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a b s t r a c t 

Evidence suggests that the stream of consciousness is parsed into transient brain states manifesting themselves 

as discrete spatiotemporal patterns of global neuronal activity. Electroencephalographical (EEG) microstates are 

proposed as the neurophysiological correlates of these transiently stable brain states that last for fractions of 

seconds. To further understand the link between EEG microstate dynamics and consciousness, we continuously 

recorded high-density EEG in 23 surgical patients from their awake state to unconsciousness, induced by step- 

wise increasing concentrations of the intravenous anesthetic propofol. Besides the conventional parameters of 

microstate dynamics, we introduce a new implementation of a method to estimate the complexity of microstate 

sequences. The brain activity under the surgical anesthesia showed a decreased sequence complexity of the stereo- 

typical microstates, which became sparser and longer-lasting. However, we observed an initial increase in mi- 

crostates’ temporal dynamics and complexity with increasing depth of sedation leading to a distinctive “U-shape ”

that may be linked to the paradoxical excitation induced by moderate levels of propofol. Our results support the 

idea that the brain is in a metastable state under normal conditions, balancing between order and chaos in order 

to flexibly switch from one state to another. The temporal dynamics of EEG microstates indicate changes of this 

critical balance between stability and transition that lead to altered states of consciousness. 
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. Introduction 

Several works in literature suggest that spontaneous mental activity
s discontinuous and can be parsed into a series of conscious states man-
festing themselves as discrete spatiotemporal patterns of global neu-
onal activity. Terms such as “pulses of consciousness ” ( James, 2007 ),
perceptual frames ” ( Efron, 1970 ), “neuronal workspace ” ( Baars, 1997 ;
ehaene et al., 1998 ), “heteroclinic channel ” ( Rabinovich et al., 2001 )
r “structure flow on manifolds ” ( Huys et al., 2014 ) describe the various
oncepts of parcellation of consciousness into sequential episodes - for
eviews see ( Deco et al., 2011 ; Meehan and Bressler, 2012 ; Michel and
oenig, 2018 ). For example, the neuronal workspace model suggests

hat discrete large-scale spatiotemporal neural activity patterns are
ransiently formed, remain for a certain amount of time, and then
apidly transition to a new co-activation pattern ( Baars, 1997 , 2002b ;
ehaene et al., 2003 ). This model posits that only one global state ex-
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sts at any moment in time and that conscious mentation emerges by the
erial appearance of discrete states ( Seth and Baars, 2005 ). A very sim-
lar chunking principle underlies the concept of “heteroclinic channels ”
 Rabinovich et al., 2001 ) that divide the mental activity into a chain
f transient, metastable states. Metastability is a crucial principle that
llows a system to spontaneously switch from one coordinated brain
tate to another, even in the absence of input ( Deco and Jirsa, 2012 ;
irsa et al., 1998 ; Tognoli and Kelso, 2014 ). Such flexible dynamics are
mportant since conscious experiences are related to a rich and diverse
epertoire of functional states which need to stabilize order and disor-
er, as unbalanced brain states can cause alterations in the global state
f consciousness. 

These brief periods of stable brain states switch from one to the
ther on the sub-second scale. Many behavioural studies have shown
hat the duration needed for conscious experience is in the range of
00 ms ( Dehaene et al., 2003 ; Efron, 1970 ; Libet, 1981 ). On a neu-
onal level, similar durations have been measured for synchronous
arch 2022 
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halamocortical activity ( Llinas and Ribary, 1998 ). By recording cor-
ical event-related potentials in a monkey during a visuomotor pat-
ern discrimination task, Ding et al. (2000) discriminated three differ-
nt coordination states, each lasting around 100 ms with quick tran-
itions between them. Laminar recordings in monkeys revealed tran-
ient beta bursts lasting about 150 ms ( Lundqvist et al., 2016 ) re-
ated to memory encoding and decoding processes ( Sherman et al.,
016 ). In human EEG and magnetoencephalographic (MEG) resting-
tate recordings, periods of oscillation bursts lasting around 200 ms
ave been described in the alpha ( Williamson et al., 1996 ) and beta-
ands ( Seedat et al., 2020 ). Hidden Markov Models on MEG resting-
tate activity revealed short-lived transient brain states lasting around
0–100 ms, with spatially distinct power and phase-coupling in specific
requency bands ( Vidaurre et al., 2018 ). Recently, using measures of en-
ropy and hierarchy of functional magnetic resonance imaging (fMRI)
ignals, Deco et al. (2019) demonstrated that the optimal timescale for
iscovering relevant spatiotemporal structures of brain signals is around
00 ms. 

Overall, ample evidence indicates that spontaneous brain activity
s parceled into blocks of stable brain states that last around 100–
00 ms, potentially representing the basic building blocks of conscious-
ess. An increasingly popular method to capture these transient brain
tates are the EEG microstates, which have been suggested to represent
he neural correlates of the elementary building blocks of the contents
f consciousness, the “atoms of thought ” ( Baars, 2002a ; Bressler and
elso, 2001 ; Changeux and Michel, 2004 ; Lehmann et al., 1987 ). The
oncept of EEG microstates was developed three decades ago from the
urely phenomenological observation that the head-surface voltage to-
ographies recorded with multichannel EEG do not randomly change
n space and time. Rather, a small set of prototypical topographies ex-
st that remain quasi-stable for about 50–150 ms and rapidly transi-
ion from one to the other ( Creaser et al., 2021 ; Lehmann et al., 1987 ).
hese transiently stable topographies emerge from the temporary syn-
hronized neuronal activity of large-scale networks ( Koenig et al., 2002 ;
ichel and Koenig, 2018 ). 

