJqUEAGo=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnZsNTwIvHCGaByRB6Oj1Jk56F7hohDPkMLx4U8erXePNv7CyCij4oeLxXRVU9P5FCAyEfVm5tfWNzK79d2Nnd2z8oHh51dJwqxtsslrHq+VRzKSLeBgGS9xLFaehL3vUn13O/e8+VFnF0B9OEeyEdRSIQjIKR3L7PgQ6yycXlbFAsEZvUK1WHYGKXnWqtUTOkUisbDTs2WaCEVmgNiu/9YczSkEfAJNXadUgCXkYVCCb5rNBPNU8om9ARdw2NaMi1ly1OnuEzowxxECtTEeCF+n0io6HW09A3nSGFsf7tzcW/PDeFoOFlIkpS4BFbLgpSiSHG8//xUCjOQE4NoUwJcytmY6ooA5NSwYTw9Sn+n3TKtkNs57ZSal6t4sijE3SKzpGD6qiJblALtRFDMXpAT+jZAuvRerFel605azVzjH7AevsEU/uRQg==</latexit>

�k,4
<latexit sha1_base64="ML6GqlqFYdFV6LbWnPIV9lw1n5s=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnTBY8Bbx4jGBMYDKEnk5P0qRnobtGCEM+w4sHRbz6Nd78GzuLoKIPCh7vVVFVL0il0EDIh1VYW9/Y3Cpul3Z29/YPyodHdzrJFOMdlshE9QKquRQx74AAyXup4jQKJO8Gk6u5373nSoskvoVpyv2IjmIRCkbBSF4/4EAH+eTCnQ3KFWKThltzCCZ21anVm3VD3HrVaNixyQIVtEJ7UH7vDxOWRTwGJqnWnkNS8HOqQDDJZ6V+pnlK2YSOuGdoTCOu/Xxx8gyfGWWIw0SZigEv1O8TOY20nkaB6YwojPVvby7+5XkZhE0/F3GaAY/ZclGYSQwJnv+Ph0JxBnJqCGVKmFsxG1NFGZiUSiaEr0/x/+SuajvEdm7cSutyFUcRnaBTdI4c1EAtdI3aqIMYStADekLPFliP1ov1umwtWKuZY/QD1tsnVYCRQw==</latexit><latexit sha1_base64="ML6GqlqFYdFV6LbWnPIV9lw1n5s=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnTBY8Bbx4jGBMYDKEnk5P0qRnobtGCEM+w4sHRbz6Nd78GzuLoKIPCh7vVVFVL0il0EDIh1VYW9/Y3Cpul3Z29/YPyodHdzrJFOMdlshE9QKquRQx74AAyXup4jQKJO8Gk6u5373nSoskvoVpyv2IjmIRCkbBSF4/4EAH+eTCnQ3KFWKThltzCCZ21anVm3VD3HrVaNixyQIVtEJ7UH7vDxOWRTwGJqnWnkNS8HOqQDDJZ6V+pnlK2YSOuGdoTCOu/Xxx8gyfGWWIw0SZigEv1O8TOY20nkaB6YwojPVvby7+5XkZhE0/F3GaAY/ZclGYSQwJnv+Ph0JxBnJqCGVKmFsxG1NFGZiUSiaEr0/x/+SuajvEdm7cSutyFUcRnaBTdI4c1EAtdI3aqIMYStADekLPFliP1ov1umwtWKuZY/QD1tsnVYCRQw==</latexit><latexit sha1_base64="ML6GqlqFYdFV6LbWnPIV9lw1n5s=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnTBY8Bbx4jGBMYDKEnk5P0qRnobtGCEM+w4sHRbz6Nd78GzuLoKIPCh7vVVFVL0il0EDIh1VYW9/Y3Cpul3Z29/YPyodHdzrJFOMdlshE9QKquRQx74AAyXup4jQKJO8Gk6u5373nSoskvoVpyv2IjmIRCkbBSF4/4EAH+eTCnQ3KFWKThltzCCZ21anVm3VD3HrVaNixyQIVtEJ7UH7vDxOWRTwGJqnWnkNS8HOqQDDJZ6V+pnlK2YSOuGdoTCOu/Xxx8gyfGWWIw0SZigEv1O8TOY20nkaB6YwojPVvby7+5XkZhE0/F3GaAY/ZclGYSQwJnv+Ph0JxBnJqCGVKmFsxG1NFGZiUSiaEr0/x/+SuajvEdm7cSutyFUcRnaBTdI4c1EAtdI3aqIMYStADekLPFliP1ov1umwtWKuZY/QD1tsnVYCRQw==</latexit><latexit sha1_base64="ML6GqlqFYdFV6LbWnPIV9lw1n5s=">AAAB8nicdVDJSgNBEO2JW4xb1KOXxiB4kKEnTBY8Bbx4jGBMYDKEnk5P0qRnobtGCEM+w4sHRbz6Nd78GzuLoKIPCh7vVVFVL0il0EDIh1VYW9/Y3Cpul3Z29/YPyodHdzrJFOMdlshE9QKquRQx74AAyXup4jQKJO8Gk6u5373nSoskvoVpyv2IjmIRCkbBSF4/4EAH+eTCnQ3KFWKThltzCCZ21anVm3VD3HrVaNixyQIVtEJ7UH7vDxOWRTwGJqnWnkNS8HOqQDDJZ6V+pnlK2YSOuGdoTCOu/Xxx8gyfGWWIw0SZigEv1O8TOY20nkaB6YwojPVvby7+5XkZhE0/F3GaAY/ZclGYSQwJnv+Ph0JxBnJqCGVKmFsxG1NFGZiUSiaEr0/x/+SuajvEdm7cSutyFUcRnaBTdI4c1EAtdI3aqIMYStADekLPFliP1ov1umwtWKuZY/QD1tsnVYCRQw==</latexit>

