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Evaluation and Comparison of Current Fetal
Ultrasound Image Segmentation Methods for
Biometric Measurements: A Grand Challenge
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Abstract—This paper presents the evaluation results of the
methods submitted to Challenge US: Biometric Measurements
from Fetal Ultrasound Images, a segmentation challenge held
at the IEEE International Symposium on Biomedical Imaging
2012. The challenge was set to compare and evaluate current fetal
ultrasound image segmentation methods. It consisted of automat-
ically segmenting fetal anatomical structures to measure standard
obstetric biometric parameters, from 2D fetal ultrasound images
taken on fetuses at different gestational ages (21 weeks, 28 weeks,
and 33 weeks) and with varying image quality to reflect data
encountered in real clinical environments. Four independent
sub-challenges were proposed, according to the objects of interest
measured in clinical practice: abdomen, head, femur, and whole
fetus. Five teams participated in the head sub-challenge and
two teams in the femur sub-challenge, including one team who
tackled both. Nobody attempted the abdomen and whole fetus
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sub-challenges. The challenge goals were two-fold and the partic-
ipants were asked to submit the segmentation results as well as
the measurements derived from the segmented objects. Extensive
quantitative (region-based, distance-based, and Bland–Altman
measurements) and qualitative evaluation was performed to com-
pare the results from a representative selection of current methods
submitted to the challenge. Several experts (three for the head
sub-challenge and two for the femur sub-challenge), with different
degrees of expertise, manually delineated the objects of interest
to define the ground truth used within the evaluation framework.
For the head sub-challenge, several groups produced results that
could be potentially used in clinical settings, with comparable
performance to manual delineations. The femur sub-challenge
had inferior performance to the head sub-challenge due to the fact
that it is a harder segmentation problem and that the techniques
presented relied more on the femur’s appearance.

Index Terms—Challenge, evaluation, fetal biometry, image
quality, segmentation, ultrasound (US).

I. INTRODUCTION

U LTRASOUND (US) imaging is the modality of choice
in many clinical applications due to its non-invasive

nature, reduced cost, and real-time acquisition, compared to
other imaging modalities, such as computed tomography (CT)
or magnetic resonance imaging (MRI). However, US images
are patient-specific, operator-dependent, and machine specific,
which makes image appearance tightly linked to patient char-
acteristics, the expertise of the clinician acquiring the images,
and the machine used. Besides, due to the properties of image
formation intrinsic to US images, they can be affected by signal
dropouts, artefacts, missing boundaries, attenuation, shadows,
and speckle, making US one of the most challenging modalities
to work with. Depending on the orientation of the transducer,
the image obtained might not have the expected anatomical
significance and can be distorted or incomplete. Protocols are
defined to acquire the best possible images while retaining
the characteristics of the object of interest (e.g., shape and
anatomy).
2D fetal US biometrics have been extensively used to es-

tablish (or confirm) the gestational age of the fetus, estimate

0278-0062 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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its size and weight, and identify growth patterns and abnor-
malities [1]. Typically, fetal size is estimated by using 2D
US measurements of head, abdomen, and femur, at around
20 weeks gestational age [2]. These measurements, and any
at later gestations, are then compared with population-based
growth charts to identify normal or abnormal growth. In an
attempt to reduce intra- and inter-observer variability, and
create more accurate and reproducible measurements [3],
[4], automatic methods for fetal biometric measurements
have been investigated recently. Furthermore, automated
fetal biometry has been shown to improve the work flow
efficiency by reducing the examination time and the number
of steps necessary for standard fetal measurements [5]. This
would also benefit less experienced users.
It is worth noting that automated analysis of US images is

hard, and methods developed for MRI and CT do not neces-
sarily work on US images. Furthermore, general methods for
US image segmentation do not exist, and the segmentation
strategies are application dependent [6]. The automatic segmen-
tation methods previously developed in the fetal imaging field
focused on using segmentation as an intermediate processing
step for estimating standard biometric measurements. Most of
the methods attempted to segment the fetal femur [7]–[10],
the fetal head [11]–[16], or both [17]–[19]. The methods were
based on morphological operators, active contour models,
Hough transform, deformable models, or machine learning
approaches. Low level features and textures were frequently
used to find the femur and the skull, because these have a
brighter response [Fig. 1(a) and (b)]. However, the task of
segmenting the abdomen is more challenging and only few
works have attempted it up-to-date [14], [20], [21]. General
methods retrieving all standard fetal biometric measurements
used in antenatal clinical practice are limited [22], [23], [4],
[24]. Carneiro et al. [22] used a discriminative constrained
probabilistic boosting tree classifier to segment structures of
interest and to reproduce standard biometric measurements
for all three objects of interest (head, abdomen, and femur) in
fetal US images. They developed and patented a commercial
system, called Auto OB [4], which is integrated into Siemens
software and that can detect, apart from head, abdomen, and
femur biometric measurements, the humerus length (HL) and
the crown-rump length (CRL). This is the only system for fetal
biometry that has been translated into clinical practice.
Among the different objects of interest, the simplest segmen-

tation and detection appears to be the head [Fig. 1(a)], because
it presents clear boundaries and texture similarities among in-
dividuals The fetal femur [Fig. 1(b)] can lack internal texture,
which can make its accurate delineation difficult, but most of
the time strong edges are present in most of their contour ex-
cept in the extremities. The abdomen [Fig. 1(c)] and the whole
fetus [Fig. 1(d)] segmentations are the hardest because they lack
clear boundaries and have inconsistencies in the internal struc-
tures among individuals. Furthermore, the healthy fetal body
changes its shape across gestation, as a result of growth, and
the different organs that surround the object of interest create
high pose and shape variability for the same structure.

Fig. 1. Ultrasound images of (a) the fetal head, (b) the fetal femur, (c) the fetal
abdomen, and (d) the whole fetus.