Several studies showed the stability of the dominant microstate to-
ographies within and across subjects, independent of age and gen-
er ( Jabèsa et al., 2021 ; Koenig et al., 2002 ; Tomescu et al., 2018 ;
anesco et al., 2020 ). However, the temporal dynamics of the mi-
rostates, such as frequency of occurrence, duration, or transition proba-
ilities, are susceptible to the momentary state of the brain. For example,
nstructing participants to focus their thoughts on specific autobiograph-
cal memories, on previously seen objects, on the definition of particular
ords, or arithmetic calculations selectively influence duration or oc-

urrence of specific microstates ( Bréchet et al., 2019 ; Milz et al., 2016 ;
eitzman et al., 2017 ). Also, meditation leads to the alteration of the
resence of distinct microstates ( Bréchet et al., 2021 ; Faber et al., 2017 ;
anda et al., 2016 ; Zanesco et al., 2021 ). Most importantly, different
europsychiatric and neurological diseases, particularly schizophrenia,
ave been shown to alter the temporal characteristics of specific EEG
icrostates ( Andreou et al., 2014 ; Kindler et al., 2011 ; Lehmann et al.,
005 ; Rieger et al., 2016 ; Strelets et al., 2003 ; Tomescu et al.,
015a ). 

While these and many other studies demonstrated the sensitivity of
EG microstate dynamics to the momentary mental or cognitive state
f the healthy and the pathological brain, little is known about the
hanges of EEG microstates due to altered states of consciousness such
s sleep, anesthesia, or clinical conditions like coma or minimally con-
cious states. If EEG microstates are indeed the neural correlates of
he elementary building blocks of the contents of consciousness, then
ny alteration of the consciousness level should modulate EEG mi-
rostates, either in terms of the diversity of states, the duration of a
iven state, or the syntax of transition between different microstates.
he few existing studies indicate such modulations. Sleep as compared
o wakefulness did not alter the topography of the most dominant mi-
rostates, but in a deep sleep (stage N3), the duration of all microstates
2 
ncreased ( Brodbeck et al., 2012 ). A more recent study with high-density
EG source imaging demonstrated an increased presence of two EEG
icrostates during non-rapid eye movement (NREM) sleep compared

o wakefulness, associated with low-frequency activity in the medial
rontal and the occipital/thalamic regions, respectively ( Brechet et al.,
020 ). Another recent study ( Gui et al., 2020 ) used the EEG microstate
pproach to assess residual cognitive functions in unresponsive patients.
he authors showed a reduction of microstates that are thought to re-
ect higher cognitive functions, while microstates associated with ba-
ic sensory functions were increased compared to controls. They also
howed that the duration and occurrence of the “cognitive ” microstates
eflected the strength of residual consciousness and predicted recov-
ry in these patients. Similarly, the ability of microstate temporal pa-
ameters to predict recovery from the coma has been demonstrated in
tefan et al. (2018) . 

Three recent works in literature used the EEG microstate ap-
roach to analyze the University of Cambridge data repository
ttps://www.repository.cam.ac.uk/handle/1810/252736 and study the
ffects of mild to moderate sedation induced by anesthetics. The data
ere collected from 20 healthy participants who were given sedative
ropofol at conditions of rest, mild sedation (0.6 μg/ml), moderate se-
ation (1.2 μg/ml) and recovery. Using this dataset, ( Li et al., 2020 ;
hi et al., 2020 ) noted that a transition into mild/moderate sedation
as accompanied by an increase in energy coverage and occurrence for

ome specific microstates at moderate sedation. Zhang et al. (2021a ), in-
tead, downsampled the original 91-channel configuration of the dataset
o 64, 32, 19 and 8 channels and showed that the differences across
onditions using the highest density configuration remained stable also
ith 64 and 32 channels. The 19 and 8-channels configurations were
ot recommended. 

In this study, we investigated the spatio-temporal properties of EEG
icrostates by following surgical patients from the awake condition

o full loss of consciousness and further to surgical anesthesia. As an
nesthetic, we used intravenous propofol, which is a widely used, short-
cting GABA receptor agonist. To provide surgical anesthesia, we used
upplemental sufentanil, which is a strong opioid, and rocuronium,
hich is a muscle relaxant. We aimed to highlight the difference be-

ween fully alert/baseline compared to surgical anesthesia conditions
nd the actual correlations of brain dynamics during that transition to
dvance further our understanding of conscious and unconscious states
f the human brain. We also created a novel implementation of a method
o evaluate the complexity of non-binarized temporal sequences of EEG
icrostates with arbitrary length. The method is based on the algo-

ithmic Lempel-Ziv complexity index ( Tait et al., 2020 ), also used by
hang et al. (2021b ) and, contrary to what has been described pre-
iously ( Casali et al., 2013 ; Schartner et al., 2015 ), it takes into ac-
ount the temporal dynamics of the whole scalp potential field rather
han binarized EEG single-channel envelopes. The measure is holistic
s it involves all EEG channels. It is reference-free as it is based on
he spatial configuration of the potential field, in contrast to single-
hannel waveform analysis ( Michel and Murray, 2012 ). Other authors
ave computed the Lempel Ziv complexity of TMS-induced EEG ac-
ivation patterns to assess the level of consciousness ( Casali et al.,
013 ; Casarotto et al., 2016 ; Comolatti et al., 2019 ). It has been pro-
osed that this index quantifies the brain’s ability of information in-
egration after stimulation ( Tononi et al., 2016 ). The need for TMS
timulation to determine the evoked EEG complexity arises however
rom the lack of control of Lempel Ziv complexity when applied di-
ectly on resting state data as even a tiny fraction of noise would in-
rease entropy, reducing the generalizability of the measure. By rely-
ng on the very well-established microstate extraction procedure, our
EG complexity measure can be applied to resting state data with-
ut the need for external stimulation and allows to further assess
ow the different levels of pharmacologically-induced, altered states
f consciousness influence the complexity of the microstate temporal
ynamics. 

https://www.repository.cam.ac.uk/handle/1810/252736
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Table 1 

Observer assessment of alertness/sedation (OAA/S) scale. Correspondence between response, speech, facial expression, eyes characteristics and composite score 

according to the observer assessment of alertness/sedation (OAA/S) scale. 