�k,5
<latexit sha1_base64="K2CX+m9nKYqIKfZfXFrtbaugj74=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkBeeAl48RjAmsFnC7GSSDJmdXWZ6hbDkM7x4UMSrX+PNv3HyEFS0oKGo6qa7K0ykMEDIh5NbW9/Y3MpvF3Z29/YPiodHdyZONeNtFstYd0NquBSKt0GA5N1EcxqFknfCydXc79xzbUSsbmGa8CCiIyWGglGwkt8LOdB+NrmozvrFEnFJvVL1CCZu2avWGjVLKrWy1bDnkgVKaIVWv/jeG8QsjbgCJqkxvkcSCDKqQTDJZ4VeanhC2YSOuG+pohE3QbY4eYbPrDLAw1jbUoAX6veJjEbGTKPQdkYUxua3Nxf/8vwUho0gEypJgSu2XDRMJYYYz//HA6E5Azm1hDIt7K2YjammDGxKBRvC16f4f3JXdj3iejeVUvNyFUcenaBTdI48VEdNdI1aqI0YitEDekLPDjiPzovzumzNOauZY/QDztsnVwWRRA==</latexit><latexit sha1_base64="K2CX+m9nKYqIKfZfXFrtbaugj74=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkBeeAl48RjAmsFnC7GSSDJmdXWZ6hbDkM7x4UMSrX+PNv3HyEFS0oKGo6qa7K0ykMEDIh5NbW9/Y3MpvF3Z29/YPiodHdyZONeNtFstYd0NquBSKt0GA5N1EcxqFknfCydXc79xzbUSsbmGa8CCiIyWGglGwkt8LOdB+NrmozvrFEnFJvVL1CCZu2avWGjVLKrWy1bDnkgVKaIVWv/jeG8QsjbgCJqkxvkcSCDKqQTDJZ4VeanhC2YSOuG+pohE3QbY4eYbPrDLAw1jbUoAX6veJjEbGTKPQdkYUxua3Nxf/8vwUho0gEypJgSu2XDRMJYYYz//HA6E5Azm1hDIt7K2YjammDGxKBRvC16f4f3JXdj3iejeVUvNyFUcenaBTdI48VEdNdI1aqI0YitEDekLPDjiPzovzumzNOauZY/QDztsnVwWRRA==</latexit><latexit sha1_base64="K2CX+m9nKYqIKfZfXFrtbaugj74=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkBeeAl48RjAmsFnC7GSSDJmdXWZ6hbDkM7x4UMSrX+PNv3HyEFS0oKGo6qa7K0ykMEDIh5NbW9/Y3MpvF3Z29/YPiodHdyZONeNtFstYd0NquBSKt0GA5N1EcxqFknfCydXc79xzbUSsbmGa8CCiIyWGglGwkt8LOdB+NrmozvrFEnFJvVL1CCZu2avWGjVLKrWy1bDnkgVKaIVWv/jeG8QsjbgCJqkxvkcSCDKqQTDJZ4VeanhC2YSOuG+pohE3QbY4eYbPrDLAw1jbUoAX6veJjEbGTKPQdkYUxua3Nxf/8vwUho0gEypJgSu2XDRMJYYYz//HA6E5Azm1hDIt7K2YjammDGxKBRvC16f4f3JXdj3iejeVUvNyFUcenaBTdI48VEdNdI1aqI0YitEDekLPDjiPzovzumzNOauZY/QDztsnVwWRRA==</latexit><latexit sha1_base64="K2CX+m9nKYqIKfZfXFrtbaugj74=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkBeeAl48RjAmsFnC7GSSDJmdXWZ6hbDkM7x4UMSrX+PNv3HyEFS0oKGo6qa7K0ykMEDIh5NbW9/Y3MpvF3Z29/YPiodHdyZONeNtFstYd0NquBSKt0GA5N1EcxqFknfCydXc79xzbUSsbmGa8CCiIyWGglGwkt8LOdB+NrmozvrFEnFJvVL1CCZu2avWGjVLKrWy1bDnkgVKaIVWv/jeG8QsjbgCJqkxvkcSCDKqQTDJZ4VeanhC2YSOuG+pohE3QbY4eYbPrDLAw1jbUoAX6veJjEbGTKPQdkYUxua3Nxf/8vwUho0gEypJgSu2XDRMJYYYz//HA6E5Azm1hDIt7K2YjammDGxKBRvC16f4f3JXdj3iejeVUvNyFUcenaBTdI48VEdNdI1aqI0YitEDekLPDjiPzovzumzNOauZY/QDztsnVwWRRA==</latexit>

�k,6
<latexit sha1_base64="1k+J03+B6xSaW+2jl+KhF0jv/3k=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkGyCp4AXjxGMCWyWMDuZTYbMPpjpFcKSz/DiQRGvfo03/8bJQ1DRgoaiqpvuriCVQgMhH1ZhbX1jc6u4XdrZ3ds/KB8e3ekkU4x3WCIT1Quo5lLEvAMCJO+litMokLwbTK7mfveeKy2S+BamKfcjOopFKBgFI3n9gAMd5JMLdzYoV4hNGrW6QzCxq07dbbqG1Nyq0bBjkwUqaIX2oPzeHyYsi3gMTFKtPYek4OdUgWCSz0r9TPOUsgkdcc/QmEZc+/ni5Bk+M8oQh4kyFQNeqN8nchppPY0C0xlRGOvf3lz8y/MyCJt+LuI0Ax6z5aIwkxgSPP8fD4XiDOTUEMqUMLdiNqaKMjAplUwIX5/i/8ld1XaI7dzUKq3LVRxFdIJO0TlyUAO10DVqow5iKEEP6Ak9W2A9Wi/W67K1YK1mjtEPWG+fWIqRRQ==</latexit><latexit sha1_base64="1k+J03+B6xSaW+2jl+KhF0jv/3k=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkGyCp4AXjxGMCWyWMDuZTYbMPpjpFcKSz/DiQRGvfo03/8bJQ1DRgoaiqpvuriCVQgMhH1ZhbX1jc6u4XdrZ3ds/KB8e3ekkU4x3WCIT1Quo5lLEvAMCJO+litMokLwbTK7mfveeKy2S+BamKfcjOopFKBgFI3n9gAMd5JMLdzYoV4hNGrW6QzCxq07dbbqG1Nyq0bBjkwUqaIX2oPzeHyYsi3gMTFKtPYek4OdUgWCSz0r9TPOUsgkdcc/QmEZc+/ni5Bk+M8oQh4kyFQNeqN8nchppPY0C0xlRGOvf3lz8y/MyCJt+LuI0Ax6z5aIwkxgSPP8fD4XiDOTUEMqUMLdiNqaKMjAplUwIX5/i/8ld1XaI7dzUKq3LVRxFdIJO0TlyUAO10DVqow5iKEEP6Ak9W2A9Wi/W67K1YK1mjtEPWG+fWIqRRQ==</latexit><latexit sha1_base64="1k+J03+B6xSaW+2jl+KhF0jv/3k=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkGyCp4AXjxGMCWyWMDuZTYbMPpjpFcKSz/DiQRGvfo03/8bJQ1DRgoaiqpvuriCVQgMhH1ZhbX1jc6u4XdrZ3ds/KB8e3ekkU4x3WCIT1Quo5lLEvAMCJO+litMokLwbTK7mfveeKy2S+BamKfcjOopFKBgFI3n9gAMd5JMLdzYoV4hNGrW6QzCxq07dbbqG1Nyq0bBjkwUqaIX2oPzeHyYsi3gMTFKtPYek4OdUgWCSz0r9TPOUsgkdcc/QmEZc+/ni5Bk+M8oQh4kyFQNeqN8nchppPY0C0xlRGOvf3lz8y/MyCJt+LuI0Ax6z5aIwkxgSPP8fD4XiDOTUEMqUMLdiNqaKMjAplUwIX5/i/8ld1XaI7dzUKq3LVRxFdIJO0TlyUAO10DVqow5iKEEP6Ak9W2A9Wi/W67K1YK1mjtEPWG+fWIqRRQ==</latexit><latexit sha1_base64="1k+J03+B6xSaW+2jl+KhF0jv/3k=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgQZbZkGyCp4AXjxGMCWyWMDuZTYbMPpjpFcKSz/DiQRGvfo03/8bJQ1DRgoaiqpvuriCVQgMhH1ZhbX1jc6u4XdrZ3ds/KB8e3ekkU4x3WCIT1Quo5lLEvAMCJO+litMokLwbTK7mfveeKy2S+BamKfcjOopFKBgFI3n9gAMd5JMLdzYoV4hNGrW6QzCxq07dbbqG1Nyq0bBjkwUqaIX2oPzeHyYsi3gMTFKtPYek4OdUgWCSz0r9TPOUsgkdcc/QmEZc+/ni5Bk+M8oQh4kyFQNeqN8nchppPY0C0xlRGOvf3lz8y/MyCJt+LuI0Ax6z5aIwkxgSPP8fD4XiDOTUEMqUMLdiNqaKMjAplUwIX5/i/8ld1XaI7dzUKq3LVRxFdIJO0TlyUAO10DVqow5iKEEP6Ak9W2A9Wi/W67K1YK1mjtEPWG+fWIqRRQ==</latexit>