This paper presents the evaluation and comparison of the rep-
resentative selection of current methods presented during Chal-
lenge US: Biometric Measurements from Fetal Ultrasound Im-
ages1, a segmentation challenge held in conjunction and with
the support of the IEEE International Symposium on Biomed-
ical Imaging (ISBI) 2012. The challenge consisted of four in-
dependent sub-challenges according to the objects of interest
measured in clinical practice on 2D fetal ultrasound images:
abdomen, head, femur, and whole fetus (Fig. 1). The images
were selected at three different gestational ages (21 weeks, 28
weeks, and 33 weeks) and with varying image quality to repre-
sent real clinical environments. The gestational ages were se-
lected from 20 weeks onwards, as this is representative of a
real clinical setting for this particular application. Several ex-
perts, with different degrees of expertise, manually delineated
the objects of interest to define the ground truth, which was used
within the segmentation framework. Extensive quantitative and
qualitative evaluation was performed to assess the performance
of the methods with respect to manual delineations.
Apart from the segmentation results, participants were asked

to estimate biometric measurements derived from the seg-
mented objects, which are the values used clinically for fetal
growth assessment. The evaluation of the segmentation results
and derived measurements were performed separately, since
a segmentation result can be poor and still lead to good mea-
surements. One key aspect missing in most US strategies is the
ability to incorporate image quality within the comparison, to
understand which methods are more susceptible to changes in
appearance. We have deliberately included analysis on data of
different degrees of difficulty to better understand degradation
of methods with quality.
Five teams participated in the head sub-challenge and two

teams in the femur sub-challenge, including one team who
tackled both. Nobody attempted the abdomen and the whole

1http://www.ibme.ox.ac.uk/challengeus2012
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fetus sub-challenges. This is to our knowledge the first seg-
mentation challenge undertaken in the fetal US imaging field,
and thus provides both a reference publication from which to
gauge how well a representative selection of current methods
work today and may encourage others to work in this area.
In Section II, we introduce the challenge aims, the description

of image data sets used within the challenge, and the descrip-
tion of the fetal biometric measurements for the structures of
interest. Section III presents the evaluation metrics used to
compare the segmentation results and derived measurements.
Section IV introduces the ground truth and its reproducibility
study. Section V summarizes the methodologies presented to
the challenge. Quantitative and qualitative results are described
in Section VI. A discussion and conclusions are given in
Sections VII and VIII, respectively.

II. CHALLENGE US: BIOMETRIC MEASUREMENTS
FROM FETAL ULTRASOUND IMAGES

A. Organization

The challenge was set up to automatically segment anatom-
ical structures to measure standard obstetric biometric param-
eters, from 2D fetal ultrasound images, taken on fetuses at
different gestational ages (21 weeks, 28 weeks, and 33 weeks).
The segmentation challenge was formed by 4 sub-challenges,
named fetal head, fetal abdomen, fetal femur, and whole fetus.
The participation was open to those wanting to attempt one or
several of these sub-challenges, presenting different degrees
of difficulty. General solutions applicable to all four sub-chal-
lenges had more value if the performance was good. Only
methods based on automatic or semi-automatic segmentation
techniques were considered. The challenge was open to teams
from academia and industry. Published methods were allowed
to be submitted. The results from each team were automatically
compared to the ground truth, obtained from expert manual
segmentations and measurements. The challenge goals were
two-fold, since segmented objects and derived clinical mea-
surements were both considered to assess the quality of the
methods. Two months were given to develop the methods and
submit the results.

B. Description of Image Data Sets

All the images from this study were acquired by trained clin-
icians using the same mid-range ultrasound machine Philips
HD9 and following the protocols defined by the INTER-
GROWTH-21st study [25]. Most of the images were acquired
with a 7-3MHz transducer. In case of later gestations or mothers
having a high body mass index, the 5-2 MHz transducer was
preferred. The images were in DICOM format, anonymised,
and automatically cropped (to remove the header) to a size
of 756 546 pixels before distribution. Spatial resolution (in
millimeters) varied among the images.
Fetal head, abdomen, and femur sub-challenges had a total of

90 images each in anonymised DICOM format and the whole
fetus sub-challenge a total of 14 images, as these were not rou-
tinely acquired on site. Three different gestational ages were

considered at 21, 28, and 33 weeks with a total of 30 images
per gestational age for each of the structures considered. The
gestational ages to include in this challenge have been carefully
selected after clinical advice, providing a good representation of
the challenges encountered across gestation. Furthermore, for
each gestational age, three groups of different qualities were
obtained. These were graded as low, medium, and high quality
and were selected as objectively as possible to create real image
data sets as used in clinical practice. The reader is referred to
Appendix A for details on the image scoring criteria used within
this framework.

C. Participation in the Challenge

A total of six teams submitted results to the challenge. Five
teams participated in the fetal head sub-challenge:

Foi et al. [26], Head contour extraction from the fetal ul-
trasound images by difference of Gaussians revolved along
elliptical paths. (Finland).
Ciurte et al. [27], A semi-supervised patch-based ap-
proach for segmentation of fetal ultrasound imaging.
(Switzerland).
Stebbing and McManigle [28], A boundary fragment
model for head segmentation in fetal ultrasound. (U.K.).
Sun [29], Automatic fetal head measurements from ultra-
sound images using circular shortest paths. (Australia).
Ponomarev et al. [30], A multilevel thresholding com-
bined with edge detection and shape-based recognition for
segmentation of fetal ultrasound images. (Russia).

Two teams participated in the femur sub-challenge:
Ponomarev et al. [30], A multilevel thresholding com-
bined with edge detection and shape-based recognition for
segmentation of fetal ultrasound images. (Russia).
Wang et al. [31], Automatic femur segmentation and
length measurement from fetal ultrasound images.
(Taiwan).

Only the method by Ponomarev et al. [30] attempted to solve
both sub-challenges simultaneously. No attempts were made on
abdomen and whole fetus segmentations. This could be due to
the fact that these two sub-challenges were harder because the
images tend to have fuzzy boundaries and present inconsisten-
cies in the internal structures among individuals. Another pos-
sible explanation would be the limited amount of time the teams
had to develop a new method. In the rest of the paper, we will
only focus on the head and femur sub-challenges.

D. Standard Fetal Biometry

Three standard fetal biometric measurements of the head
were considered: Biparietal Diameter (BPD), Occipito-Frontal
Diameter (OFD), and Head Circumference (HC), as shown in
Fig. 2(a). Several ways of measuring BPD and OFD exist (e.g.,
outer-to-outer, inner-to-outer). In this paper, BPD and OFD
are defined as in the INTERGROWTH-21st study [25]. These
measures are shown in Fig. 2(a). The HC parameter is derived
from BPD and OFD parameters as .
Another standard measure for fetal biometry consists of mea-
suring the femur length (FL). The FL is measured from the outer
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Fig. 2. (a) Fetal Head Biometric Measurements: Head Circumference (HC),
Biparietal Diameter (BPD), and Occipito-Frontal Diameter (OFD). (b) Fetal
Femur Biometric Measurement: Femur Length (FL).

TABLE I
RESULTS REQUIRED FOR EACH SUB-CHALLENGE

edges of the bone, without taking into account the trochanter of
the femur, as shown in Fig. 2(b).