Response Speech Facial Expression Eyes Composite Score 

Name used in the 

paper 

Fully awake (baseline) / / / / BASE 

Responds readily to name spoken 

in normal tone 

Normal Normal Clear, no ptosis 5 OAAS5 

Lethargic response to name 

spoken in normal tone 

Mild slowing or 

thickening 

Mild relaxation Glazed or mild ptosis (less 

than half the eye) 

4 OAAS4 

Responds only after name is 

called loudly or repeatedly 

Slurring or prominent 

slowing 

Marked relaxation 

(slack jaw) 

Glazed and marked ptosis 

half the eye or more) 

3 OAAS3 

Responds only after mild 

prodding or shaking 

Few recognizable words 2 OAAS2 

Does not respond to mild 

prodding or shaking 

1 OAAS1 

Does not respond to noxious 

stimulus 

0 DEEP 

2

2
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. Materials and methods 

.1. Experiment protocol 

Twenty-three patients scheduled for minor elective surgery (ear-
ose-throat/plastic surgery) were included at the time of the anesthesia
onsultation after giving written informed consent. The study protocol
as approved by the Ethics Committee of Geneva University Hospitals

CER 12–280). None suffered from current or prior neurological or psy-
hiatric impairments. The complete list of inclusion and exclusion cri-
eria is available in the Appendix . The mean age of participants was 30
ears (range 20–47 years). No monetary compensation was offered. 

The patients fasted for at least six hours before anesthesia for solids
nd two hours for clear liquids ( Smith et al., 2011 ). They did not re-
eive any preoperative anxiolysis. On arrival in the operating theater,
tandard non-invasive monitoring was installed, including a three-lead
lectrocardiogram (ECG), blood pressure cuff, end-tidal CO 2, and pe-
ipheral pulse oximetry. Oxygen (100%) was administrated through a
acemask throughout the study period. 

Propofol, prepared by the anesthesia team, was administered using
 Target Controlled Infusion (TCI) device (Base Primea, Fresenius-Vial,
rezins, France) and the pharmacokinetic-pharmacodynamic (PK/PD)
odel by Schnider et al. (1999) . The TCI device estimates the propo-

ol concentrations in the plasma and at the effect-site (brain). The ini-
ially chosen effect-site concentration was 0.5 μg/ml. We assumed that
he equilibration of the blood-brain concentrations ( “steady-state ”) was
chieved within 5 min after identical plasma and cerebral concentra-
ions appeared on the TCI device screen. Effect-site concentrations were
hen increased stepwise by 1.0 μg/ml until 2.5 μg/ml and then by
.5 μg/ml until loss of consciousness (LOC). After each increase, the
steady-state ” was maintained for 5 min, and after this period, a five-
inute EEG recording was done. 

To estimate the degree of alertness, from fully alert to surgical anes-
hesia, we used a modified Observer’s Assessment of Alertness/Sedation
OAAS) scale. The original OAAS scale was developed to evaluate the
epth of sedation clinically and to identify the time point of LOC in pa-
ients receiving sedative drugs ( Chernik et al., 1990 ). The 5-point scale
anges from 5 (fully awake = subject responds readily to name spoken in
 normal tone, normal speech, normal facial expression, no ptosis) to 1
deep sedation = subject does not respond to mild prodding or shaking)
 Table 1 ). OAAS 5 was called BASE (baseline), and LOC was defined
s a score ≤ 2. Increasing depths of sedation from OAAS 5 to OAAS 1
ere achieved exclusively with increasing effect-site propofol concen-

rations and without any additional medication. However, as OAAS 1
tates (subject not responding to mild prodding or shaking) does not en-
ure that the subject does not react to active facemask ventilation (which
ay interfere with EEG recordings) and does not correspond to surgical

nesthesia, we added a further state, called DEEP. DEEP was achieved
3 
n further increasing the depth of sedation at OAAS 1 through adding
upplementary propofol to eventually reach effect-site concentrations
etween 4 and 5.5 μg/ml, and additionally, an intravenous bolus dose
f each, a strong opioid (sufentanil 0.2 μg/kg) and a neuro-muscular
locking agent (rocuronium 0.6 mg/kg). Rocuronium was administered
o counteract a potential sufentanil-related muscle rigidity and to fa-
ilitate oro-tracheal intubation. EEG recordings were ended before oro-
racheal intubation. 

During the anesthesia procedure, vital signs were continuously
ecorded using the institutional computerized anesthesia record chart.
hey included heart rate, systolic, diastolic, mean arterial blood pres-
ure, oxygen saturation (pulsoxymetry), and end-tidal CO 2 . These vari-
bles were not used for analyses. Neural correlates of propofol-induced
nesthesia were investigated by acquiring 64-channel electroencephalo-
raphic (EEG) data with active Ag/AgCl electrodes (actiCap; BrainProd-
cts) in an extended 10–10 System under the control of neuroscientists
 Oostenveld and Praamstra, 2001 ). The reliability of the 64-channel con-
guration to capture microstate feature modulations by different stages
f anesthesia has been recently proven by Zhang et al. (2021a ). Prior
o the arrival in the operation room, subjects were instructed to stay
ith closed eyes and to relax as much as possible. After a resting period
f 10 min, a baseline EEG (BASE) was recorded (5 min duration). The
 min EEG recording was repeated at each propofol state with a band
ass filter between DC and 1000 Hz and was digitized at 5 kHz, with an
nline reference at FCz. 

