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Large-scale brain networks are increasingly recognized as important for the generation of seizures in epilepsy.
However, how a network evolves from a healthy state through the process of epileptogenesis remains unclear. To
address this question, here, we study longitudinal epicranial background EEG recordings (30 electrodes, EEG free
from epileptiform activity) of a mouse model of mesial temporal lobe epilepsy. We analyze functional connectivity
networks and observe that over the time course of epileptogenesis the networks become increasingly asymmet-
ric. Furthermore, computational modelling reveals that a set of nodes, located outside of the region of initial insult,
emerges as particularly important for the network dynamics. These findings are consistent with experimental
observations, thus demonstrating that ictogenic mechanisms can be revealed on the EEG, that computational
models can be used to monitor unfolding epileptogenesis and that both the primary focus and epileptic network
play a role in epileptogenesis.
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Introduction
Epilepsy is the most common chronic brain disorder

affecting �1 in 100 people worldwide and accounting for
0.6% of the global burden of disease (World Health Or-
ganization, 2019). Epilepsy is characterized by recurrent
seizures. Seizure recurrence is a particularly important
feature because up to 10% of people worldwide who do
not have epilepsy have a single seizure during their life-
time (World Health Organization, 2019). In other words,
although every brain is able to generate seizures, not
every brain is prone to generating recurring seizures.

Occurrences of epileptiform activity are irregular and
unpredictable, but in contrast background brain activity
(i.e., periods of activity that are free from obvious epilep-
tiform abnormalities or discharges) is readily observable.
There is therefore a significant research effort focused on
exploiting the background activity in research and clinical
practice. Recent developments in this area, based on the
modern, network perspective of epilepsy, have focused
on functional network analyses of background EEG and
MEG. These studies have revealed altered networks in the
background EEG of people with epilepsy compared with
healthy controls (Chowdhury et al., 2014; Schmidt et al.,
2014, 2016; Coito et al., 2015; Niso et al., 2015; Woldman
and Terry, 2015; Soriano et al., 2017) and have uncovered
specific features that can help point to the location of an
“epileptogenic zone” within networks (van Dellen et al.,
2014; Englot et al., 2015; Nissen et al., 2017). The studies
are predominantly concerned with uncovering differences
between the EEG of people with epilepsy and healthy
controls, and address the question of how ictogenic
mechanisms manifest in the EEG. The latter are mecha-
nisms that lead the brain of someone with epilepsy to
sporadically transition into seizures from the non-seizure
state.

However, a key question in epilepsy research that re-
mains is how does the brain becomes capable of gener-
ating recurrent seizures in the first place? This is a
question of epileptogenic mechanisms, i.e., what changes
does the brain undergo over longer periods of time to
become ictogenic (Dichter, 2009; Lopes Da Silva et al.,
2012; Goldberg and Coulter, 2013; Löscher et al., 2015).
Various animal models can be used to explore these
mechanisms. Gill et al. (2017), for example, studied a rat
model of intraperitoneally administered kainic acid and
catalogued the development of alterations to networks
derived from fMRI (Gill et al., 2017). However, our under-
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This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Significance Statement

We provide the first description of how functional connectivity and network dynamics inferred from
background EEG evolve during epileptogenesis. We focus on background EEG because it allows for direct
comparison of functional networks before and after experimental intervention. We show that network
dynamics inferred by means of computational modeling are different at early and later stages of epilepto-
genesis. Our findings provide further support for clinical potential of background EEG.
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standing of the ways that large-scale brain dynamics
evolve following local insult remains poor.

To address this, we study background functional EEG
networks in a well-established mouse model of temporal
lobe epilepsy (Bouilleret et al., 1999; Riban et al., 2002;
Arabadzisz et al., 2005; Gröticke et al., 2008; Häussler
et al., 2012; Lévesque and Avoli, 2013). In this model,
unilateral injection of kainic acid in the dorsal hippocam-
pus induces a status epilepticus followed by gradual neu-
rodegeneration at the injected hippocampus (Riban et al.,
2002; Arabadzisz et al., 2005). Concomitantly, spontane-
ous epileptiform events can be measured on the EEG at
both hippocampi and after 2–8 weeks, spontaneous and
recurrent paroxysmal discharges that are reminiscent of
focal and secondarily generalized seizures occur (Riban
et al., 2002; Arabadzisz et al., 2005; Chauvière et al.,
2012; Huneau et al., 2013; Salami et al., 2014; Sheybani
et al., 2018).

In the current study, we characterize functional connec-
tivity networks before and during epileptogenesis by an-
alyzing EEG recorded before kainic acid injection as well
as at 7 and 28 days after the injection. Our analysis
reveals that the progression of epileptogenesis is re-
flected in changes to background functional connectivity
networks, with the focal injection leading to a disruption of
network symmetry. We use a mathematical model to
understand how these observed changes affect the ways
that different nodes contribute to generation of epilepti-
form activity. Using only the background activity as input
to the model, it reveals that nodes outside of the injected
hippocampus become more important throughout epilep-
togenesis. This is in line with previous experiments that
demonstrated the emergence of epileptiform activity self-
sustained by brain structures outside of the epileptic fo-
cus (the injected hippocampus; Sheybani et al., 2018).
These findings present a step toward a network level
understanding of epileptogenesis that could be devel-
oped to aid diagnosis and treatment of epilepsy.