E. Submission of Results

The results submitted depended on the sub-challenge at-
tempted, as summarised in Table I. For the fetal head, due to
the huge difficulty in manually delineating the actual objects
in a variety of ultrasound images, the binary image resulting
from the ellipse fitted object was used as the result. The value
for the binary image pixels on the contour and inside of the
ellipses needed to be equal to 1 (foreground) and the rest equal
to 0 (background).
For the fetal femur, the whole segmented structure needed to

be obtained as part of the segmentation challenge. Recent clin-
ical evidence [32], [33] has shown that other femoral character-
istics, apart from the femur length, are important to assess fetal
bone growth and development. Automatic and accurate tools for
whole femur bone segmentation, although limited, have shown
great potential [34], [35] and are able to perform more complex
measurements for a better fetal bone development assessment.
This is the clinical motivation for incorporating whole femur
bone segmentation into this challenge.
From the segmented objects, the biometric measurements

could be derived and needed to be presented as part of the
results, with the binary images. The measurements needed
to be reported in millimeters, using the DICOM information
providing the resolution of each image.

III. EVALUATION METRICS

The evaluation metrics chosen attempt to assess the quality of
the segmentation as well as the measurements. Three different
criteria were considered. First, region-based metrics were se-
lected to assess the precision, specificity, sensitivity, and Dice
similarity. Then, distance-based metrics were used to quantify
the local variability existing between the proposed methods and
manual delineations. Finally, Bland–Altman plots were used to

compare against clinical measurements, to show the agreement
between the proposed methods and the experts. These metrics
are defined in the following.

A. Region-Based Metrics

Region-based evaluation metrics, as defined in [36], were se-
lected as a way of assessing precision and accuracy of different
segmentation methods. Due to the difficulty of establishing true
segmentations, segmentation results were compared to manual
delineations of the structures, performed by several operators
twice on each image. The results per image were averaged to
obtain the overall performance for a particular expert and for all
experts. In the following, let denote the segmentation re-
sults for a method M and the ground truth delineated by
the experts. All region-based metrics are given as percentages.
1) Precision: The precision assesses the reproducibility

of each segmentation method. characterizes the common
amount of tissue in both and as a fraction of the total
amount of tissue in the union of and as

(1)

2) Accuracy: True positive (TP) and true negative (TN)mea-
sures are calculated to assess the accuracy of each method [36].
TP is the fraction of the total amount of tissue in the true delin-
eation that was covered by the method and represents the delin-
eation sensitivity. It is defined as

(2)

TN is the fraction of the total amount of tissue in the reference
region that does not belong to the object and was excluded
from the method. It represents the delineation specificity and is
defined as

(3)

where denotes the absolute complement of a set for a fixed
reference region . The greater the TN values, the better the
delineation accuracy of a method.
3) Dice Similarity: Dice similarity gives an indication of

the mutual overlap between and . is defined as

(4)

B. Distance-Based Metrics

Along with area overlap measures defined previously, dis-
tance-based metrics, as described in [37], are incorporated into
the evaluation to provide different ways of assessing the er-
rors of the different segmentation methods. These measures are
given in millimeters.
1) Maximum Symmetric Contour Distance: Let and

be the contours of and , respectively.
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denotes a contour element of and a contour ele-
ment of . The shortest distance of a pixel to
is defined as

(5)

where denotes the Euclidean distance. The Maximum Sym-
metric Contour Distance (MSD), also known as Hausdorff dis-
tance [38], can then be expressed as

(6)

This measure is sensitive to outliers and returns the maximum
error, which represents the worst case scenario.
2) Average Symmetric Contour Distance: TheAverage Sym-

metric Contour Distance (ASD) corresponds to the average of
all distances between and defined as

(7)

where denotes the length of the contour. A perfect segmen-
tation would return a value of 0 mm.
3) Root Mean Square Symmetric Contour Distance: The

Root Mean Square Symmetric Contour Distance (RMSD) is de-
fined in (8), as shown at the bottom of the page. The RMSD
is similar to the ASD but large distance differences between
contours will return a greater value, penalizing large deviations
from the ground truth.

C. Bland–Altman Plots

Bland–Altman plots [39], [40] assess the agreement between
two sets of measurements. In this study, Bland–Altman plots
are used to compare the measurements derived from the seg-
mentation results to the clinical measurements performed by the

different experts. This technique can also be used to obtain the
inter- and intra-observer variability measurements.

D. Efficiency

Average segmentation times, software, and hardware used by
each method are reported in the paper but none of the methods
had been implemented for efficiency so such times are not a
guide to practical deployment.

E. Failures

The failures of a method are reported individually on each
image when no overlap exists between the segmentation re-
sult and the ground truth delineated by the experts. Failures are
excluded from the segmentation evaluation and reported sepa-
rately.

IV. GROUND TRUTH AND ITS REPRODUCIBILITY

A. Fetal Head Sub-Challenge

A total of three experts, with different degrees of expertise,
participated in defining the fetal head sub-challenge ground
truth, by fitting an ellipse to the object of interest twice on
each image, as well as performing the corresponding standard
clinical measurements (HC, BPD, OFD). The experts for the
head sub-challenge had the following level of expertise.
• Expert 1: Clinician (fetal medicine specialist) with 10 year
postgraduate experience in fetal US scans.

• Expert 2: Clinician (obstetrician) with two years experi-
ence in fetal US scans.

• Expert 3: Engineer with 1 year of experience.
The intra- and inter-observer variability was calculated

independently for each expert using the metrics defined in
Section III. The average intra-expert variability results (re-
sulting from comparing manual delineations) over all images
are presented in Table II. The intra-expert variability is similar
for all three experts. Although there were minor differences
reflecting the levels of experience, these were not statistically
significant. Expert 3, who was the less experienced, obtained
slightly inferior results than the other two experts, but still very
close.
The average inter-expert variability results over all images

are presented in Table III comparing the manual delineations
from different experts two by two. The results are very similar
between all combinations of experts.
The intra- and inter-expert variability of the fetal biometric

measurements can be assessed using Bland–Altman plots, as
reported in Tables IV and V, respectively. The mean values

(8)
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TABLE II
INTRA-OBSERVER VARIABILITY OF MANUAL DELINEATIONS: FETAL HEAD

TABLE III
INTER-OBSERVER VARIABILITY OF MANUAL DELINEATIONS: FETAL HEAD

TABLE IV
INTRA-OBSERVER VARIABILITY OF CLINICAL MEASUREMENTS: FETAL HEAD

TABLE V
INTER-OBSERVER VARIABILITY OF CLINICAL MEASUREMENTS: FETAL HEAD

in Table IV correspond to the bias between both measure-
ments for each expert. The standard deviations represent
the random error existing between measurements (repro-
ducibility). Standard deviations in Table V represent the
reproducibility of the measurements between experts. Both
the intra- (Table IV) and inter-expert (Table V) variability
have a lower standard deviation than previously reported
values [41], [42], indicating a higher reproducibility. This is
due to the fact that this study was performed on a different
clinical database to the ones used in [41] and [42] and that
the experts had different levels of expertise. In the remaining
of the paper, the reproducibility of the biometric measure-
ments submitted to the head sub-challenge will be compared
to those reported in Tables IV and V.