.2. The path to unconsciousness and surgical anesthesia 

Each dataset was annotated every minute with a level of sedation go-
ng from BASE to DEEP. Since starting from BASE, every subject reached
OC and eventually DEEP, it was possible to define a “path from con-
ciousness (fully alert) to surgical anesthesia ” as the series of conditions
raversed by the subject. Fig. 1 represents such a path for the subjects.
ig. 1 , Panel A shows, for each condition, the distribution of propofol
ffect site concentrations across the whole population and within each
ondition. Each box plot shows the average distribution across the pop-
lation, the values corresponding to the 25th and 75th percentile of the
istribution, and the maximum and minimum values that are not out-
iers. Conversely, Fig. 1 , Panel B represents the Violin distribution of
onditions across the whole population with respect to the measured
ropofol effect-site concentrations. 

.3. The first stage of data preprocessing 

Data were preprocessed with custom MATLAB scripts based on rou-
ines from the EEGLAB toolbox ( Delorme and Makeig, 2004 ) and within
artool ( Brunet et al., 2011 ) in two stages ( Fig. 2 ) The reason for this
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Fig. 1. Behavioral data analysis . Panel A. Box-plot representation of the “path to unconsciousness ” taken by each subject (each blue line) to reach condition “DEEP ”

from “OAAS5 ” (x axis) in relation to Propofol concentration (y axis). Each patient was infused with a steadily increasing dose of Propofol with plasma concentrations 

ranging from 0.5 𝜇g/ml to 4.5 𝜇g/ml. Every minute while Propofol was infused, expert clinicians performed a clinical assessment of consciousness according to the 

Observer Assessment of Alertness/Sedation scale (OAAS) with scores from 1 to 5 (indicated in the picture as “OAAS1", “OAAS2", …, “OAAS5 ”). Conditions of deep 

anesthesia-induced loss of consciousness and baseline (subject fully awake, before any infusion of Propofol) are named “DEEP ” and “BASE", respectively. Panel B. 

Violin plot distribution of the conditions of unconsciousness (from “OAAS5 ” to “DEEP ”) reached by each subject depending on the propofol level concentration (x 

axis, ranging from 0.5 to 4.5 𝜇g/ml). 

Fig. 2. Preprocessing and Analysis pipeline . Schematics representing the steps per- 

formed for preprocessing and subsequent microstate analysis (see “Methods ”). 

STEP 1 includes relative aggressive filtering steps with the aim of determining, 

for each subject, bad channels, bad epochs, and artifact Independent Compo- 

nents (ICs) to remove. STEP 2 includes more conservative filtering and bad 

channels. Bad epochs and artifact ICs are removed according to the informa- 

tion retrieved from STEP 1 before performing spatial filtering and entering the 

microstates (MS) analysis pipeline. In the MS EVALUATE pipeline, processed 

data from each subject goes through the classical steps of Spatial Filtering and 

Segmentation, pooled data for all subjects and each condition individually are 

clustered and maps assessed for similarity across conditions. Next, in the MS 

COMPUTE pipeline, pooled segmentation data for all subjects and conditions 

are merged, clustered and evaluated according to multiple state of the art cri- 

teria (see “Methods ” and Figs. 7 and 8 ). Final MS maps are then fitted to each 

single-subject dataset. 
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4 
wo-stage processing is the influence of low-frequency drifts on the re-
iability to identify artifact Independent Components (ICs), while low-
requency activity is of high functional relevance in EEG under anes-
hesia and cannot be filtered out. In the first stage bad epochs and
hannels are identified on EEG filtered with a high-pass filter cutoff of
.2 Hz, which increases data stationarity and the quality of extracted ICs
 Artoni et al., 2014 ; Winkler et al., 2015 ). ICs, bad epochs and channels
dentified in this first stage are then used in the second stage where data
re filtered with a high-pass filter cutoff of 0.2 Hz to keep the anesthesia-
elevant low-frequency information. This procedure has been tested in
revious works and allows to increase the signal-to-noise ratio (SNR)
f the data ( Artoni et al., 2017 ; D’anna et al., 2017 ; Oddo et al., 2016 ;
trauss et al., 2019 ). More in details, within the first stage ( Fig. 2 , STEP

 ), continuous data were processed using a Reliable Independent Com-
onent Analysis (RELICA) approach ( Artoni et al., 2014 ) to remove arti-
acts and other non-neural noise sources, without any preliminary data
imensionality reduction ( Artoni et al., 2018 ). To maximize both stabil-
ty ( Artoni et al., 2014 ) and dipolarity ( Delorme et al., 2012 ) of Inde-
endent Components (ICs), raw data were first high-pass filtered using
 zero-phase 1.2 Hz, 24th order Chebyshev type II filter, then low-pass
ltered using a zero-phase 45 Hz, 70th order Chebyshev type II filter
nd resampled at 250 Hz. Thanks to the rollover steepness of the filter,
here was no need to perform a further 50 Hz Comb Notch Filter. Chan-
els having Kurtosis outside 5 standard deviations with respect to other
hannels or having prominent prolonged artifacts as confirmed by visual
nspection were removed. Epochs with high-amplitude artifacts or high-
requency muscle noise were also identified by visual inspection and
emoved. The remaining data were submitted to RELICA with an AM-
CA core ( Artoni et al., 2014 ) and 100 point-by-point Infomax ICA with
 GPU-accelerated BeamICA implementation ( Kothe and Makeig, 2013 ).
inal ICA mixing and unmixing weights were then collected. 