�k,7
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Fig. 1. Schematic representation of the key components related to this work. The total activation framework (green box) provides innovation signals that
encode transients. Then, iCAPs are retrieved by temporal clustering (blue box). Finally, we propose to recover the iCAPs-related activity-inducing signals
using a new spatio-temporal regression approach (red box).

81.8±9.1 % of positive and 79.1±10.3 % of negative frames
were above threshold. Overall, 99.8± 0.4 % of the innovation
frames showed at least a significant positive or negative inno-
vation (or both events together). After thresholding, innovation
frames were spatially normalized to Montreal Neurological
Institute (MNI) space using Diffeomorphic Anatomical Regis-
tration using Exponentiated Lie algebra (DARTEL) [29] (see
also subsection III-B).

Then, spatially normalized, significant innovation frames
of all subjects were concatenated and temporal K-means
clustering was applied at the group level with cosine distance
as similarity measure (see Fig. 1, blue box). The group level
spatial maps m̃(·, k) = [m̃(1, k), ..., m̃(Nv, k)]> of each
iCAP, k ∈ 1, ...,K, were retrieved by averaging the innovation
frames of every cluster, after normalizing each frame to unit
Euclidean length. In what follows, signals obtained following
the generation of the iCAPs are marked with a tilde.

C. Consensus Clustering

In order to determine the best number of clusters, we em-
ployed consensus clustering [30], a resampling-based approach
which applies K-means clustering on a subsample of the
data and calculates the consensus matrix M. Every element
M(f1, f2) indicates the fraction of all subsamples for which
two frames f1 and f2 are clustered together. The optimum
cluster number can then be obtained by visual observation of
the ordered matrixM, as well as of the cumulative distribution
function (CDF) of M and its area under the curve (AUC)
for different values of K. See [30] for more details on the
methods for clustering selection. Here, we applied consensus
clustering for K ∈ [10, 25] using 10 random subsamples for
every K. Each subsample included the significant innovations
of 45 (80 %) randomly selected subjects, and K-means was
computed for 10 random initializations. To obtain the final
clustering result, we applied K-means clustering with the

TABLE I
OVERVIEW OF NOTATIONS. SIGNALS OBTAINED FOLLOWING THE

GENERATION OF THE ICAPS ARE MARKED WITH A TILDE.

Symbol Description

t ∈ N timepoint (frame) index

v ∈ N voxel index
k ∈ N cluster index

y(v, t); Y ∈ RNv×Nt measured voxelwise BOLD signal

x(v, t); X ∈ RNv×Nt voxelwise activity-related signal

a(v, t); A ∈ RNv×Nt voxelwise activity-inducing signal

AC ∈ RNtNv×1 concatenated activity-inducing signal

i(v, t); I ∈ RNv×Nt voxelwise innovation/transient signal

m̃(v, k); M̃ ∈ RNv×K iCAP spatial maps

ã(k, t); Ã ∈ RK×Nt iCAP-wise activity-inducing signal

c̃(k, t) ∈ {−1, 0, 1} iCAP-wise cluster assignment

optimum K on the entire dataset and kept the optimal result
from 50 random initializations.

D. Time Course Recovery

In what follows, subject level iCAPs’ time courses are
either identified with the conventional unconstrained spatial
regression approach or with our novel transient-informed
spatio-temporal regression approach. The former treats every
timepoint independently and only depends on spatial informa-
tion, while the latter incorporates both spatial and temporal
information.

a) Unconstrained Spatial Regression: In the conven-
tional iCAPs framework [23], time-dependent amplitudes
ã(·, t) = [ã(1, t), ..., ã(K, t)]> at timepoint t are retrieved
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Fig. 2. Schematic representation of an example output iCAP time course
ã(k, ·), the corresponding innovation indicator time course c̃(k, ·), and the
estimated amplitude values βk,i.

by back-projection of the K group level spatial maps M̃ ∈
RNv×K = [m̃(·, 1), ..., m̃(·,K)] onto the activity-inducing
signal a(·, t) of each subject. Positive and negative transients
are fitted separately to minimize the effect of spatial linear
dependence, and the final time courses are defined as the sum
of positive and negative fitted amplitudes, ãP and ãN :

ã(k, t) = ãP (k, t) + ãN (k, t),

with

ã∗
P (·, t) = argmin

ãP (·,t)
||a(·, t)− M̃ãP (·, t)||2s.t. ãP (k, t) ∈ [0,∞[,

and

ã∗
N (·, t) = argmin

ãN (·,t)
||a(·, t)− M̃ãN (·, t)||2s.t. ãN (k, t) ∈]−∞, 0].

b) Transient-Informed Spatio-Temporal Regression: As
mentioned before, the unconstrained spatial regression ap-
proach for extracting the time courses of iCAPs can be
contaminated by spatial dependencies of their maps, since
the latter can be spatially overlapping. The main purpose of
this paper is to introduce an alternative improved method, in
order to overcome this problem and obtain more plausible time
courses.