Materials and Methods
Animals and recordings

We used longitudinal recordings from the experiments
described by Sheybani et al. (2018). We analyzed longi-
tudinal recordings from 12 animals (adult male C57BL/6J
mice, Charles River Laboratories) for which data were
recorded before unilateral kainic acid injection into the left
hippocampus (Day 0) as well as at 7 and 28 d after
injection. Of the 12 longitudinal datasets 1 was excluded
from all analysis because of poor quality of the data. Of
the 11 remaining datasets 4 were excluded from analysis
at Day 7 because of high number of artefacts and noise in
the background EEG. Therefore, we used a total of 11
datasets with recordings at Day 0 and Day 28, with 7 of
the 11 datasets also including recordings at Day 7. Addi-
tionally, we analyzed data recorded from four sham con-
trol animals (adult male C57BL/6J mice, Charles River
Laboratories) that were unilaterally saline injected into the
left hippocampus and had epicranial EEG recorded 28
days after the injection.

The epicranial EEG was recorded at 4 kHz sampling
frequency using Digital Lynx SX (NeuraLynx). All record-
ings were re-referenced to the electrode average. We
removed power line interference using a 50 Hz (and 100
and 150 Hz harmonics) notch filter and further bandpass
filtered the data between 1 and 150 Hz using a zero-phase
forward and reverse Butterworth filter of order 2.

From each EEG recording, which lasted around 30
min, multiple 1 s background data segments were se-
lected from periods without epileptiform activity (me-
dian number of segments 55, min 17, max 83); for data
collected on Days 7 and 28 the segments were at least
1 s removed from the onset of a generalized spike (GS;
inter-ictal epileptic discharges described in Sheybani
et al., 2018).

All experiments described by Sheybani et al. (2018)
were conducted in accordance with Swiss Laws on ani-
mal experimentation.

Network reconstruction
Following Rummel et al. (2015), Goodfellow et al.

(2016), and Schmidt et al. (2016), we treated each EEG
channel as recording from a single node of a network. To
estimate weights of directed connections between the
nodes we combined methods presented by Rummel et al.
(2015) and Schmidt et al. (2016). Namely, to measure
statistical interdependency between the EEG channels we
employed the cross-correlation function:

r(xi, xj)(�) � � �
t�1

T��

xi(t � �)xj(t), � � 0,

�
t�1

T����

xi(t)xj(t � ��� ), � � 0,

rcoeff(xi, xj)(�) �
r(xi, xj)(�)

�r(xi, xi)(0)r(xj, xj)(0)
.

(1)

In practice, we used the MATLAB function: xcorr with
option coeff, which normalizes the cross-correlation func-
tion in such a way that the autocorrelations at 0 lag are
equal to 1.

To estimate the strength of the relationship between
channels we used three different approaches based on
the extremum of the cross-correlogram rcoeff(xi, xj)(�). In
the first method, we followed Schmidt et al. (2016), and
we used the maximum absolute value of the cross-corre-
logram, max� |rcoeff(xi, xj)(�)|. In the second method, we
followed suggestion from Sinha et al. (2017) and used
only the values of max� |rcoeff(xi, xj)(�)| for which rcoeff(xi,
xj)(�)�0. We refer to the matrices derived with these two
methods as CABS and CMAX, respectively. Finally, to un-
derstand the difference between the CABS and CMAX we
also analyzed networks estimated using the values of
max� |rcoeff(xi, xj)(�)| where rcoeff(xi, xj)(�)�0. We refer to the
matrices from the third method as CMIN.

The cross-correlogram rcoeff(xi, xj)(�) provides a natural
way to infer directionality of the estimated connections.
The direction of the connections is given by the sign of the
lag between the two channels; with � � 0 meaning that a
channel i is leading (transmitting to) channel j. In the paper
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we adopted notation in which a connection from channel
i to j is noted as element cij of the connectivity matrix. In
this convention, extrema of the cross-correlation function
at � � 0 make up the elements of the matrix that are above
the diagonal j � i and ones at � � 0 are below the diagonal
i � j. The diagonal is equal to 0 (no self-loops).

We disregarded any lags �250 ms (1000 points) and
lags �2 ms (8 time samples). We removed the shortest
lags to address the problem of volume conduction, i.e.
spurious correlations between the time series because of
common sources of activity. Such activity is typically
detected at very small values of lag between the time
series. We chose 8 samples because they correspond to
a single sample at sampling frequency 512 Hz, which is a
typical sampling frequency used in clinical acquisition of
intracranial EEG.

To increase the accuracy of estimation of the connec-
tions, we divided each 1 s data segment into 21 windows
(500 ms) with a 25 ms overlap, and we computed con-
nectivity matrices for each window.