.4. The second stage of data preprocessing 

Within the second preprocessing stage ( Fig. 2 , STEP 2 ), raw data
ere high-passed using a zero-phase 0.2 Hz 24th order Chebyshev type

I filter and a zero-phase 45 Hz, 24th order Chebyshev type II Low Pass
lter and resampled at 250 Hz. Bad channels and epochs already iden-
ified within the first preprocessing stage were rejected, and data were
arefully visually re-inspected for any remaining artifacts. ICA unmix-
ng weights computed within the first preprocessing stage were then
e-applied to the dataset, and source localization was performed using
he Dipfit toolbox ( Delorme et al., 2012 ) within EEGLAB. Dipolar and
table ICs related to stereotyped artifacts such as eye activity and neck
uscle activity were removed from the data by back projecting the IC
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Fig. 3. Microstates assessment criteria . Assessment of extracted microstates with different criteria, each estimating the “quality ” of a single segmentation, according to 

specific metrics. The criteria used were “Gamma ” (GAMMA), Point-Biserial (BISERIAL), Davies-Bouldin (DB), Dunn Robust (DUNNR), “Krzanowski - Lai ” (KL), “Sil- 

houettes (SILHOUETTES)". These criteria were also combined into a “Mean criterion ” (MEAN CRIT), that is a criterion representing the “average ” of the probabilities 

yielded by all the other criteria and the “Meta criterion ” (META CRIT) that represents the best principled choice for the number of microstates. For each condition 

analyzed (columns, “BASE ” through “DEEP ”) and assessment criteria ( “GAMMA ” through “META CRIT ”) a plot shows the probability (according to the specific 

criterion) for each number of microstates (2 to 8). A dashed vertical line for each column represents the best number of microstates according to the metacriterion 

for the relative condition. The rightmost column represents the criteria probability for the pooled dataset ( “ALL ” conditions), with the metacriterion unequivocally 

suggesting n = 5 microstates. 
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ctivation data after zeroing out the columns of the mixing matrix cor-
esponding to the artifact ICs. Missing channels were interpolated, and
lean data were spatially filtered within Cartool to improve the SNR of
he data ( Michel and Brunet, 2019 ). 

.5. Extraction of microstates 

EEG microstate segmentation was performed using the standard pro-
edure also described in Murray et al. (2008) , while taking extra pre-
autions to ensure the statistical reliability of all the results. In fact,
hroughout all the analyses, excluded time epochs (beginnings and ends)
ere treated as “boundaries", that is “gaps ” in the data that could not be

crossed ” by the analysis steps. First, the Global Field Power (GFP) max-
ma were extracted from each participant’s spontaneous preprocessed
EG. For each condition and participant, the GFP peak maps (channel
alues at the timestamp corresponding to the GFP peak) were extracted
o ensure a high signal-to-noise ratio ( Koenig et al., 2002 ) and were clus-
ered via modified k -means to extract distinct templates ( Murray et al.,
008 ; Pascual-Marqui et al., 1995 ). Within this step, the spatial cor-
elation between each GFP map and each template randomly gener-
ted was calculated while ignoring the polarity of maps ( Michel and
oenig, 2018 ). 

Each template was iteratively updated by averaging the GFP maps
hat presented the highest correlation with the template. At the same
ime, the Global Explained Variance (GEV) of template maps was cal-
ulated, and the process was iterated until the stability of GEV was
eached. For each condition (BASE through DEEP), the optimal number
f microstate classes was determined using different criteria ( Fig. 3 ),
ach estimating the “quality ” of a single segmentation according to spe-
ific metrics, and merged to define, respectively a mean/meta-criterion
s the mean/median of all optimal numbers of clusters across all cri-
eria ( Bréchet et al., 2019 ; Custo et al., 2017 ). The criteria used, dis-
5 
ussed taken from Charrad et al. (2014) , Krzanowski and Lai (1988) ,
illigan and Cooper (1985) are as follows: 

• Gamma: Goodman and Kruskal adaptation based on concordant vs.
discordant clustered pairs 

• Silhouettes: Goodness of fit evaluation of each cluster consistency 
• Davies and Bouldin: A measure derived from the ratio of within-

cluster and between-cluster separation. 
• Point-Biserial: A measure of correlation calculated between a binary

cluster index and distance matrix 
• Dunn: An evaluation of the degree of separation between all clusters.
• Krzanowski-Lai Index: A measure of within-clusters dispersion 

The mean/meta-criterion calculation is implemented in the
ree academic software Cartool ( https://sites.google.com/site/cartool
ommunity/ ). 

The dominant microstates were identified within each condition
rom the templates across participants using a second modified k -
eans clustering step. Each clustering step was computed 100 times

o maximize stability and to overcome the possible statistical insta-
ility of the randomization procedure within the k-means algorithm
 Murray et al., 2008 ). The spatial correlation was finally computed be-
ween microstates across all conditions. Each microstate was labeled as
he name of the microstate in baseline with minimal topographical dis-
imilarity (i.e., highest spatial correlation). 

.6. Assessment of the quality of microstates and fitting 

The topographical dissimilarity across different microstates both
ithin each condition and across different conditions was also computed

o ensure no “microstate splitting ” occurred. Fig. 4 , Panel A reports the
opographical correlation values between DEEP and BASE microstates.
verage and standard deviations of the spatial correlation of paired mi-
rostate maps across all conditions are finally reported at the bottom

https://sites.google.com/site/cartoolcommunity/
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Fig. 4. Microstates assessment . Panel A. Similarity matrix (absolute correlation coefficient) representing the absolute correlation (rounded to the 2nd digit) of 

microstates maps between BASE and DEEP conditions. Panel B. Representation of the 5 microstates obtained, respectively for conditions “BASE", “DEEP ” and “ALL". 

The average correlation of ordered microstates maps (all possible pairs) and the standard deviation are reported at the bottom of each column (microstates from A 

to F). 
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f Fig. 4 , Panel B . Given the high correlation between paired maps
cross conditions and the similar assessment of the optimal number of
icrostates yielded by the meta-criterion, the data of all conditions were
ooled (condition ALL) and the hitherto described analysis repeated as
hown in Fig. 2 . 

Finally, spatial correlation between the templates identified at the
roup level (ALL) and those identified for each subject was com-
uted using a temporal constraint (Segments Temporal Smoothing) of
 samples (24 ms). EEG frames were labeled in a “winner-takes-all ”
trategy ( Michel and Koenig, 2018 ) according to the group template
t best corresponded to (no labeling was performed at correlations
ower than 0.5), which generated the microstate sequence for further
nalysis. 