In principle, the method restricts changes in iCAPs time
courses to moments when the iCAP in question is known
to transition significantly. Information on these innovation
timings is taken from the K-means clustering in the iCAPs re-
trieval step. Then, the design matrix for the regression problem
is constructed with one regressor for each block of constant
activation. In the following, we outline the detailed steps of the
design matrix construction for this spatio-temporal regression
method, namely (i) definition of innovation timings based on
K-means information, (ii) construction of an indicator matrix
C̃ with innovation timings of all K iCAPs, (iii) construction of
a temporal design matrix Bk with one regressor per activity
block of each iCAP k = 1, ...,K, (iv) construction of the
spatio-temporal design matrix S that also incorporates spatial
information of the iCAPs maps to group voxels, and (v)
the explicit formulation of the resulting linear optimization
problem. Fig. 2 shows the assumed model for iCAPs time
courses and Fig. 3 shows a schematic representation of the
spatio-temporal regression design.

i) Innovation timing definition: With hard cluster assignment
of transient frames, only two iCAPs are allowed to transition
at the same time (one positively and one negatively). In order
to allow for more than one iCAP to change simultaneously,
we determine innovation timings using a soft cluster assign-
ment according to the cosine distances of each frame to the
cluster center: let d(k, t) be the cosine distance of innovation
frame i(·, t) to cluster m̃(·, k). Then the frame i(·, t) (i.e., a
significant innovation at timepoint t) will be assigned to all
clusters k for which

d(k, t) ≤ ξdmin(t),

where dmin(t) is the minimum distance of frame i(·, t) to any
cluster and ξ ≥ 1 is a tuning parameter. Note that ξ = 1
corresponds to the hard cluster assignment used during K-
means clustering.

ii) Innovation timing indicator matrix: We then define the
indicator matrix C̃ ∈ RK×Nt denoting the timepoints t with
significant innovations for each iCAP k:

c̃(k, t) =




1, if dP (k, t) ≤ ξdP,min(t),
−1, if dN (k, t) ≤ ξdN,min(t),
0, otherwise,

where dP and dN designate distances to positive and negative
innovation frames iP (·, t) and iN (·, t), respectively. Further,
we will denote the number of innovations for iCAP k by
NIk =

∑Nt

t=1 |c̃(k, t)|, and the total number of innovations
across all networks by NI =

∑K
k=1NIk .

iii) Temporal design matrix: Our aim is to retrieve, for
each iCAP k, a time course ã(k, ·) that is piecewise constant
between two nonzero values in c̃(k, ·). To do so, we must
determine the optimal set of amplitudes βk,i, k = 1, . . . ,K,
i = 1, . . . , NIk + 1 between two significant transients (see
Fig. 2 for a schematic representation). Note that there are
NIk + 1 coefficients to compute for each network.

For each iCAP, we construct the temporal design matrix
Bk ∈ RNt×NIk

+1 that contains the activation segments
separated by the innovations. If

φ(t, k) = 1 +

t∑

τ=1

|c̃(k, τ)|

expresses the index of the segment at hand at time t, the
elements bk(t, i) of Bk are

bk(t, i) =

{
1, if φ(t, k) = i,

0, otherwise.

iv) Spatio-temporal design matrix: Based on Bk, we obtain
the matrix Sk ∈ RNtNv×(NIk

+1) that contains the activation
segments in the concatenated spatio-temporal space:

Sk = Bk ⊗ m̃(·, k),

where ⊗ denotes the Kronecker product. Then, the combina-
tion of all spatio-temporal matrices Sk gives the final spatio-
temporal design matrix S = [S1|S2| . . . |SK ].
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Fig. 3. Schematic representation of the transient-informed spatial regression optimization problem in the case of four iCAPs with NI1 = 4, NI2 = 3,
NI3 = 3 and NI4 = 5 significant innovations, respectively, and NI = 15 innovations in total. This example represents the most restrictive case of hard
cluster assignment (ξ = 1) with at most two iCAPs changing simultaneously (one with positive and one with negative amplitude).

v) Optimization problem: If we then define AC ∈ RNtNv×1

as the concatenated activity-inducing frames (see Fig. 3), the
optimization problem becomes

β∗ = arg min
β
||AC − Sβ||2,

with the optimal amplitudes given by β ∈ RNI+K×1 =[
β1,1, β1,2, . . . , β1,NI1

+1, β2,1, . . . , βK,NIK
+1

]>
. We then

have the iCAP time course amplitudes ã(k, t) = βk,φ(t,k).

III. DATA DESCRIPTION

A. Simulated Data

In order to evaluate our transient-informed regression
approach, we applied both unconstrained regression and
transient-informed regression to a simulated dataset.

To be realistic, we used the iCAPs maps M̃ ∈ RNv×K that
were retrieved from experimental data (see next paragraph).
Then, to simulate block-like iCAP time courses Ãsim ∈
RK×Nt , we first defined transient timings by a Poisson pro-
cess. We simulated data for Poisson constants of 20, 15, 10
and 5 TR, as well as for Poisson parameters as estimated
from experimental data by fitting a Poisson distribution to
estimated innovation timings of each iCAP. In the latter case,
Poisson parameters were ranging from 7.5 for iCAP 1 to 27
for iCAP 18. Simulated time courses for this setting will be
called “realistic” in the following description. The number
of simultaneously transitioning iCAPs was restricted to 3 for
realistic simulations and 4, 6, 8, and 10 for Poisson constants

20, 15, 10 and 5, respectively. Simulated time courses were
then created by setting the segment between two simulated
innovations to a random amplitude drawn from a standard
normal distribution.

To obtain simulated data at the voxel level, we take the
simulated iCAPs time courses Ãsim and generate voxel-wise
activity-inducing signals

Asim = M̃Ãsim + ε,

with additive white Gaussian noise ε.
Activity-inducing signals were simulated without noise and

at noise levels ranging from SNR=10 dB to SNR=-10 dB. For
quantitative evaluation, the root mean squared error (RMSE)
between retrieved and ground truth iCAP time courses was
computed, at each noise level, for 10 repetitions of the
aforementioned simulation process.