We further checked that values of the coefficients were
not solely because of the presence of dominant intrinsic
channel frequencies. For each 1 s data segment we gen-
erated 100 sets of univariate iterative amplitude adjusted
Fourier transform surrogates (Schreiber and Schmitz,
1996), each containing 30 channels, generated using 10
iterations. A Wilcoxon rank sum test (with Bonferroni cor-
rection for 870 comparisons) was used to test, element-
wise, whether coefficients in the 21 windows had a
different median than the 2100 surrogate windows. For
each 1 s data segment the computed values of cross-
correlation coefficients were averaged and normalized in
the same way as by Rummel et al. (2015):

cij �
�cij,data� � �cij,surr�

1 � �cij,surr�
sij . (2)

Here, �cij,data� is the median value of the coefficients
from the data, �cij,surr� is the median value of the coeffi-
cients from the surrogate data, sij � 1 if the familywise
error rate (FWER) � 0.05 and 0 otherwise. Finally, we

averaged the network topologies over all data segments
in a recording and normalized the coefficients with the
sum of all of the elements of the connectivity matrix. By
averaging over multiple segments we aimed to estimate
functional connectivity that accounts for complex bidirec-
tional interactions between the brain regions generating
the recorded activity.

To ensure that the variability in the number of data
segments did not affect the presented results, we ex-
cluded from analysis five datasets that either had a very
low number of data segments or resulted in a low number
of connections (Fig. 1).

Model
To model the network dynamics we followed the pro-

cedure presented by Lopes et al. (2017, 2018), i.e., we
analyzed to what extent removal of a single node (virtual
resection; Goodfellow et al., 2016; Khambhati et al., 2016)
affects activity of the network that on average spends half
of the time in the active state. The simulations proceeded
as follows:

(1) The dynamics of each node was modelled using the
theta neuron model (Ermentrout and Kopell, 1986), which
has been shown to well approximate the predictions of
neural mass models close to a saddle-node on invariant
circle bifurcation (Lopes et al., 2017):

d	
dt

� 1 � cos 	 � (1 � cos 	)I(t),

I(t) � I0 � Inoise�(0, 1).
(3)

Here, I0 is the intrinsic model parameter, Inoise � 6 is
noise intensity and ��0, 1� is a random number from a
normal distribution with mean 0 and variance 1. We set I0
� 	1.2 to ensure that in the absence of noise a stable
steady state exists in the system. To couple the nodes, we
used the functional connectivity matrix C; with elements
cij. Coupled equations have the following form (Lopes
et al., 2017):

A B C

Figure 1. Criteria for excluding recordings from analysis. Number of segments selected in a recording versus number of non-zero
elements in the average adjacency matrix estimated from all the segments in the recording. Each dot represents a single recording.
Recordings represented by the encircled dots were excluded from the analysis. A, Matrices estimated using CABS; B, matrices
estimated using CMAX; C, matrices estimated using CMIN. Each method produced average adjacency matrices with similar number
of non-zero elements.
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d	i

dt
� 1 � cos 	i � (1 � cos 	i)Ii(t),

Ii(t) � I0 � Inoise�i(0, 1) � 
 �j�1

N
cji[1 � cos (	j � 	j

�)]/N.

(4)

Here, 
 is a global scaling factor of the weights cji of the
incoming connections of the node i; N is the total number
of nodes in the network. The 	�j is the steady state of
node j. Parameters I0 � 	1.2 and Inoise � 6 are the same
at each node. For each simulation, we used a time step of
0.01, and the duration of the simulation was 4.0e6 time
steps. For more details, see Lopes et al. (2017).

(2) We first estimated the value of 
�0 for which on
average the whole network spends 50% of the time in the
active state. 
50 was estimated in separate simulations
(averaged over 10 runs with independent noise realiza-
tions). We used the same definition of the node’s active
state as in (Lopes et al., 2017). To quantify activity of the
whole network we use the brain network ictogenicity
(BNI), which is the average time each node spends in the
active state (Goodfellow et al., 2016):

BNI �
1
N �

i�1

N
time node i spent in active state

duration of simulations
. (5)

(3) We then removed a single node and ran simulations
with exactly the same parameters; we normalized the sum
in Equation 4 with N rather than N	1 to keep the connec-
tion weights exactly the same. We measured the change
in the network dynamics by comparing the time spent by
the network in the active state before and after removing
the node. To this end, we used node ictogenicity (NI)
defined by Goodfellow et al. (2016):

NIi �
0.5 � BNIi,post

0.5
, (6)

where BNIi,post is the BNI estimated after removing node i
from the network. We repeated each simulation 10 times
and took the mean value of the NI over the 10 runs with
independent noise realizations.