.7. Extraction of microstates features 

For each condition and each subject, the following microstate fea-
ures were computed: 

• Global explained variance (GEV), obtained for each microstate class,
as the sum of the explained variances weighted by the Global Field
Power at each time point, that is 

𝐺 𝐸𝑉 = 

∑𝑡 = 𝑡𝑚𝑎𝑥 
𝑡 =1 

(
𝐺 𝐹 𝑃 2 ∗ 𝑒𝑣 

)
∑𝑡 = 𝑡𝑚𝑎𝑥 

𝑡 =1 
(
𝐺 𝐹 𝑃 2 

)

• Spatial correlation, obtained for each microstate class, as the mean
spatial correlation of the microstate map with the GFP peak maps
within the spatially filtered dataset. The spatial correlation between
two maps is mathematically defined as 𝐶 = 

𝑢.𝑣 

‖𝑢 ‖ ‖𝑣 ‖ where 𝒖 and 𝒗

represent the first and second map, respectively and || || the l 2 norm.
• Duration, obtained for each microstate by averaging the time said

microstate is active (in a winner-takes-all fashion) before transition-
ing to another microstate. 

• Occurrence, computed for each microstate as the number of occur-
rences of said microstate per second of data. 

• Coverage, computed for each microstate as the relative number of
time points of the dataset covered by said microstate 

.8. Statistical comparison of microstate features across conditions 

After rejecting the null hypothesis of data Normal distribution over
ach group using a Kolmogorov Smirnov test (significance set at 𝛼 =
6 
 . 05 ), these measures were compared across conditions using a Kruskal
allis test followed by a Tukey’s Honest Significant Difference (HSD)

riterion to adjust for multiple comparisons. In the following, median
MED) and 95% confidence interval of the median (STM) are reported
nstead of the mean (AVG) and standard deviation (STD) whenever data
id not follow a standard distribution. STM is reported as 𝑤 ( 𝑞 3 − 𝑞 1 )∕ 

√
𝑛

ith 𝑤 = 1 . 57 , 𝑞 3 and 𝑞 1 the 75th and 25th percentile, respectively,
nd 𝑛 the number of samples ( Chambers et al., 1983 ). Violin plot
istributions were also calculated by kernel density estimation with
 Gaussian kernel to minimize the 𝑙2 mean integrated squared error
 Silverman, 1986 ). Box plots with comparisons across all conditions for
he most significant measures (Occurrence, Duration, Spatial Correla-
ion) are represented in Fig. 5 . 

.9. Checking for polarity inversions to test for nonlinearity 

After preliminary observations of the data, the possibility of a non-
inear path to unconsciousness was tested by computing for each mi-
rostate the relative normalized percentage difference of significant fea-
ures (Occurrence, Duration, Spatial Correlation) in OAAS4 and DEEP
onditions with respect to BASE ( Fig. 6 ), each relative difference was
tatistically tested against a null distribution. An inversion of polarity
etween the first and second bar groups demonstrates a nonlinear path
o unconsciousness. 

.10. Complexity analysis 

To compute the complexity of non-binarized sequences, we used
he Lempel-Ziv-Markov chain algorithm (LZMA2) for lossless data com-
ression ( Pavlov, 2013a ) with maximum compression level, 64 MB dic-
ionary, 64 FastBytes, BT4 MatchFinder, BCJ2 Filter ( Pavlov, 2013b ).
he Microstate Lempel-Ziv Complexity (MS-LZC) is defined as the com-
ressed size (in byte) of a microstate sequence. A sequence can be
iewed as concatenation of smaller sequences, defined as “chunks ”,
ach constituted by a repetition of the same microstate (A,B,…, F), a
umber m of times. According to this definition, a sequence such as
AABCCC] would be constituted by the chunks “A ”, “B ”, “C ” of sizes
2 ”, “1 ”, and “3 ”, respectively. As a preliminary sequence preprocess-
ng step, unlabeled points were removed (i.e., a sequence such as [AAB
an CCC] would be treated as [AABCCC]), then each chunk of size 4
r less was substituted by a chunk of the same length formed by the
icrostate representative of the first chunk from the left (or the first
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Fig. 5. Detailed microstate features comparison across conditions . Detailed comparison boxplot of the most important features (from top to bottom: Correlation, Oc- 

currence, Duration) across all conditions (BASE through DEEP) and for each microstate (A through F). On each box, the central red mark indicates the median of 

the distribution, the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the extreme data points (roughly 

corresponding to 99.3% of data if they are normally distributed) that are not considered outliers. Points within the distribution are considered outliers if greater than 

𝑞 3 + 𝑤 ( 𝑞 3 − 𝑞 1 ) where 𝑞 1 and 𝑞 3 are the 25th and 75th percentiles of the sample data, respectively and 𝑤 the maximum whisker length. ∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ 

p < 0.001. 
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rom the right if a suitable chunk on the left didn’t exist), with size 5 or
ore. As an example, a sequence such as [AAAAABBCDDDDD] would

e transformed into [AAAAAAAADDDDD]. This preprocessing step was
evised to remove from the sequence unstable microstates, i.e., active
or less than 16 ms. The resulting sequence was then transformed into
 “no-permanence ” sequence by setting to 1 the size of each chunk,
hus removing the repetition of microstates. For example, a sequence
uch as [AAAAACCCCCCBBBBB] would be transformed into [ACB]. For
ach subject and condition, the MS-LZC was computed for each ex-
racted window from the full no-permanence microstate sequence, using
 sliding-window approach (500-microstates window length, 90% win-
ow overlap) to ensure a smooth and representative output. The MS-LZC
or windows overlapping with two or more conditions were discarded
o avoid discontinuities. MS-LZC for each subject was divided by the
aseline MS-LZC amplitude (BASE condition). The grand average MS-
ZC for each condition was obtained by averaging the normalized MS-
ZC across subjects ( Fig. 7 ). Statistical comparisons across conditions
ere then performed here in a similar way as explained in Section “L ”

bove . 