B. Experimental Data

We included resting-state fMRI scans of 56 healthy sub-
jects with no history of neurological or psychiatric disorders
(M/F=23/33, age=16.85±5.69, range: 6-29 years) who were
recruited in the scope of the Geneva 22q11 deletion syndrome
cohort. From our initial sample of 80 subjects within the age
range, we excluded 24 subjects based on a strict criterion for
motion; i.e., framewise displacement [31] was computed for
all frames and subjects were excluded if more than 10 % of
timepoints exceeded a threshold of 0.5 mm. Written informed
consent was obtained from participants and their parents for
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subjects younger than 18 years old. The research protocols
were approved by the Institutional Review Board of Geneva
University School of Medicine.

Structural and functional MRI data were acquired at the
Centre d’Imagerie BioMédicale (CIBM) in Geneva on a
Siemens Trio (N=42) and a Siemens Prisma (N=14) 3 Tesla
scanner. Anatomical images were acquired with a T1-weighted
sequence of 0.86×0.86×1.1 mm3 volumetric resolution (192
slices, TR=2500 ms, TE=3 ms, acquisition matrix=224× 256,
field of view=22 cm2, flip angle=8◦), and functional images
with a T2*-weighted sequence of 8 minutes (voxel size=1.84×
1.84 × 3.2 mm3, 38 slices, TR=2400 ms, TE=30 ms, flip
angle=85◦). For the resting-state session, participants were
asked to fixate a cross projected on a screen, let their minds
wander while not thinking of anything in particular and not to
fall asleep.

The fMRI scans were preprocessed using Statistical Para-
metric Mapping (SPM12, Wellcome Trust Centre for Neu-
roimaging, London, UK: http://www.fil.ion.ucl.ac.uk/spm/)
and functions of the Data Processing Assistant for Resting-
State fMRI (DPARSF) [32] and Individual Brain Atlases using
Statistical Parametric Mapping (IBASPM) [33] toolboxes.
The first five frames were excluded to ensure magnetization
stability. Preprocessing steps included realignment, spatial
smoothing with an isotropic Gaussian kernel of 6 mm full-
width half-maximum, co-registration of structural scans to the
functional mean and segmentation with the SPM12 Segmen-
tation algorithm [34]. Average signals in the white matter
and cerebrospinal fluid where regressed from the fMRI data.
Then, frames with high motion were marked according to
their framewise displacement [31] and if exceeding a threshold
of 0.5 mm, were removed and filled in by cubic spline
interpolation. Interpolation of removed frames is necessary as
the implementation of TA deconvolution requires a constant
sampling rate; i.e., a uniformly sampled HRF representation.
TA was then applied in subject space, and the activity-inducing
signals were subsequently normalized to MNI space using
Diffeomorphic Anatomical Registration using Exponentiated
Lie algebra (DARTEL) [29], followed by the aforementioned
thresholding and clustering steps.

IV. RESULTS

A. Consensus Clustering
We applied consensus clustering on all significant

transients for cluster numbers K going from 10 to 25 (see
Supplementary Fig. S1, available in the supplementary files
/multimedia tab) and evaluated the results as proposed in
[30]. According to the CDF and the relative increase of AUC
curves, the optimum number of clusters was K = 18. Visual
observation of the ordered consensus matrices confirmed this
number, since sub-sampled frames were most stably assigned
to the same cluster. In the following, we will thus investigate
results for 18 clusters.

B. Spatial Maps
Spatial maps of iCAPs that were retrieved from 56 healthy

subjects are shown on Supplementary Fig. S2 (available in the

Fig. 4. Jaccard similarity index between spatial maps thresholded at a z-
score of 1.5. Stars indicate significant values (p < 0.01 Bonferroni-corrected)
determined with permutation testing.

supplementary files /multimedia tab). To evaluate recovered
iCAPs in terms of spatial overlap, we computed the Jaccard
similarity index between thresholded maps at a z-score of 1.5.
The Jaccard index is defined as the intersection of two binary
maps k1 and k2 divided by their union:

Jk1,k2 =

∑
v[(m̃(v, k1) > 1.5) ∩ (m̃(v, k2) > 1.5)]∑
v[(m̃(v, k1) > 1.5) ∪ (m̃(v, k2) > 1.5)]

.

Significant similarity values where determined by 1000 ran-
dom permutations of iCAPs voxels. Fig. 4 shows the Jaccard
similarity between the 18 iCAPs. There is significant spatial
overlap between 40 out of the 153 possible combinations of
iCAPs (26.14 %). Highest similarity exists between iCAP 4
(primary visual) and iCAP 8 (precuneus / visual) and between
iCAP 4 and iCAP 1 (higher visual).

These results show that there is high spatial overlap between
iCAPs. In the following sections, we demonstrate that this
spatial overlap can introduce artifacts in time course retrieval,
which can be corrected with transient-informed regression.

C. Simulated Data: Goodness of Fit and Temporal Overlap

In order to compare unconstrained regression to transient-
informed regression with known ground truth transients, we
estimated time courses for different levels of noise and tran-
sient activity in the simulated data. Supplementary Table S1
(available in the supplementary files /multimedia tab) shows
the quality of fit measured by the root mean squared errors
(RMSE) for both regression methods. RMSE values are lowest
for a scenario without noise and increase with higher noise
levels.

Across all assessed cases, transient-informed regression
performs significantly better in retrieving block-wise time
courses. Without noise, transient-informed regression with
ground truth transients gives a perfect fit with RMSE close
to zero. With increasing noise and with higher numbers of
innovations (lower Poisson parameter), the RMSE increases
slightly for transient-informed regression, but remains much
lower than in unconstrained regression. Remarkably, even
with very high noise and many innovations, transient-informed
regression still performs more than 10 times better than
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unconstrained regression. We further evaluated regression with
soft cluster assignment (see Supplementary Fig. S3, first row,
available in the supplementary files /multimedia tab). Here,
the RMSE converges towards values between 0.02 and 0.08,
which is higher than the RMSE in case of regression with
ground truth innovations, but still significantly smaller than in
unconstrained regression. Even the worst fit for hard cluster
assignment (ξ = 1) gives a lower RMSE than unconstrained
regression.

Fig. 5 shows the exemplary case of simulated time courses
with SNR=0 dB and realistic Poisson constants, which demon-
strates that unconstrained regression estimates are clearly off.