Statistical methods
We used nonparametric, median based statistical

methods (Kruskal–Wallis, Mann–Whitney Wilcoxon or Kol-
mogorov–Smirnov tests) throughout. To control for multi-
ple comparison during network reconstruction we used
the Bonferroni FWER with a significance level of 0.05
(Benjamini and Hochberg, 1995). To control for multiple
comparison in the network analysis we used the Ben-
jamini-Hochberg false discovery ratio (FDR; Benjamini
and Hochberg, 1995). Due to small sample sizes we used
a significance level of 0.1 for the network analysis. We
additionally quantified effect sizes using area under the
receiver-operating characteristic (AUROC), which is a
nonparametric alternative of the common-language effect
size (Hentschke and Stüttgen, 2011). We used this
method because it has a simple interpretation:

● AUROC � 0.5 means that the scores in the two
groups are identical;

● AUROC � 0 means that all scores in the tested
group are smaller than the scores of the control
group;

● AUROC � 1 means that all scores in the tested
group are larger than the scores of the control
group.

All presented significant results have AUROC � 0.2 or
� 0.8 meaning that the overlap between the scores in the
two groups is �20%. In other words, in 80% of the cases
a random score from one group exceeds a random score
from the other group (Hentschke and Stüttgen, 2011). For
the nonparametric one-way ANOVA analysis (Kruskal–
Wallis test) we computed post hoc AUROC effect sizes of
differences between the groups.

To visualize relationships between individual functional
connectivity matrices we first quantified pairwise similarity
between them by computing the Frobenius distance
(Golub and Loan, 1996) for all pairs of matrices:

�A � B�F � 	�
i�1

n

�
j�1

m

(aij � bij)2 , (7)

where aij and bij are the elements of matrices A and B.
Next, we used classical multidimensional scaling (MDS) to
visualize relations captured by the similarity matrix (Borg
and Groenen, 2005), using MATLAB (Release 2018b,
MathWorks) function cmdscale.

Statistical table
Description of statistical tests and the significance lev-

els for results in Figs 3 and 4 can be found in Table 1.
Description of statistical tests and the significance levels
for the other results are described in the text.

Code accessibility
MATLAB scripts for the network analysis are available

on request from P.S. The model is subject to copyright
owned by the University of Exeter (international patent
application WO/2017029505).

Results
Our goal is to characterize the evolution of large-scale

functional brain networks during epileptogenesis. Many
measures exist to quantify functional connectivity (Wang
et al., 2014), each with different underlying assumptions.
We begin with no a priori knowledge regarding the way in
which the evolving ictogenic mechanisms of the brain
may be reflected in functional connectivity. We therefore
do not restrict our analysis to a particular frequency band.
Considering broadband signals, a natural way to quan-
tify functional connectivity is to study the correlation
between signals. To avoid problems associated with vol-
ume conduction, we use the cross-correlation function
and exclude correlations with maximum at zero lag
(Christodoulakis et al., 2015). Focusing on lagged corre-
lations also gives a natural way to build directionality into
the networks. Additionally, the resulting correlations can
be positive or negative and there are therefore different
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ways to quantify strength of interactions in the derived
functional network. First, one can quantify the strength of
the connection using the maximum of the absolute value
of the cross-correlogram (Schmidt et al., 2014). We refer
to the networks estimated using this method as CABS.
Second, one can neglect negative values (Sinha et al.,
2017) and use only the values of CABS at which the
cross-correlogram �0. We refer to networks estimated
using this method as CMAX. To analyze the differences
between CABS and CMAX one can also examine the net-
works derived from the values of CABS at which the cross-
correlogram �0. We refer to these networks as CMIN. In
other words, one can decompose the connectivity matri-
ces CABS into component matrices CMAX and CMIN. See
Materials and Methods for details of the reconstruction of

the connectivity matrices. In the following sections, we
examine functional connectivity through epileptogenesis
using these three methods.

Epileptogenesis changes properties of background
functional connectivity networks

Figure 2 demonstrates the evolution of functional con-
nectivity across the first 4 weeks of epileptogenesis for
the three types of networks introduced above. The func-
tional connectivity is described by connectivity matrices:
each entry in a connectivity matrix represents a statistical
relationship (in this case the extremum of cross-co-
rrelogram that occurred for non-zero lag) between EEG
signals at two different electrodes. Therefore, the connec-

A B C D

E F G H

I J K L

Figure 2. Analysis of background functional connectivity reveals changes over the time course of epileptogenesis. A, E, I, Individual
connectivity matrices represented as dots in the first two principal dimensions of the multidimensional scaling of Frobenius distances
between the individual connectivity matrices. Each dot represents a single matrix (green, Day 0; yellow, Day 7; red, Day 28; gray,
Sham control; empty symbols: circle, diamond, and square represent the median of the connectivity matrices). The first three principal
multidimensional scaling dimensions represent �70% of the relations encoded in the raw Frobenius distances (R2

ABS�0.66,
R2

MAX�0.72, R2
MIN�0.7; R is Pearson’s correlation coefficient between the Frobenius distances in the matrix space and the Euclidian

distances in the reconstructed space); for clarity only the first two coordinates are plotted. B–D, F–H, J–L, Median functional
connectivity matrices (indicated with empty symbols in A, E, I) resulting from the three different measures at different days with
color-coded connection weights (Day 0 over 11 matrices, Day 7 over 6 matrices, Day 28 over 8 matrices; different numbers of matrices
for individual days because of quality of recordings; see Materials and Methods).
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tivity matrix captures the correlation pattern of a multi-
channel EEG signal.