. Results 

.1. From fully alert to surgical anesthesia 

Twenty-three patients scheduled for minor elective surgery volun-
eered for the experiment. Their consciousness state was assessed with
he Observer Assessment of Alertness/Sedation (OAAS) from fully awake
ith initiated Propofol injection, to OAAS0/DEEP – fully anesthetized –
 Table 1 ). 
7 
All patients reached DEEP (surgical anesthesia) within 20 ± 6 min
hen infused with increasing target effect-site concentrations of propo-

ol ranging from 0.5 𝜇g/ml to 5.0 𝜇g/ml, and additional sufentanil (and
ocuronium) a soon as OAAS 1 was reached ( Fig. 1 ). 

.2. Several criteria reveal five salient canonical microstates 

Careful preprocessing (see Methods ) and microstate analysis of the
EG data continuously collected during the experiment revealed five
anonical microstates (named with letters A, B, C, D, F), best explain-
ng the data according to a Meta-criterion ( Brechet et al., 2020 ). Mi-
rostates (MS) had different spatial distributions. The spatial correla-
ion across different microstates within each condition (e.g., MS A, and
S B within “BASE ”) and across conditions (e.g., MS A for “BASE ” and
S B for “DEEP) was always lower than the spatial correlation across

aired microstates conditions (e.g., MS A for BASE and MS A for “DEEP ”)
 Fig. 4 , Panel A ). The average spatial correlation (x 100) across condi-
ions of paired microstates was 98.3 ± 0.8 (microstate A), 98.4 ± 0.7
microstate B), 98.3 ± 0.6 (microstate C), 98.4 ± 0.9 (microstate D),
1.1 ± 7.4 (microstate F) ( Fig. 4 , Panel B ). 

.3. Correlation, occurrence, and duration successfully explain data 

The maximum statistical separation between BASE and DEEP condi-
ions was found for three microstate features (Correlation, Occurrence,
uration). These features were compared across all OAAS conditions,
iming not just to describe the starting and ending point but the whole
ath to unconsciousness ( Fig. 5 ). Coverage, instead, exhibited no sig-
ificant differences across conditions. All features (except for coverage)
xhibit a nonlinear path to unconsciousness. The spatial correlation of
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Fig. 6. Nonlinearity of the path to unconsciousness . Relative percentage difference 

of features (Correlation, Occurrence, Duration) between conditions OAAS4 and 

BASE (leftmost bar group) and between conditions DEEP and BASE (rightmost 

bar group), calculated for each microstate (A through F, color coded with col- 

ors ranging from Blue to Red). A significant inversion of polarity between the 

first and second bar groups demonstrates a significantly nonlinear path to un- 

consciousness: Correlation and Duration decrease with respect to BASE before 

reaching a maximum in DEEP while Occurrence increases with respect to BASE 

before reaching a minimum in DEEP. 
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Fig. 7. Lempel-Ziv complexity analysis of microstate sequences . Violin distribution 

of the normalized Microstate Lempel-Ziv Complexity (MS-LZC) of microstates 

across subjects for each OAAS condition (BASE through DEEP) and statistical 

significance of comparisons ( ∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001). 
he microstate maps fitted to the ongoing EEG in DEEP condition was
ignificantly higher not only with respect to BASE but also regarding
ll other conditions – OAAS 5, OAAS 4, OAAS 3, OAAS 2, OAAS 1 for
icrostates A, B and C ( p < 0.001); BASE, OAAS 5, OAAS 4, OAAS 3 for
icrostates D and F. A significant difference was found between OAAS
, OAAS 1, and BASE for all microstates ( p < 0.01). Interestingly, sig-
ificant differences ( p < 0.05) could already be seen between BASE and
AAS 3. However, although without reaching significance, the spatial
orrelation first decreased at the beginning of the path to unconscious-
ess, reaching the minimum at OAAS 4 and then steadily increased until
he maximum was reached with deep anesthesia. 

Similarly, the occurrence (number of occurrences of a microstate per
econd) of all microstates was lower for DEEP with respect to any other
ondition. However, as for the other microstate features, microstate oc-
urrence first increased at the beginning of Propofol administration be-
ore it decreased. This initial increase reached significance for all mi-
rostates at OAAS 4 when compared to BASE. 
8 
The duration of all microstates was significantly higher for DEEP with
espect to all other conditions (BASE through OAAS 1), with p < 0.001
or microstates A, B, and C. As for the other parameters, a U-shape be-
avior was observed with an initial decrease of the duration up to OAAS
, reaching significance ( p < 0.05) for microstates A and B compared to
ASE, before steadily increasing from OAAS 4 through DEEP. 

.4. A significantly nonlinear path from fully alert to surgical anesthesia 

All three microstate features showed a U-shaped behavior from
wake to deep anesthesia. To further explore this phenomenon, rela-
ive normalized differences of the microstate features were calculated
 Fig. 6 ) . This difference was negative for BASE – OAAS 4, significant
or the spatial correlation (Microstate C: p < 0.05) and duration (mi-
rostate C: p < 0.05, microstates D and F: p < 0.001), and positive
or BASE – DEEP, significant ( p < 0.001) for spatial correlation and du-

ation for all microstates. On the contrary, microstate occurrence ex-
ibited a positive BASE – OAAS 4 difference (microstate A: p < 0.05,
icrostate B: p < 0.01, microstates C,D,F: p < 0.001) and negative
ASE – DEEP difference (all microstates p < 0.001), suggesting a non-

inear path to unconsciousness from BASE to DEEP (first a decrease,
hen an increase for spatial correlation and duration, vice versa for
ccurrence). 