Temporal overlap between iCAPs was evaluated by thresh-
olding time courses at an absolute z-score of 1 [23]. In
simulated time courses, there are on average 5 to 6 simultane-
ously active iCAPs (see Supplementary Table S2, available in
the supplementary files /multimedia tab). Temporal overlap is
consistently underestimated in unconstrained regression, while
with transient-informed regression the estimated overlap is
very close to the ground truth.

In simulated ground truth time courses, iCAPs appear with
the same sign in 52 % to 55 % of all pairwise co-activations
(i.e., either both iCAPs time courses positive or both negative,
see Supplementary Table S3, available in the supplementary
files /multimedia tab). In unconstrained regression, same-
signed co-activations are highly over-estimated. In fact, iCAPs
appear almost always with the same sign if they are co-active
(98 % to 100 %). In transient-informed regression, estimated
percentages of same-signed iCAPs appearances are again very
close to the ground truth.

D. Experimental Data: Optimal Soft Assignment Factor

Since in experimental data, the true innovations are not
known, we use cluster assignments resulting from K-means to
retrieve innovation timings (see subsection II-D). To determine
the optimum factor ξ for soft cluster assignment of innovation
frames, we tested the correspondence between estimated and
measured transient amplitudes. Measured amplitudes were
calculated by thresholding normalized iCAPs maps at a z-
score of 1.5, and for each innovation frame i(·, t), computing
the average transient amplitude within the regions part of all
iCAPs showing an innovation. The measured overall amplitude
was defined as the sum of average amplitudes of all transi-
tioning iCAPs, weighted by their distance to the respective
cluster centers. We then correlated these measured innovation
amplitudes with the estimated innovation amplitudes, com-
puted from iCAPs time courses ã(·, t) by summing innovation
amplitudes across all transitioning iCAPs, again weighted by
the distance to the respective cluster centers.

Fig. 6 shows the correlation for different values of the soft
assignment factor ξ. The correlation first increases with higher
ξ, reaches a local maximum of 0.88 at ξ = 1.1 and then
decreases again. For ξ > 1.9 the correlation increases again
due to overfitting to noise at these high innovation numbers.
For high ξ, the results approach the unconstrained regression
solution, for which the correlation between measured and
estimated innovations was 0.96. As an alternative, we also used

the Bayesian Information Criterion (BIC) to evaluate different
soft assignment factors. In this case, the optimum factor at the
knee point of the curve was ξ = 1.25.

We also evaluated ξ on simulated data to validate the quality
measures we used here (see Supplementary Fig. S3, available
in the supplementary files /multimedia tab). These evaluations
on simulated data indicate that both correlation and BIC are
good measures to estimate the optimum soft assignment factor
ξ.

E. Experimental Data: Qualitative Evaluation and Temporal
Overlap

In Fig. 7, we show recovered time courses for one exem-
plary subject. In unconstrained regression results (Fig. 7A),
there appear segments where almost all iCAPs are found
active at the same time (e.g., red box). When comparing
the estimated activations Ã with transient timings C̃ξ=1,
significant differences (here represented for iCAP 9, red arrow)
become evident. With transient-informed regression at ξ = 1
(Fig. 7B), time course changes are restricted to timepoints at
a-priori known transient timepoints, which leads to a better
correspondence between the transitions of Ã and C̃. It is to
note that signs of estimated transients of time courses ã(k, ·)
correspond well with the iCAP signs of c̃(k, ·), even though
this was not explicitly imposed by the algorithm. However,
for ξ = 1 activation changes are very sparse, suggesting that
hard cluster assignment is a too restrictive constraint in the
time course estimation. With transient-informed regression at
optimum ξ = 1.1 (Fig. 7C), activations still correspond very
well with transient timings, suppressing activations that are
most likely wrong (as in iCAP 9, red arrow). Yet, retrieved
signals are more smooth and multiple iCAPs can change at the
same time. The probably falsely detected activations retrieved
during unconstrained regression may have been introduced by
spatial dependence between the iCAPs (Fig. 7D).

To investigate differences in the whole group, we com-
puted temporal overlap and total activity duration in every
subject and compared the results for the different regres-
sion approaches. Again, time courses were thresholded at
an absolute z-score of 1 to find activity timepoints. Across
subjects, temporal overlap in unconstrained regression and
transient-informed regression at ξ = 1 revealed 3.06 ± 0.36
and 3.02 ± 0.39 co-active iCAPs on average, respectively. In
transient-informed regression at optimal ξ = 1.1, temporal
overlap was significantly higher with 3.47 ± 0.44 co-active
iCAPs on average.

From qualitative observation in single subjects (e.g., Fig. 7),
we hypothesized that spatial overlap leads to an over-
estimation of co-activations with the same sign in uncon-
strained estimates. To test for this quantitatively, we com-
puted the percentage of co-activations with the same sign
for pairwise combinations of iCAPs (Fig. 8) and correlated
these co-activation occurrences with spatial Jaccard similarity
(subsection IV-B). In unconstrained regression, 85.99 % of all
pairwise iCAPs co-activations had the same sign, while in
transient-informed regression this was only the case in 45.99 %
(ξ = 1) and 47.56 % (ξ = 1.1) of co-activations. Correlation
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D. Transient-informed, ! = 1.1C. Transient-informed, ground truthB. Unconstrained regression  A. Simulated time courses

RMSE=0.77 RMSE=0.01 RMSE=0.20

Fig. 5. A) Block-like time courses for transients with realistic Poisson constants from 7.5 (iCAP 1) to 27 (iCAP 18). B) to D) Time courses retrieved from
activity-inducing signals, simulated with additive white Gaussian noise at SNR=0 dB B) with unconstrained regression, C) with transient-informed regression
and ground truth transient timings, and D) with transient-informed regression and soft cluster assignment at ξ = 1.1. Unconstrained regression misses many
activity blocks, while transient-informed regression manages to retrieve the ground truth time courses almost perfectly.

B. Bayesian Information CriterionA. Data fit (correlation)
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Fig. 6. Evaluation of soft assignment factors ξ from 1 (hard cluster
assignment) to 3 (all iCAPs allowed to change at timepoints of significant
transients).

of the percentage of same-signed co-activations with Jaccard
similarity was very high for unconstrained regression (ρ =
0.54, p < 0.001), almost zero (ρ = 0.09, p = 0.27) for ξ = 1,
and in between the two previous values (ρ = 0.31, p < 0.001)
for optimal ξ = 1.1.