B. Fetal Femur Sub-Challenge

For the femur sub-challenge, two experts performed manual
delineation of the fetal femur andmeasured the FL twice on each
image. Delineation of the whole femur is not done in routine
clinical practice, therefore only two experts were considered in
this case to account for manual tracing variability, whereas more

TABLE VI
INTRA- AND INTER-OBSERVER VARIABILITY OF MANUAL DELINEATIONS:

FEMUR

TABLE VII
INTRA- AND INTER-OBSERVER VARIABILITY OF CLINICAL MEASUREMENTS:

FEMUR LENGTH

clinicians are experienced in biometric measurements. The ex-
perts had the following level of expertise.
• Expert 1: Engineer with more than three years of experi-
ence in fetal femur segmentation.

• Expert 2: Clinician (obstetrician) with two years experi-
ence in fetal US scans.

Intra- and inter-expert variability are presented in Table VI.
Both experts present similar results for all the metrics used. The
results are inferior to those presented for the head, because the
accurate delineation of the structures is more challenging and
subjected to higher variability due to the fuzzy boundaries and
presence of artefacts.
The intra- and inter-expert variability of the fetal biometric

measurements can be assessed using Bland–Altman plots, as re-
ported in Table VII. Similarly to the fetal head sub-challenge,
the intra- and inter-expert variability (Table VII) show a higher
reproducibility than those reported in [41], [42]. The FL mea-
surements submitted to the femur sub-challenge will be assessed
based on Table VII.

V. METHODS

This section summarizes the methods that were submitted
to the different sub-challenges. For more details, we refer the
reader to the individual papers.

A. Fetal Head Sub-Challenge

Five very different methods were submitted to the fetal
head sub-challenge. The Foi et al. method [26] used signal
processing operations combined with an optimization frame-
work. The methods of Ciurte et al. [27] and Sun [29] used
graph-based approaches. Stebbing and McManigle [28] used
a machine learning approach based on a boundary fragment
model resulting from a training step. The Ponomarev et al.
method [30] defined multiple thresholds combined with edge
detection and shape-based recognition and then fitted an ellipse
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Fig. 3. (a) Surface modelling the fetal skull by revolving a difference of Gaus-
sians along the elliptical path. Negative parts of the surface are not visible,
hidden by the US image. (b) Example on a 21 week fetus using the proposed
approach. The central ellipse is the fitted ellipse. The outer ellipse is used for
OFD and BPD measurements.

to the resulting binary image. A summary of each method is
presented in the following.
1) Head Contour Extraction by Difference of Gaussians Re-

volved Along Elliptical Paths: Foi et al. [26] proposed a fully
automatic method based on fitting an ellipse to each US image
by modelling the fetal head contour. This was achieved by min-
imizing a cost function with respect to the parameters of the
ellipse, by using a global multi-scale multi-start Nelder–Mead
algorithm [43]. The images are first preprocessed to fill in the
black background outside the scanned area by extrapolating the
image inside the scanned area using a constrained iterative low-
pass filter in the discrete cosine transform (DCT) domain. Then,
image contrast and intensity are regularized by leveraging DCT-
domain smoothing in order to provide smoothly varying local
normalization of intensities. For a given ellipse, the surface that
models the skull of the fetus is obtained by revolving a differ-
ence of Gaussians along the elliptical path, as shown in Fig. 3(a).
The cost function can then be defined as the product of the
image and the surface integrated over the image domain. The
cost function is minimized globally using a multiscale multistart
Nelder–Mead algorithm. The convergence of the optimization
algorithm is accelerated by using a coarse-to-fine multi-scale
approach, starting the process at a lower resolution and using the
result to initialise higher resolutions. The final biometric mea-
surements are derived from the major and minor axes after ob-
taining outer-to-outer measures of the skull. Fig. 3(b) shows the
fitted ellipse and the inner and outer ellipses after incorporating
the skull thickness. The method did not require any tuning of
parameters.
2) Semi-Supervised Patch-Based Approach: Ciurte et al.

[27] proposed a semi-supervised patch-based segmentation
approach based on a previous work [44]. Each US image is
represented by a graph of image patches (Fig. 4). A continuous
min-cut partition [45] of the graph and a fast minimization
scheme solve the segmentation problem. The method is
semi-supervised, and therefore initial labels have to be defined
on each image, to act as soft priors. In general, the labels are
defined by doing a few clicks on the image, resulting in an
initial polygonal shape. The automatization of the initialization
was performed by setting two concentric elliptic labels at the
middle of the image, as shown in Fig. 4. This assumes that the
head is always at the center of the image, which is not true

Fig. 4. Block diagram of the Patch-based Continuous Min-Cut (P-CMC) seg-
mentation for fetal ultrasound images. Fetus of 28 weeks of gestational age. x
and y correspond to two different pixels in the image (nodes of the graph). a is
the size of the searching window and b represents the patch size. w(x,y) is the
similarity measure between pixels x and y.

Fig. 5. (a) Original image with edge fragments overlaid (yellow segments).
(b) Edge map derived from feature asymmetry with final edge classification
overlaid (blue: inner boundary; red: outer boundary).

in all cases. Otherwise, manual initialization was necessary.
This was the case for around half of the images in the data
set. The segmentation returns a binary object with irregular
contour (red contour in Fig. 4), which is used in a second
step to determine its corresponding elliptical binary object.
For this purpose, the axis of elongation [46] of the resulting
object (or axis of least second-order moment) is computed. The
elongation axis corresponds to the OFD measurement, and the
BPD can be computed perpendicularly to it, for the same center
of mass. An example of the resulting ellipse is given in Fig. 4
(green contour). The parameter setting was constant for all tests
( , scaling factor , and regularization
term ).
3) A Boundary Fragment Model for Random Forest Edge

Classification: Stebbing and McManigle [28] proposed an au-
tomatic method, based on a boundary fragment model, con-
structed using a machine learning approach, extending previous
work [47]. The method relies only on edge information, derived
from feature asymmetry [48]. From the edges, the position and
orientation of edge pixels can be retrieved. A boundary frag-
ment model [Fig. 5(a)] is then used to determine the centroid
and scale of the skull by using a boosted classifier [49], which
allows to identify the optimal centroid and scale of the fetal skull
by using a mean-shift method. The same boundary fragment
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Fig. 6. Ellipse fitting step. (a) A dual ellipse fitted to inner (blue) and outer (red)
contours. (b) Final result used for biometric measurements (red: outer contour).