We quantified the differences between the connectivity
matrices of individual animals across three different time
points (Days 0, 7 and 28) by calculating the Frobenius
distance between them (see Materials and Methods; Borg
and Groenen, 2005). Using these distances to visualize
the similarity between the matrices reveals that control
(Day 0 and Sham) networks are different to post-injection
networks (Days 7 and 28), because they form a distinct
cluster compared with matrices derived from recordings
at Days 7 and 28 for each of the three measures (Fig.
2A,E,I). The clustering of points corresponding to matrices
derived from recordings before and after injection visible
in Figure 2A, E, and I, demonstrates that the kainic acid
injection has a large and consistent effect on the correla-
tion patterns of the epicranial EEG. The clusters, however,
do not inform us about which components of the connec-
tivity matrices have changed.

To study the data on the population level, we compute
median correlation matrices for each time point (median
over entries cij of the connectivity matrices). Figure 2
demonstrates that the median correlation matrices ap-
pear to progress from an initially symmetric arrangement
at Day 0, to asymmetric networks post-injection (Days 7
and 28). It also shows that the CABS matrices are a com-
position of the CMAX and CMIN matrices and that the CMAX

and CMIN matrices differ from each other. A characteristic
feature of the CMAX networks is that the connections
between contralateral regions appear to be among the
strongest (Fig. 2F–H, top right and bottom left quadrants
of the connectivity matrices). To quantify the redistribution
of connections post-injection, we asked whether connec-
tions from each electrode to their contralateral equivalent
(dark anti-diagonals of the quadrants) were among the
strongest (i.e., in 5% of the strongest connections). For
control networks, 38% of contralateral connections were
among the strongest, whereas this percentage fell to 22%

A B C D

E F G H

I J K L

Figure 3. Illustration of changes of network properties over the time course of epileptogenesis. A–C, E–G, I–K, Median degree
imbalance at individual nodes; blue indicates indegree�outdegree, red indicates indegree�outdegree. Value of the degree imbalance
is color and size coded; larger and darker dots indicate higher degree imbalance. Dots filled in black have a median that is significantly
different from the median on Day 0 (FDR � 0.1, two-sided Wilcoxon Mann–Whitney test with Benjamini–Hochberg correction for 30
nodes, effect size AUROC � 0.2 for blue nodes or �0.8 for red nodes; exact p values and effect sizes are presented in Extended data
Figure 3-1). Gray arrows show topology of functional connectivity networks on different days illustrated using the strongest 5% of
connections of the median connectivity matrices shown in Figure 2. D, H, L, Boxplots showing the degree of assymetry of the
individual connectivity matrices.
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at Days 7 and 28. This means that post-injection, the EEG
between hemispheres becomes less synchronized. We
note that this trend was also observed if we considered
raw as opposed to normalized connectivity matrices.
Such a decrease in synchronization has previously been
shown for the hippocampi (Arabadzisz et al., 2005), but
not for other brain regions. In contrast, for the CMIN net-
works the strongest connections are ipsilateral, meaning
that they represent connections within a hemisphere (Fig.
2J–L, top left and bottom right quadrants of the connec-
tivity matrices).

To quantify the breakdown of synchronization, we cal-
culated the degree imbalance (outdegree	indegree) of
nodes in the functional connectivity networks of individual
animals. Degree imbalance is an aggregated measure that
quantifies the strength of connectivity for each node.
Statistically, if outdegreeweighted�indegreeweighted the EEG
signal recorded on a node temporally leads some of the
other nodes and the node can be interpreted as a
“source” of activity. If not, the node lags other nodes on
average and it can be considered a “sink” (outdegreeweighted�
indegreeweighted).

Interestingly, although network topologies are different
for each of the three methods considered, the degree
imbalance of the CABS, CMAX, and CMIN networks are
similar. Figure 3A–C, E–G, and I–K shows the distribution
of median degree imbalance across nodes. At Day 0, the

configuration is symmetric, with sinks (Fig. 3A,E,J, blue
nodes) predominantly in anterior and posterior regions.
The maximum absolute values of the degree imbalance at
Day 0 are approximately two times lower than at Days 7
and 28. At Day 7 the degree imbalance increases, with
sources located at the left posterior and the right anterior
regions. This pattern persists through to Day 28. Interest-
ingly, many of the nodes that became sources are located
above the left hippocampus, i.e., the site of initial intra-
hippocampal injection (Sheybani et al., 2018).

Figure 3A–C, E–G, and I–K shows the network topology
of the top 5% of the strongest connections of the median
connectivity matrices presented in Figure 2. These net-
works corroborate our observations based on the con-
nectivity matrices: CABS matrices are a composition of the
CMAX and CMIN matrices; the strongest connections in the
CMAX matrices are contralateral and the strongest con-
nections in CMIN matrices are ipsilateral. Taken collec-
tively, Figures 2 and 3 describe changes in symmetry of
the connectivity matrix and illustrate the large-scale
breakdown of synchronization between right and left
hemispheres that can be revealed from background EEG
through epileptogenesis.