As a large confound in fMRI analysis is motion, we
conducted an additional analysis to verify whether the over-
representation of same-signed co-activations in unconstrained
regression might be related to motion artifacts. For this, we
computed the overall percentage of same-signed co-activations
across all pairwise iCAPs combinations for each subject and
then calculated the correlation across subjects between this
measure and the average framewise displacement. There was
a tendency relationship in unconstrained regression (ρ =
0.26, p = 0.05) suggesting that in subjects with higher mo-
tion, there is a higher over-representation of same-signed co-
activations. In transient-informed regression this relationship
was entirely corrected, both for ξ = 1 (ρ = −0.01, p = 0.93)
and for ξ = 1.1 (ρ = 0.02, p = 0.86).

V. DISCUSSION

FMRI is one unique tomographic imaging modality to
observe the brain at work in a non-invasive way, however, the
rich structure of the data requires advanced analysis methods.

The iCAPs framework combines two main ingredients: first,
the TA deconvolution with regularization that drives sparse
innovation signals; and, second, temporal clustering of fMRI
frames with strong innovations. As temporal clustering allows
for spatial overlap of the iCAPs maps, the recovery of the
associated time courses from activity-inducing signals can
be impeded if a timepoint-wise spatial regression is used to
which we refer as unconstrained regression. We observed this
effect not only qualitatively in iCAPs’ activity-inducing time
courses of single subjects (e.g., Fig. 7A, red box), but we also
confirmed it quantitatively in simulated and experimental data.
In particular, iCAPs appeared significantly more with the same
sign (activated vs de-activated) when using the unconstrained
regression. The high correlation between measures of spatial
and temporal overlap further corroborates that without the
use of additional constraints, temporal co-activation caused
by spatial dependencies cannot be well differentiated from
true underlying co-activation. The contribution of this work
is to exploit the additional information that is available from
the TA deconvolution procedure; i.e., innovations that en-
code moments of transient activity—information that can be
advantageously incorporated in a spatio-temporal regression
procedure for more consistent results. The recovered activity-
inducing signals then play a crucial role in evaluating more
general measures, for instance, iCAPs configurations of tem-
poral overlap [23] or more advanced temporal models; e.g.,
hidden Markov models [35].

Applied on simulated data with known timepoints of tran-
sient activity, the proposed approach performed significantly
better in recovering block-like time courses than unconstrained
regression, both in terms of estimation error and estimated
temporal overlap between networks. We demonstrated that
temporal overlap between networks is consistently underes-
timated by unconstrained regression, while there is no such
systematic bias in transient-informed estimates. This bias is
towards same-signed co-activations in unconstrained estimates.
These results show that the new procedure exploits well
the additional information (i.e., transient timepoints) that is
available in the simulated setting as ground truth.

For the experimental results, we applied the iCAPs frame-
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C. Transient-informed, ! = 1.1B. Transient-informed, ! = 1 A. Unconstrained regression
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D. Spatial Similarity
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ã(k, t)iCAP5

iCAP9

c̃(k, t)

ã(k, t)iCAP5

iCAP9

iCAP 5
1.5                          4.0

iCAP 9
1.5                          4.0

Fig. 7. A) Estimates from unconstrained regression for one exemplary subject. Top plots show time courses ã(·, t) for all 18 iCAPs and bottom plots
show time courses of iCAP 5 and 9 with their transient indicator functions c̃ξ=1(5, ·) and c̃ξ=1(9, ·). The activation threshold z-score |1| is shown as grey
background. ã(9, ·) contains activity which is not seen in c̃ξ=1(9, ·) (red arrow). Changes in ã(5, ·) correspond better to transient locations (green arrow).
B) Transient-informed regression at ξ = 1 yields a better correspondence between time courses ã(k, ·) and transients c̃ξ=1(k, ·), but contain very sparse,
biologically unlikely activations. C) Transient-informed regression at optimum ξ = 1.1 still suppresses unlikely activations such as in iCAP 9 (red arrow),
but allows multiple iCAPs to change simultaneously and leads to smoother time courses. D) There is significant spatial overlap between iCAP 5 and iCAP
9, which may have introduced the artifacts seen in the time course of iCAP 9 using unconstrained regression.

Unconstrained regression

Transient-informed,  ! = 1.1

Fig. 8. Percentage of appearances with the same sign for pairwise co-
occurrences of iCAPs in unconstrained regression (below diagonal) and in
transient-informed regression with ξ = 1.1 (above diagonal). In unconstrained
regression estimates, iCAPs appear mostly with the same sign.

work on a sample of 56 healthy subjects. We observed signif-
icant spatial overlap between 26 % of retrieved iCAPs maps.
Higher spatial similarity was mainly observed in networks
containing posterior regions (posterior cingulate and visual
networks), which confirms observations by [23] of high spatial
overlap mainly in posterior regions. Spatial overlap is clearly
a feature of resting-state networks when allowed for. We then
used soft cluster assignment of transient frames to account
for the fact that ground truth transients are not known. The
optimal factor for soft cluster assignment was of similar scale

if evaluated in terms of correspondence between measured and
estimated transients (ξ = 1.1) and in terms of BIC (ξ = 1.25),
which was also confirmed in simulations (see Supplementary
Fig. S3, available in the supplementary files /multimedia tab).
For ξ = 1.1, the correlation between spatial and temporal
overlap was still significant, but substantially lower than in
unconstrained regression. However, the estimated percentage
of same-signed co-activations was only slightly higher than
for the most restrictive case ξ = 1 and substantially lower
than in the unconstrained case. Together, these results suggest
that even though the interaction between spatial and temporal
overlap could not be completely avoided, false temporal co-
activations due to spatial dependence, as indicated by an over-
representation of same-sign co-activations, could be signifi-
cantly reduced. Furthermore, motion-related effects on the sign
of co-activations were entirely removed in transient-informed
regression.