model is then used in a Random Forest framework to differ-
entiate between inner, outer edges, and background [Fig. 5(b)].
An iterative dual ellipse fitting step is used to find the best inner
and outer skull ellipses (Fig. 6) to derive the biometric measure-
ments. The training samples were obtained from a set of images
different from the challenge data set. Half of the training set
was used to build the boundary fragment model and the other
half was used to train the detection and delineation classifiers.
The training data was split in half randomly, only once. The pa-
rameters used within the random forest framework were set em-
pirically. Those needed to create the boundary fragment model
were selected in line with [49]. Most of these parameters have
little impact on the final performance and can be set within a
wide range.
4) Circular Shortest Paths: Sun [29] proposed an automatic

method based on a graph-based approach called circular shortest
paths (CSP), developed in previous work [50]. The method is
divided into three main steps: circular shortest path extraction,
robust ellipse fitting, and finding the outer edge of the skull. The
CSP algorithm ensures a closed boundary by forcing the starting
and ending points of a shortest path to meet. The summation of
pixel values along the object boundary is maximized to obtain
the optimal path. The CSP algorithm is run up to three times.
The third time will only be in the rare cases where BPD and
OFD values are greater than a threshold. For each iteration, the
image is converted to polar coordinates, a CSP is found, and
an ellipse is fitted. The robust ellipse fitting relies only on the
50% brightest pixels on the circular shortest path, which are
most likely to belong to the skull. When the CSP is run for the
third time, the ellipse center is selected and the side of the el-
lipse which best fits the data is used to constraint the location
and scale of the ellipse. Within the new constrained region, the
CSP is run again and the new ellipse is found. The outer edge
of the skull is then retrieved by calculating the image gradient
in the radial direction in the neighborhood of the fitted ellipse
boundary, pointing towards the outside of the skull, and finding
an edge. The resulting edge offset can then be added to the fitted
ellipse to find the outer edge of the skull to derive the biometric
measurements. An example is given in Fig. 7. The parameter
settings involved defining an image center, which was initially
used for CSP finding; using the top 50% brightest pixels along
the resulting CSP to fit the ellipse; and fixing the upper limits of
BPD and OFD values to 90 and 105, respectively, for the third
CSP pass. The parameter setting was constant for all tests.

Fig. 7. (a) Closed contour (green) resulting from the CSP algorithm. (b) Final
fitted ellipse overlaid to the original image.

Fig. 8. (a) Original image. (b) Preliminary segmented objects. (c) Inscribed
head ellipse.

5) AMultilevel Thresholding CombinedWith Edge Detection
and Shape-Based Recognition: Ponomarev et al. [30] used a
multilevel thresholding approach to segment the fetal skull com-
bined with edge detection and shape-based recognition. This ap-
proach makes use of the difference in intensities between the
bone and the image background, and assumes that hard tissue
(bone) appears brighter than the surrounding objects in the US
images. The methodology is based on multiple intensity level
thresholds. For each binary image obtained, the connected com-
ponents are retrieved and a measure of thinness and elongation
is calculated. The candidate objects are found after applying em-
pirically chosen thresholds. A size constraint was also applied
to remove small objects. The objects resulting from the multi-
thresholding were grouped into a cluster from which mean edge
contrast was calculated to estimate the best object intensity rep-
resentation. The result for each cluster was transformed into a
binary image, as shown in Fig. 8. The binary image contains
spurious objects due to other structures appearing in the images.
Ellipses are then fitted considering all possible combinations
using a scoring function, created to study the contrast around the
ellipse contour, which should normally correspond to the skull.
All the thresholds used within this approach were empirically
chosen and fixed for all experiments. This method was also ap-
plied to the femur sub-challenge. The adaptations to this other
object are defined in Section V-B.

B. Fetal Femur Sub-Challenge

Two teams participated in this sub-challenge. Both methods
relied on appearance and edge information extracted directly
from intensity values.
1) A Multilevel Thresholding Combined With Edge Detec-

tion and Shape-Based Recognition: Ponomarev et al. [30] at-
tempted the segmentation of the femur, by adapting the previ-
ously described method (Section V-A5) as follows. After ob-
taining the binary image grouping the cluster values into one
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Fig. 9. (a) Original image. (b) Preliminary segmented objects. (c) Recognised
femur object.

Fig. 10. Entropy-based segmentation method. (a) Original image. (b) Result
after entropy-based segmentation. (c) Final selected femur.

unique value, the method needs to guarantee that only one ob-
ject is detected as femur. The authors expected the femur bone
to have high brightness, large size, contrasted edges, and a cen-
tral location within the image. These properties were used as
features to train a linear support vector machine (SVM) clas-
sifier. This was obtained using exhaustive search with 10-fold
cross-validation. The whole dataset was divided into 10 parts
of equal size. For each iteration, the method was trained on the
concatenated set of nine parts and tested on the remaining part.
The segmented objects were manually classified into positive
and negative classes to train the SVM classifier. This resulted in
a scoring function, encoding the recognition model. The femur
length was then calculated as the longest distance between any
pair of pixels for the selected binary object. An example can
be seen in Fig. 9. The parameters required for this method are
the coefficients used within the SVM approach. These were ad-
justed using a cross-validation strategy from the training set.
2) Morphology-Based Approach: Wang et al. [31] developed

a fully automatic method, based on morphology, to extract the
fetal femur bone from the ultrasound images. They proposed
two methods for segmenting the femur, one based on entropy
and one based on edge detection. The first one was used as the
main approach, and the second method was only used when the
main approach failed, as an alternative approach.
For the main approach, after the images were initially filtered

by a median filter, entropy-based segmentation identified pos-
sible pixel candidates within the images, as shown in Fig. 10(b).
To obtain the final segmented femurs, first the image comple-
ment followed by a morphological dilation were performed for
each image. Then, slim and long connected objects can be au-
tomatically selected as the final segmented femurs [Fig. 10(c)]
by combining the information of density and height-to-width
ratio for each segmented object. The density is calculated as the
number of segmented pixels over the area of the bounding box
for that particular object. The best object is obtained by consid-
ering the morphology and layout of the detected objects.
The alternative segmentation approach obtains the horizontal

edges and the stretched edges using filters as a preprocessing

Fig. 11. Edge-based segmentation method. (a) Original image. (b) Result after
horizontal edges and stretching. (c) Selected femur.

step. The final step consists of seeking for the longest and slim
objects in the resulting edge images. An example is given in
Fig. 11.
For both methods, the femur length is derived from the seg-

mentation results by using the width and height of the bounding
rectangle of the segmented femur object. Two parameters are
used within this method: the density of an object and the height
to width ratio of an object. These were held constant over all
tests.