In addition to analyzing the degree imbalance of nodes,
we analyzed global properties of the functional connec-
tivity networks (Table 2; Fig. 3D,H,L). For all three types of
network the same measures (Spectral norm, Variance of

Table 1. Statistical table

Results Data structure Statistical test Power or confidence intervals
Fig. 3A–C,

E–G,
I–K

No assumptions about the
distributions of the
degree imbalance on
each of the 3 days.

Two-sided Wilcoxon Mann–Whitney test
with Benjamini–Hochberg multiple
comparison/FDR correction for 30
nodes.

Separate comparison for: Day 0 vs Day
7 and Day 0 and Day 28.

We use two-sided test because we
expect to see increase and decrease
of degree imbalance.

Panel B:
FDR � 0.08,
AUROC�0.2 or AUROC�0.8;
Panel C:
FDR � 0.08,
AUROC�0.2 or AUROC�0.8;
Panel D:
FDR � 0.1,
AUROC�0.2 or AUROC�0.8;
Panel E:
FDR � 0.07,
AUROC�0.2 or AUROC�0.8;
Panel G:
FDR � 0.07,
AUROC�0.2 or AUROC�0.9;
Panel H:
FDR � 0.07,
AUROC�0.2. or AUROC�0.9;
See Extended data Figure 3-1 for

values.
Fig. 3D,

H, L;
Table 2

No assumptions about the
distributions of the
network measures.

The Kruskal–Wallis test (nonparametric
ANOVA) with Benjamini–Hochberg
multiple comparison/FDR correction
for 20 analyzed measures.

FDR and AUROC values are reported
in Table 2.

Fig. 4 No assumptions about the
distributions of the node
ictogenicity on each of
the 3 days.

One-sided Wilcoxon Mann–Whitney test
with Benjamini–Hochberg multiple
comparison/FDR correction for 30
nodes.

Separate comparison for: Day 0 vs Day
7 and Day 0 and Day 28.

We use one-sided test because only
test increase of node icotgenicity.

Panel B: FDR � 0.1, AUROC�0.8;
Panel C: FDR � 0.09, AUROC�0.8;
Panel E: FDR � 0.08, AUROC�0.8;
Panel G: FDR � 0.02, AUROC�1;
Panel H: FDR � 0.01, AUROC�0.9.
See Extended data Figure 4-1 for

values.

Columns are part of the results section, the structure of the data, statistical test, and description of the significance levels.
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neighbor weighted outdegree and degree of asymmetry)
were found to be significantly different on Day 0 and Days
7 and 28 (FDR � 0.05, Kruskal–Wallis test with Benjamini–
Hochberg FDR correction for 19 tested network mea-
sures; chosen to capture in a nonredundant way the most
important topological and spectral properties of the net-
works; for all analyzed measures, see Table 2). Values of
these three measures increase over the time course of
epileptogenesis; as an example, Figure 3D, H, and L,
illustrate increasing median of the degree of asymmetry
(Li and Zhang, 2012). These changes in local and global
network properties further indicate that the underlying
functional connectivity pattern of background activity be-
comes progressively more irregular and spatially hetero-
geneous post injection.

Epileptogenesis changes network dynamics
An important question is how these alterations to the

pattern of functional connectivity inferred from back-
ground EEG influence the ways that nodes contribute to
the generation of epileptiform dynamics. To make this
mechanistic link, we studied a mathematical model of
spiking dynamics placed on the nodes of networks de-
rived from each animal (see Material and Methods). To
measure the contribution that each node in a network has
to the generation of epileptiform rhythms we use NI intro-
duced by Goodfellow et al. (2016; see Material and Meth-
ods). Figure 4 shows the distribution of NI at Days 0, 7,

and 28 for the three types of networks. At Day 0, which we
use as a reference point, we see that the NI is distributed
symmetrically through the network, but with slightly ele-
vated values in frontal regions. This means that, if the
network was ictogenic, nodes in frontal regions would
contribute more to the generation of epileptiform dynam-
ics. At Day 7, the CABS networks, shown in Figure 4B,
displays significantly higher NI for multiple nodes in the
left posterior and right anterior regions. This pattern per-
sists at Day 28 (Fig. 4C), though nodes with elevated NI
are now constrained to fewer regions. For the CMAX net-
works, illustrated in Figure 4E and F, significant increases
in NI above baseline only occur at Day 28. Finally, for the
CMIN networks, NI increases significantly at a single node,
the location of which changes between Days 7 and 28. On
both days the node with significantly elevated NI resides
within a region that has been shown to be affected by TTX
silencing, as identified by Sheybani et al. (2018) (their
Figure 12B). In the experiments described by Sheybani
et al. (2018) the kainate injected hippocampus (left) was
silenced using an intrahippocampal TTX injection. After
the TTX injection on Day 7, interictal GSs subsided. The
same procedure on Day 28 did not affect the frequency of
occurrence of GSs.