Transient-informed regression can be related to more gen-
eral nonlinear regression methods such as segmented regres-
sion, spline regression in the case of piecewise polynomial
functions [36], and locally weighted regression [37], [38].
In those cases, the input space is decomposed in (usually
uniformly distributed) sub-parts, and independent regressions
are applied to each of them. A large body of literature also
exists on the estimation of breakpoints in a segmented regres-
sion problem (e.g., [39], [40]). Approaches inspired by this
principle have been applied in neuroimaging; e.g., dynamic
connectivity regression (DCR) [19], which detects change
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points of FC by subsequently sub-dividing the time courses
in windows with variable length. While segmented regression
methods either assume equally spaced change points or esti-
mate the optimum change points from the data, in the present
work, change points are not estimated during regression, but
taken from the transients that are revealed by the deconvolution
and derivative in the previous processing steps. Further, it is
to note that most segmented regression approaches apply the
same change points to the whole brain while in the present
work, we extract and apply change points that are specific to
each network, which allows for a high flexibility in retrieving
independent time courses for each network. In addition to
change points, a second piece of information is taken from
previous processing steps: the spatial information of the iCAPs
maps is used to group voxels and, therefore, both spatial and
temporal constraints are included in a single spatio-temporal
regression. Since change points are defined based on transients
and no second-order correlations need to be computed, the
approach overcomes limitations related to the selection of the
window size for dFC calculation. Furthermore, it allows to
recover temporal overlap, which is not possible in change point
detection approaches that are based on temporal subdivision
into windows [19], [41] or in point process approaches that
only detect co-activation of brain regions [15], [16], [17]. We
also mention the more recent use of temporal ICA [42] for
fMRI data. Here, temporal statistical independence is favored,
but since there is no derivative involved, temporal overlap can
as well not be accounted for, and thus the method has only
been deployed for fast-TR and long acquisitions.

The iCAPs approach is also closely related to other method-
ologies that allow networks to be temporally overlapping. The
probably most widely used such methodology to date is ICA
that relies on a surrogate measure for statistical independence
[4]. Conventional ICA for fMRI deploys this criterion in
the spatial domain due to the dimensionality of the data
(Nv >> Nt) and concatenates all subjects’ data in the tempo-
ral dimension. Therefore, the estimated sources at the group
level are spatial maps and the recovery of the individuals’ time
courses is required, for which three main approaches have
emerged [43], [44]. First, back-reconstruction [4] of temporal
principal component analysis (PCA) reduced data recovers
time courses by applying the inverse PCA projections. Second,
the dual regression technique [45] uses the group-level maps
as regressors on the individual complete functional data. The
obtained time courses are then normalized and used on their
turn as regressors to obtain individual maps. Third, spatially
constrained ICA [44] relies on a similar approach for time
course recovery, but estimates individual maps first and then
uses them as regressors on the individual BOLD signals for
each subject separately. In the latter two approaches, time
courses are basically recovered by spatial regression for each
timepoint, which is essentially the same procedure as in the
original iCAPs framework [24] that we called “unconstrained
regression” in the current paper. Similar to iCAPs, these
ICA-based approaches allow to recover temporal overlap of
brain networks (e.g., [46]). Contrary to ICs, iCAPs can be
spatially correlated (see also Supplementary Figs. S4 and S5,
available in the supplementary files /multimedia tab), which

requires the introduction of constraints for the successful
recovery of temporal overlap as proposed in the current paper.
When accounted for this artifact, the iCAPs framework is
unique in its ability to give access to spatially and temporally
overlapping brain networks.

It is noteworthy that statistical dependence is not equivalent
to spatial overlap; i.e., spatial ICs being uncorrelated does
not necessarily mean that they cannot contain spatial overlap
[47], [48]. However, overlapping areas in ICs mostly appear
with different sign to ensure that the maps are spatially
uncorrelated. In practice, ICs appear thus either spatially seg-
regated or introduce negativity, which impedes interpretability.
Additionally, ICA is based on a source separation model that
does not explicitly include a noise term and consequently, ICs
of interest have to be visually inspected and selected, whereas
TA already includes denoising and deconvolution. With the
iCAPs framework, we found multiple networks including the
posterior cingulate cortex that do not only include the DMN
[23], an observation that had never been revealed before.

From a neuroscientific perspective, the present results sup-
port the view of functional networks of distributed brain
regions that co-activate with substantial temporal overlap. Our
results further improve the iCAPs approach with better and
more robust time course recovery. The fact that iCAPs seem
to co-activate and -deactivate in approximately a balanced
way corroborates recent findings using other methodologies.
For instance, dominant spatial patterns of voxel-wise sliding-
window dFC are characterized by roughly task-negative versus
-positive networks, however, with notable subsystems of each
network that change side [49]. The organization of the brain
in two opposing networks has also been explained using
topographic principles on the cortical surface derived from
resting-state FC [50]. Similar dynamic behavior was reported
by [51] using graph-based FC and measures of modular net-
work organization. In terms of potential applications, dynamic
analysis of large-scale brain networks is of high interest in the
investigation of brain development with age (as demonstrated,
for example, in [52], [53], [54], [55], [56]). In section S1.
Supplementary Results (available in the supplementary files
/multimedia tab), we show that temporal properties of iCAPs
retrieved with the method proposed here are correlated with
age, which further supports the relevance of dynamic net-
work activity for development. Other applications of interest
include the investigation of the relationship between brain
function and cognition [57], or in the search for alterations
and biomarkers in clinical populations (e.g., in patients with
schizophrenia [58], autism [59], or Alzheimer’s disease [60]).
Finally, the proposed methodology is not restricted to the
analysis of resting-state data since task-based paradigms can
also be analyzed, which is of particular interest when probing
into functional brain mechanisms related to cognition and
behavioral performance [57], [61].

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have addressed the crucial step in the iCAPs framework
of activity-inducing time course recovery, which is essential
to properly quantify temporal overlap of functional brain
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networks. We showed that the conventional unconstrained
regression approach is hindered by spatial dependencies of
the iCAPs maps, which cannot be avoided as these maps
are spatially overlapping and not orthogonal. We therefore
have introduced a transient-informed spatio-temporal regres-
sion scheme, which incorporates knowledge on transients and
finds the activity-inducing signal levels by a global fit. We
validated our approach on simulated data and demonstrated
its potential on experimental data.

The iCAPs framework is still a fairly new approach for
large-scale network retrieval, and even though it is unique in its
potential to retrieve spatially and temporally overlapping net-
works, there are still possible improvements that can be made
in the framework. First, in the TA step, the HRF deconvolution
using TA could possibly be improved by the consideration
of a variable HRF model [62]. Second, the selection of the
number of clusters for retrieval of iCAPs maps is not unique.
Here, we selected K = 18 clusters since consensus clustering
showed high stability, which was not significantly improved
by considering more clusters. However, clustering was also
fairly stable for different K. Future work should explicitly
address this question by investigating stability and consistency
for different numbers of clusters.

Finally, physiological noise such as motion or spontaneous
breath hold is always a confounding factor. Here, we used
scrubbing and regression of white matter and CSF signals to
account for such artifacts. We further demonstrated that the
effect of motion on erroneous time course estimation could be
corrected by using transient-based constraints. However, fur-
ther research should investigate whether there is a relationship
between all types of physiological noise and the occurrence
or co-occurrence of particular networks.
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