VI. EXPERIMENTAL RESULTS

In this section, the qualitative and quantitative evaluation for
fetal head and fetal femur sub-challenges is presented. All the
proposed methods are evaluated against the ground truth on the
90 fetal US images acquired across gestation, as described in
Section II-B.

A. Fetal Head Sub-Challenge

1) Failures: No failures were reported for the fetal head sub-
challenge, and all the proposed methods obtained segmentation
results that overlapped the manually fitted ellipses drawn by the
experts.
2) Qualitative Evaluation: Qualitative evaluation was per-

formed on the set of 90 fetal head US images acquired across
gestation. The poorest result from each of the proposed methods
participating in this challenge is shown in Fig. 12. Note that
most of the poor results correspond to images of 33 weeks fe-
tuses, which generally have lower image quality (e.g., increased
shadowing due to increased bone density) than earlier gesta-
tions. Similarly, the best results, displayed in Fig. 13, were gen-
erally at early gestation (21 weeks and 28 weeks), where the
image quality is normally better, presenting less artefacts than
at later gestation and with clear anatomical definition.
3) Quantitative Evaluation: Table VIII presents the region-

based and distance-based evaluation for each proposed method.
The best results per metric are highlighted in bold. For the re-
gion-based evaluation, the Foi et al. method performed best
in terms of precision and Dice similarity. Stebbing and Mc-
Manigle’s method performed best in terms of sensitivity. Ciurte
et al. obtained the best result in terms of specificity. Overall,
the Foi et al. method had better performance followed closely
by Stebbing and McManigle’s method.
For the distance-based evaluation, smallest mean error in

terms of MSD, ASD, and RMSD is obtained by the Foi et al.
method, closely followed by Stebbing and McManigle. How-
ever, Stebbing and McManigle’s method presents a smaller
standard deviation, showing that their segmentation is less vari-
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Fig. 12. Poorest fetal head result for each proposed method in terms of precision. Yellow continuous lines denote the automatic methods. Dashed lines represent
manually fitted ellipses by the clinical experts (magenta: Expert 1, green: Expert 2, white: Expert 3) as defined in Section IV-A.

Fig. 13. Best fetal head result for each proposed method in terms of precision. Yellow continuous lines denote the automatic methods. Dashed lines represent
manually fitted ellipses by the clinical experts (magenta: Expert 1, green: Expert 2, white: Expert 3) as defined in Section IV-A.

TABLE VIII
QUANTITATIVE EVALUATION OF THE METHODS FOR THE FETAL HEAD SUB-CHALLENGE

able. Foi et al. also obtained similar results to the inter-observer
variability presented in Table III, producing results comparable
to manual delineation.
To study if the performance varies for the different gestational

age groups, the mean and standard deviations in terms of preci-
sion, accuracy (sensitivity and specificity), and Dice similarity,
at 21, 28, and 33 weeks are presented in Fig. 14. The best per-
formance in terms of mean precision [Fig. 14(a)] for all three
gestational ages is by the Foi et al. method, closely followed
by Stebbing and McManigle’s method. However, the Foi et al.
standard deviation increases marginally across gestation. This
might be due to the higher variation in image quality at later
gestations and the presence of stronger artefacts. Stebbing and
McManigle’s method has a small and constant standard devia-
tion across gestation. This is also true for the overall precision
presented in Table VIII.
In terms of sensitivity, Stebbing and McManigle and Foi

et al.’s methods perform better than the other methods ac-
cording to Fig. 14(b). They also have the smallest standard
deviation, which increases slightly at later gestations. Sun’s
method has a similar performance, with constant mean and
standard deviation across gestation. In terms of specificity, all

methods seem to have constant means and standard deviations
according to Fig. 14(c). The best result is given by Ciurte et al.
(Table VIII).
In terms of Dice similarity, the Foi et al. method had the

best result, followed by Stebbing and McManigle and Sun
[Fig. 14(d)]. This is also true overall, as shown in Table VIII.
Mean and standard deviation appear quite constant for all
methods except for the Ponomarev et al. method.
The last aspect of the evaluation was to study the performance

in terms of clinical measurements derived from the segmented
objects. Table IX presents the mean and standard deviation from
the Bland–Altman plots in comparison to each expert and over
all experts. The best BPD results when compared with the ex-
perts were obtained by Sun’s method, closely followed by the
Foi et al.method. The best OFD results were obtained by the Foi
et al. method, closely followed by Stebbing and McManigle’s
method. This means that the major axes of the fitted ellipses,
from which the OFD measurements are derived, are probably
more accurate for the Foi et al. method and Stebbing and Mc-
Manigle’s method, whereas the minor axis of the fitted ellipses
seems to be better detected by Sun’s method. Since the OFD
measurement is greater than the BPD measurement, this results
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Fig. 14. Mean and standard deviation for the fetal head for each gestational age in terms of (a) precision; (b) sensitivity; (c) specificity; and (d) Dice similarity.

TABLE IX
BLAND–ALTMAN PLOTS (FETAL HEAD SUB-CHALLENGE): BPD, OFD, AND HC

in similar performance of the HC measurement with respect to
the OFD, as shown in Table IX.
Overall, for the fetal head sub-challenge, the Foi et al.method

seems to perform best in terms of region-based and distance-
based metrics, as well as clinical measurements. Stebbing and
McManigle obtained similar results. Sun’s method showed high
agreement in BPD biometric measurements.

B. Fetal Femur Sub-Challenge

Qualitative and quantitative evaluation is performed in the
following for the two methods submitted to the fetal femur US
image segmentation challenge. The data set presents different
qualities, with some images especially challenging, but all of
them used in clinical practice.
1) Failures: The Ponomarev et al.method had a total of two

failures on different images, shown in Fig. 15. The Wang et al.
method had a total of four failures over the 90 images in the fetal
femur dataset. The failures are presented in Fig. 16.
Two of them were due to the method not finding any result

on the images. In both cases, the methods found other elongated

Fig. 15. (a)–(b) Failures of the Ponomarev et al. method in terms of precision
for the fetal femur. Yellow continuous lines: automatic methods. Dashed lines:
manual delineations (magenta: Expert 1, green: Expert 2).

objects in the images (e.g., other bones, adipose tissue layer,
placental tissue) instead of the femur bone. This is because the
methods are based on intensities, and the detected incorrect ob-
jects had high intensity values while having an elongated shape.
2) Quantitative Evaluation: The evaluation with respect to

the measurements is presented in Table X and shows that the
best results are obtained by the Wang et al. method. Table XI
presents the region-based and distance-based evaluation for
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Fig. 16. (a)–(d) Failures of the Wang et al. method in terms of precision for the fetal femur. Yellow continuous lines: automatic methods. Dashed lines: manual
delineations (Magenta: Expert 1, Green: Expert 2).