GSs are interictal epileptic discharges recently reported
to be a predominant EEG marker of evolving abnormal
dynamics during the latent as well as chronic phase of the
disease in the kainic acid model (Sheybani et al., 2018).

Table 2. Statistical analysis of network properties for the three kinds of connectivity matrices

Name of the network property CABS CMAX CMIN

Mean weighted outdegree 0.69 0.83 0.5
Variance of weighted outdegree 0.055

(0.23; 0.13)
0.035
(0.17; 0.13)

0.12

Spectral norm 0.0099
(0; 0.091)

0.0083
(0.061; 0.046)

0.026
(0.11; 0.13)

Frobenius norm 0.42 0.47 0.27
Mean neighbor weighted outdegree 0.21 0.24 0.4
Variance of neighbor weighted outdegree 0.0099

(0.03; 0.079)
0.0131
(0.076; 0.1)

0.0233
(0.71; 0.89)

Mean betweenness 0.20 0.75 0.66
Variance of betweenness 0.098

(0.12; 0.48)
0.44 0.3

Mean page-rank 0.4 0.96 0.58
Variance of page-rank 0.17 0.47 0.27
Mean length of the shortest path between two nodes 0.29 0.47 0.4
Variance of length of the shortest paths 0.17 0.8 0.4
Mean harmonic closeness centrality 0.29 0.47 0.4
Variance of harmonic closeness centrality 0.068

(0.91; 0.62)
0.2 0.5

Assortative mixing (Pearson’s total weighted degree correlation) 0.17 0.66 0.058
S-metric, sum of the product of nodal degrees across edges 0.81 0.5 0.78
Degree of asymmetry, largest eigenvalue of the skew-symmetric

part of the Laplacian of a directed graph (Li and Zhang, 2012).
0.026
(0.14; 0.1)

0.011
(0.21; 0)

0.026
(0.26; 0.045)

Mean spectrum, mean of eigenvalues of symmetric part of the
Laplacian matrix of the directed graph (Li and Zhang, 2012).

0.74 0.8 0.14

Variance of spectrum, variance of eigenvalues of symmetric part
of the Laplacian matrix of the directed graph
(Li and Zhang, 2012).

0.4 0.25 0.88

Maximum of spectrum, largest eigenvalue of symmetric part
of the Laplacian matrix of the directed graph (Li and Zhang, 2012).

0.17 0.25 0.76

Table contains values of the Benjamini–Hochberg FDR for the Kruskal–Wallis test for comparison of medians of measures on Days 0, 7, and 28. In brackets
post hoc effect sizes quantified with AUROC: (Day 0 vs Day 7; Day 0 vs Day 28). Bold values show FDR � 0.1 and AUROC � 0.2 or AUROC � 0.8.
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GSs travel across the whole epileptic network and have also
been observed in humans (Aarts et al., 1984; Mohamed
et al., 2001; Moseley et al., 2012). Sheybani et al. (2018)
showed that the frequency of occurrence of GSs increases
during epileptogenesis and that their occurrence is corre-
lated with increased jerky movements. Furthermore, by Day
28 GSs no longer depend on the activity of the injected
hippocampus, as captured by the TTX silencing experiment
and evolution of the location of their onsets throughout Days
0–28 (Sheybani et al., 2018, their Fig. 6E). At Day 7, GSs
originate predominantly from the left and right posterior
regions, which is reflected in the observed increase in NI in
left posterior regions and also node 9 in the CABS networks.
However, changes in NI are also observed in anterior regions
in our model results. At Day 28, GSs originate predominantly
from the right posterior regions, which is best captured by
the evolution of NI in CMAX networks.

Discussion
Network analyses are increasingly being used to refine

diagnosis, prognosis and treatment for epilepsy (Schmidt

et al., 2014, 2016; Englot et al., 2015; Niso et al., 2015;
Rummel et al., 2015; Tracy and Doucet, 2015; Goodfellow
et al., 2016; Smith and Schevon, 2016; Lopes et al., 2017,
2018). In humans, functional connectivity derived from the
background EEG are known to be altered in epilepsy. For
example, Englot et al. (2015) showed that patients with
focal epilepsies (temporal and neocortical) had decreased
resting-state functional connectivity in multiple brain re-
gions. In addition, people with idiopathic generalized ep-
ilepsies, as well as their first-degree relatives, have been
shown to have elevated mean-degree and mean-degree
variance of background functional EEG networks (Chow-
dhury et al., 2014).