TABLE X
BLAND–ALTMAN PLOTS (FETAL FEMUR SUB-CHALLENGE): FL

each proposed method. The best results are highlighted in bold.
In terms of region-based metrics, the Ponomarev et al. method
seems to have a higher performance, whereas the Wang et al.
method obtains better results in terms of the distance-based
evaluation. However, unlike the fetal head challenge, the
measurement results are inferior to those obtained manually
between experts (cf. Table VI) with much higher variability.
3) Qualitative Evaluation: Qualitative evaluation was per-

formed on the fetal femur data set of 90 ultrasound images ac-
quired at three different gestational ages (21, 28, and 33 weeks).
The poorest and best results obtained from each method are
shown in Fig. 17. Notice how the poorest results [Fig. 17(a) and
(c)] are only segmenting the brightest part of the femur. This is
due to the high inhomogeneities existing within the femur. The
best results [Fig. 17(b) and (d)] perform similarly to manual de-
lineations.

C. Efficiency

Since the algorithms have been programmed using different
software, computers, and programming languages, the study of
efficiency cannot thoroughly be performed. Even if efficiency
was not one of the aims of this challenge, and that somemethods
are more expensive computationally than others, we report on
the times and specifications used in the presented implementa-
tions as shown in Table XII. After the challenge, some of the
teams optimized their code and were able to reduce these times
considerably.

VII. DISCUSSION

A. Fetal Head Sub-Challenge

The five methods submitted to the fetal head sub-challenge
are very different and focus on either image appearance or
edge information. The methods of Ciurte et al. [27] and Sun
[29] used graph-based approaches. The Foi et al. method [26]
was based on signal processing combined with an optimization
framework. Stebbing and McManigle [28] used a machine
learning approach based on a boundary fragment model re-
sulting from a training step. Four out of five methods obtained

constant results across gestation [cf. Fig. 14(a)–(d)] except
the Ponomarev et al. method [30], which got variable means
and standard deviations for the three gestational age groups,
the poorest results being at 33 weeks, where the images have
in general lower quality and present more artefacts. Since the
Ponomarev et al. method uses the appearance of the object of
interest to define the multiple thresholds, and then fits an ellipse
to the resulting binary image, it is to be expected that the results
are more linked to the image quality than the other methods,
which relied less on the appearance of the object of interest.
The Foi et al. method obtained the best results overall,

achieving a mean and standard deviation close to the ground
truth values for both region-based and distance-based metrics
(Table VIII), showing a performance as good as the inter-ob-
server variability (Table III).
Stebbing and McManigle’s method obtained results close to

the Foi et al.method, and most of the time had smaller constant
standard deviations across gestational ages, which indicates that
their method was slightly more consistent.
Sun’s method produced results ranked third overall by using

a graph-based approach. His method seems also robust across
gestational age groups with a high mean and small standard
deviation. He obtained the best results for BPD measurements
compared to the ground truth (Table IX). Considering that the
BPD value is derived from the small axis of the fitted ellipse,
this suggests that his method fitted the ellipses better in the small
axis direction.
The Ciurte et al. method obtained slightly worse results than

Foi et al., Stebbing and McManigle, and Sun’s methods. It was
noted during the workshop that their method was finding the
inner contour of the skull instead of the outer contour, which
could be the cause of the difference between the other methods.
This behavior can be appreciated in Fig. 12(b) and Fig. 13(b).
The other methods were finding the outer edge. The Ciurte et al.
method had constant mean and standard deviation across ges-
tational age groups [cf. Fig. 14(a)–(d)], with a consistent per-
formance for different image qualities. It may be that, if their
method was modified to detect the outer contours of the skull,
the results would have improved and may have been compa-
rable to the other methods that performed better.
In terms of reproducibility of clinical measurements

(Table IX), only the method by Ponomarev et al. had a
much higher standard deviation than the inter-expert variability
presented in Table V in all cases. This shows that this method
had a much lower reproducibility than manual delineations.
For the BPD measurement, all the other methods had lower
standard deviation than the inter-expert variability. For the
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TABLE XI
QUANTITATIVE EVALUATION OF THE METHODS FOR THE FETAL FEMUR SUB-CHALLENGE

OFD measurement, only the method by Foi et al. had a re-
producibility within the range reported in Table V. The other
methods had a slightly higher standard deviation, but close
to the ground truth values, except for the Ponomarev et al.
method. For the HC measurement, only the methods by Foi et
al. and Stebbing and McManigle had a reproducibility close to
manual segmentations. The other methods, except the one by
Ponomarev et al., obtained values within the range reported in
previous reproducibility studies [41], [42].

B. Fetal Femur Sub-Challenge

Fetal femur segmentation is the harder of the two sub-chal-
lenges. The complete segmentation of the femur needs to take
into account the huge inhomogeneities existing in the object
of interest. The two methods participating in this challenge
relied on appearance and edge information extracted directly
from intensity values. This makes the methods rely on the
image quality and in some cases miss certain parts of the
femur bone during the segmentation process. It also makes the
methods more prone to finding other objects that are not the
femur bone but have similar appearance to it, hence producing
failures on some of the images. This challenge would require
a more advanced modelling of the femur bone, incorporating
morphological measures of normal fetal femur across gesta-
tional ages. The overall mean values in terms of precision,
sensitivity, and Dice similarity, were lower than those obtained
manually (Table XI). The overall standard deviations of both
methods ranged around 16%–17% for precision, 19%–20% for
sensitivity, and 14%–15% for Dice similarity, indicating a high
variability with respect to the ground truth. Manual segmenta-
tions presented a standard deviation around 5% for precision,
6% sensitivity, and 3% Dice similarity for intra-expert vari-
ability (Table VI). Considering the inter-expert variability,
precision had a standard deviation around 6%, sensitivity
around 7%, and Dice similarity around 4%.
This sub-challenge proves the necessity of using both region

and distance-based metrics for segmentation evaluation. The
Ponomarev et al. method [30] obtained better results in terms
of precision, specificity, sensitivity, and Dice similarity, whereas
the Wang et al. method [31] achieved better results in terms of
MSD, ASD, and RMSD values (Table XI). The Ponomarev et
al. method had higher overlap with respect to manual segmen-
tations than the Wang et al. method, and slightly higher dis-
tance-based errors. This could also be due to the fact that the
Wang et al.method had twomore failures than the Ponomarev et
al. method, and the evaluation results were reported only in the
images where there were no failures. Therefore, the Ponomarev
et al. had slightly higher MSD, ASD, and RMSD, but these
were calculated on two more images than in the Wang et al.
method. In terms of the actual FL measurement, the Wang et al.

Fig. 17. Poorest and best fetal femur results for each proposed method in terms
of precision. Yellow continuous lines: automatic methods. Dashed lines: manual
delineations (magenta: Expert 1, green: Expert 2).

method obtained better results for both mean and standard devi-
ation (Table X). However, in terms of reproducibility of the FL
measurement (cf. Table X), none of the methods obtained a stan-
dard deviation within the values reported in Table VII, which
means that they had low reproducibility compared to manual
delineations.
Another discrepancy to note was that some of the Wang et al.

segmentation results only found the brightest part of the bone,
resulting in an incomplete segmentation result, but a good FL
measurement could still be observed [e.g., Fig. 17(a)]. When
the femur’s appearance had homogeneous intensity values, both
methods seemed to perform well, agreeing with manual delin-
eations [e.g., Fig. 17(b) and (d)].

C. General Observations

Signal processing methods, graph-based methods, and ma-
chine learning methods seemed to achieve a good performance,
since they considered the images as a whole. Some of these also
take into account the relationship between different regions of
the images simultaneously. On the contrary, intensity and gra-
dient-based methods have a lower performance, since they rely
more on the appearance of the objects of interest, which present
high variability.

D. How to Move the Fetal us Image Segmentation Field
Forward?

From the four sub-challenges proposed, only the head and
femur challenges were attempted. The abdomen and whole



810 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 33, NO. 4, APRIL 2014

TABLE XII
COMPUTER SPECIFICATIONS AND EFFICIENCY

fetus segmentations are extremely challenging due to the lack
of strong object boundaries and the similar appearance of
surrounding objects. General frameworks that could solve all
four sub-challenges simultaneously are yet to be developed. As
argued in [6], successful US image segmentation methods are
normally application dependent.
One of the main difficulties of working with US images

is that they have a variable appearance and it is difficult to
obtain quantitative measures of quality to provide more in-
sight on the performance of different methods with respect to
image quality in an objective manner. We need better tools of
quantitatively assessing US image quality, to be able to study
method’s performance in depth, relating the performance to
the quality of the image. This can be extrapolated to other
imaging modalities, but it is especially important in a modality
like US. This is a problem that is not solved yet and needs fur-
ther investigation.

VIII. CONCLUSION

This paper presented a thorough qualitative and quantita-
tive segmentation evaluation of the representative selection
of current methods submitted to Challenge US: Biometric
Measurements from Fetal Ultrasound Images, held at ISBI
2012. The images were selected to incorporate the different
qualities, reflective of a real antenatal clinical environment.
Three different gestational ages were assessed to incorporate
image variability across gestation. Several experts manually
delineated the objects of interest to define the ground truth,
which was used within the evaluation framework. A total of
five teams submitted their results to the fetal head sub-challenge
and two teams to the fetal femur sub-challenge, including one
team who attempted both.
The results for the fetal head sub-challenge show that a very

good performance can be achieved and that it is comparable
to manual delineations. Several groups produced results that
could be potentially used in clinical settings. The fetal femur
sub-challenge consisted of solving a very hard segmentation
problem, since the object of interest has strong appearance
changes within the object. Furthermore, other elongated objects
are present around the femur bone, causing methods to fail in
certain situations. The performance of the femur sub-challenge
was inferior to the head sub-challenge, because the task was
more complex and the techniques used relied more on the
femur’s appearance.

Further investigation is necessary to provide better quanti-
tative tools for assessing US image quality, which in turn will
assist in developing a better understanding of how images cope
with the image quality variability.
On release of the data, anticipated autumn 2014, the web-

site (http://www.ibme.ox.ac.uk/challengeus2012) will provide
a mechanism to upload new segmentation results and compare
them to previous methods.

APPENDIX A
IMAGE QUALITY SCORING CRITERIA

In the following, we present the scoring criteria used for se-
lecting images of different qualities within each sub-challenge.
The scoring criteria is based on a score-basedmethod for quality
control [51]–[53]. The aimwas to select as many good, medium,
and high quality images within each gestational age group as
objectively as possible. Considerations of image quality are not
independent of the gestational ages considered, as they describe
quality variation of cross-sectional data (data in a certain gesta-
tional agewindow), which capture a wide range of image quality
factors. The scoring criteria was different for each sub-challenge
and was performed by experts on each type of images, taking
into account the image characteristics. In the case of fetal ul-
trasound images, the fetal anatomy varies during pregnancy, as
well as soft tissue properties and composition. The quality of
the images diminishes with gestational age as shown in Figs. 18
and 19 for the head and femur, respectively. This is due to the in-
crease of the body mass index of the mother towards the end of
pregnancy, the increase in fetal bone density and fetal size, the
reduced amniotic fluid present in older fetuses, and the changes
of tissue texture, which create different speckle patterns at dif-
ferent gestational ages.
The scoring criteria used to classify the fetal head images

(Fig. 18) between low, medium, and high score is as follows.
Low: Skull is not symmetrical or elliptical in shape. Skull
boundary is barely visible. Internal anatomy is difficult to
discern with an overall lack of contrast in the image.
Medium: The fetal skull should be roughly elliptical in
shape. Skull boundary visible but not less than 60% en-
circlement. Rough internal anatomy visible (lateral ventri-
cles, cerebral falx, cavum septum pellucidum, thalamus).
Average contrasted image.
High: Fetal skull should be roughly symmetrical and ellip-
tical in shape. Skull boundary should be visible with more
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Fig. 18. Ultrasound images of the head at (a)–(c) 21 weeks of gestation, (d)–(f)
28 weeks of gestation, and (g)–(i) 33 weeks of gestation.

Fig. 19. Ultrasound images of the femur at (a)–(c) 21 weeks of gestation,
(d)–(f) 28 weeks of gestation, and (g)–(i) 33 weeks of gestation.

than 60% encircled cranial area. Internal anatomy (lateral
ventricles, cerebral falx, cavum septum pellucidum, thal-
amus, and cortical boundary) visible and discernible. High
contrasted image.

The scoring criteria used to classify the fetal femur images
(Fig. 19) considered.
• The sharpness of the border of the femur from all direc-
tions.

• How easy it is to find femur end points (distal and prox-
imal).

• The difference between the femur and its surrounding tis-
sues. Better femur images need to have bright femur and
relatively dark surrounding.

• The continuity of the femur. Some femurs are not fully
visible because of the scan signal direction and shadowing
so these are low quality.

We can observe that more artefacts appear in the images
towards the end of pregnancy as a result of the fetus becoming
bigger and compressed within the womb, with less space to
move. The bone density in the fetus increases too, creating
shadows and splaying in the ultrasound images. These shadows
appear in the skull in the head, in the ribs and spine in the
abdomen, and in the femur in the leg, respectively. Changes
in size, shape, pose, and composition are also important, espe-
cially in the abdomen that is a soft body region in comparison
to the bony structures of head and femur.
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