Here we have provided the first characterization of how
functional connectivity inferred from background EEG
evolves during epileptogenesis. Throughout epileptogen-
esis, functional connectivity networks that are initially reg-
ular and symmetric become irregular and asymmetric.
This corresponds to a loss of functional connectivity be-
tween hemispheres, both in the normalized connectivity

A B C

D E F

G H I

Figure 4. Illustration of changes in spatial distribution of node ictogenicity. A–I, Mean values of NI. Gray arrows are the strongest 5% of
connections of the median networks. Value of the NI is color and size coded; larger and darker dots indicate higher NI. Dots filled in black have
significantly higher median NI than the median on Day 0 (FDR � 0.1 one-sided Wilcoxon Mann–Whitney test with Benjamini–Hochberg FDR
correction for 30 nodes, effect size AUROC � 0.8; exact p values and effect sizes are presented in Extended data Figure 4-1). Shaded regions
in H and I show nodes affected by the TTX silencing; identified from Sheybani et al. (2018), their Figure 12B.
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presented in Figure 2 and if the raw connectivity is con-
sidered. These changes observed using EEG are in line
with previous studies of fMRI functional connectivity de-
rived in the tetanus toxin model (Otte et al., 2012), and
could be underpinned by changes in white matter tracts
(Otte et al., 2012) or changes to dynamics within localized
brain regions. However, they differ from the analysis of the
fMRI-derived functional connectivity in the systemic
kainic acid model of temporal lobe epilepsy, which dis-
played stronger connections in comparison with control
animals (Gill et al., 2017). Potential reasons for these
discrepancies include the intraperitoneal administration of
kainic acid used by Gill et al. (2017) causing more wide-
spread changes in the brain tissue than intrahippocampal
administration. Furthermore, functional networks reported
by Gill et al. (2017) were estimated using long duration
recordings (tens of minutes vs seconds in our study) from
anesthetized animals (awake head-fixed animals in the
current study). Additionally, neither of these previous studies
addressed the process of epileptogenesis through repeated
observations within the same animal.

To relate our findings of altered functional connectivity
to the generation of epileptiform activity, we used a math-
ematical model. The model allowed us to define the rela-
tive contribution of nodes to the generation of epileptiform
dynamics. Our model showed that the set of nodes that
are important for epileptiform dynamics evolves over 4
weeks of epileptogenesis. Two of the three different meth-
ods we used to compute functional connectivity network
revealed nodes outside of the injected hippocampus that
were important contributors to epileptiform dynamics.
Specifically, significant changes in the NI distribution of
the CMIN connectivity networks (at which the cross-corre-
logram �0) capture the increase of NI over the injected
hippocampus, which occurs 7 days after the injection and
persists through to Day 28. In contrast, the CMAX connec-
tivity networks (at which the cross-correlogram �0) reveal
changes in the distribution of NI only at Day 28, involving
multiple nodes that are located outside the injected hip-
pocampus.

We hypothesize that CMIN and CMAX networks reflect
two mechanisms that generate GSs. The first mechanism
is local and related to the initial insult (the injected hip-
pocampus), whereas the other mechanism is distributed
and is a consequence of network remodeling. Importantly,
Figure 4D–F shows that the second mechanism emerges
at a time subsequent to the initial insult. This interpretation
is consistent with the results of (Sheybani et al., 2018) in
which pharmacological silencing of the injected hip-
pocampus at Day 7 stopped GSs, whereas it had no
effect when performed at Day 28. This suggests the evolv-
ing importance of a distributed network throughout epi-
leptogenesis. In other words, results of the modeling
suggest that the injected hippocampus is driving the ep-
ileptiform activity at Day 7, whereas at Day 28 the activity
is driven by both the injected hippocampus as well as the
wider network.

Additionally, we note that changes in NI across individ-
ual nodes are directly interpretable in terms of generation
of the GSs and the results of the silencing experiments,

whereas typical graph theory measures (e.g., degree im-
balance or degree asymmetry) do not allow such direct
interpretation. This observation provides further support
for the use of mathematical models to uncover regions of
the brain that are important for generating abnormal dy-
namics and to aid the interpretation of experimental and
clinical data (Goodfellow et al., 2016; Schmidt et al., 2016;
Bartolomei et al., 2017; Hebbink et al., 2017; Lopes et al.,
2017, 2018; Melozzi et al., 2017; Proix et al., 2017). A
natural next step would be to model the process of epi-
leptogenesis itself to better understand why these
changes occur, and why they occur in specific brain
regions. Insights into spatial and temporal evolution of
epileptogenesis could help to develop new treatments
(Dichter, 2009; Lowenstein, 2009; Löscher and Brandt,
2010; Lopes Da Silva et al., 2012; Goldberg and Coulter,
2013; Löscher et al., 2015) and uncover reasons for sei-
zure recurrence after epilepsy surgery (Mathon et al.,
2017).

We express caution in relating observations made in
this study to human epilepsy, as we expect mouse epi-
cranial EEG contains contributions from brain structures
that are subcortical in humans (e.g., hippocampus) and
therefore would contribute less to the background human
EEG (Gotman, 2008; Lam et al., 2017). The recordings
analyzed herein are perhaps more analogous to ECoG or
depth electrode recordings in humans. In this scenario,
the approach of modeling activity recorded from invasive
electrodes has shown promise in predicting the outcome
of surgery in people with diverse “focal” epilepsies (Good-
fellow et al., 2017; Lopes et al., 2017, 2018; Sinha et al.,
2017). Our study advances our understanding of such
approaches and demonstrates a framework that allows
for their experimental validation.
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