.5. “Mild ” and “deep ” sedation, respectively increase and decrease 

icrostate complexity 

Finally, based on the microstates sequence, we calculated a novel
eature, the Microstate Sequence Lempel Ziv Complexity (MS-LZC), that
aptures the level of compressibility (size reduction) of a fixed-length
equence, expressed in kbit/s. An increase in this complexity value
ould indicate a more heterogeneous succession of the different mi-

rostates, while decreased complexity would reflect simpler and repet-
tive microstate sequences. Grand-average MS-LZC analysis ( Fig. 7 ) re-
ealed a nonlinear path to unconsciousness with a MS-LZC increase
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Fig. 8. Single-subject Lempel-Ziv complexity analysis of microstate sequences Single-subject average normalized MS-LZC for each condition (BASE through DEEP). 

(  

(  

t  

(  

b  

c  

s  

B

4

 

t  

s  

l  

c  

w  

d
 

t  

l  

p  

M  

(  

v  

2  

d  

t  

o  

d  

h  

i  

t  

a  

c  

o  

t  

s  

t  

g  

p  

p  

s  

a  

H  

p
 

c  

m  

i  

d  

r  

t  

(  

a  

t  

s
 

a  

s  

a  

a  

t  

n  

e  

a  

t  

w  

c  

s  

a  

t  

s  

w  

t  

d  

p  

m  

m  

r  

i  

l  
from BASE to OAAS 4 and OAAS 3) followed by an MS-LZC decrease
OAAS 3,2,1, DEEP). Significance (see methods) was reached (i) be-
ween BASE and OAAS 3 ( p < 0.01), (ii) between DEEP and OAAS 4,3,2,1
 p < 0.001), (iii) between DEEP and OAAS 5 ( p < 0.01). A nonlinear
ehavior was observed for all subjects (except s2, s3, s4, where some
onditions were not annotated). Noticeably, four of them (s4, s7, s22,
23) reached a higher complexity during DEEP condition compared to
ASE. 

. Discussion 

By studying microstate sequence complexity (MS-LZC), along with
he classical microstate features, our study revealed a distinct “U-
haped ” path of propofol-anesthetized patients from fully alert (base-
ine) to surgical anesthesia. Our results demonstrate the value of mi-
rostates in capturing and synthesizing complex dynamical features of
hole-brain networks in the sub-second time range that characterizes
ifferent states of consciousness. 

Interestingly, we found a reversal effect of propofol from baseline
o light sedation and from sedation to surgical anesthesia. This pecu-
iar behavior is probably linked to the paradoxical excitation effect of
ropofol and other anesthetics at a lower dose ( Ching et al., 2010 ;
cCarthy et al., 2008 ), marked by disinhibition, loss of affective control

 Fulton and Mullen, 2000 ), and seizure-like phenomena ranging from in-
oluntary movements to generalized tonic-clonic seizures ( Walder et al.,
002 ). Noticeably, Li and Mashour (2019) found that a subanesthetic
ose of ketamine is associated with an elevated complexity level rela-
ive to baseline similar to our result with moderate levels of propofol. In
ur study, this enhanced level of excitability is characterized by more
iverse spatiotemporal EEG patterns (highlighted by shorter duration,
igher occurrence, and lower correlation of the microstates, as well as
ncreased complexity of the microstate sequences). The shorter dura-
ion and higher occurrence effects that we observed (which underline
 faster switching between microstates) may also be related to the in-
rease in occurrence and energy in microstates A, B and especially F
bserved by Li et al. (2020) and Shi et al. (2020) at the moderate seda-
ion stage. These results suggest the presence of an intermediate brain
tate as compared to a fully awake condition, during which patients en-
er a state of hyperexcitability with increased complexity and probably
reater awareness of both inside and outside stimuli. By following the
atients along their path to unconsciousness with increasing doses of
9 
ropofol we show that this initial excitement is due to a unique brain
tate that is inverted when full unconsciousness is reached. This state is
lso described under psilocybin as the “entropic brain ” state ( Carhart-
arris et al., 2014 ). Interestingly, this hyperexcitability state seemed to
rotract until full loss of consciousness in three subjects ( Fig. 8 ). 

By further increasing propofol dosage, the level of excitability de-
reases and preludes complete loss of consciousness. In terms of EEG
icrostates, this effect is characterized by increasing duration, increas-

ng correlation, decreasing the occurrence of the microstates, and re-
ucing the complexity of the microstate sequences. These effects are
eminiscent of the decreased excitability of the cortical networks due
o enhanced GABAergic phasic and tonic currents induced by propofol
 Dasilva et al., 2020 ; Orser et al., 1994 ). The effect was most pronounced
t the stage of surgical anesthesia, where opioid analgesic sufentanil and
he muscle relaxant rocuronium were added to reach complete uncon-
ciousness. 

Our finding of a U-shaped behavior of the temporal characteristics
lso characterized by increased complexity of the network dynamics, as
een in OAAS 4 and OASS 3 and decreased complexity as seen in deep
nesthesia, lead first to altered states of consciousness represented by
 hyper-excitation and second to complete unconsciousness. The fact
hat the complexity measure, in the transition from reduced conscious-
ess (OAAS 3–1) to DEEP, crosses the y = 1 line (i.e., the complexity is
qual to that of the baseline), shows that complexity and consciousness
re related in a non-trivial manner. Interestingly, in the case of induc-
ion of these altered states of consciousness by propofol, all microstates
ere similarly affected. This effect is in contrast to sleep that selectively

hanges the temporal characteristics of specific microstates. A recent
tudy ( Brechet et al., 2020 ) showed that two EEG microstates (a frontal
nd occipital/thalamic one) were highly represented during NREM sleep
han resting wake state. However, dreaming during NREM sleep was as-
ociated with a decrease in the occipital/thalamic microstate presence,
hile the frontal microstate increased during dreams. The authors ven-

ure that reducing the occipital microstate slow-wave activity may in-
icate local activations that account for remembered dreams with rich
erceptual content. In contrast, the increase of the frontal microstate
ay account for the executive disconnection of the dreaming brain to
aintain sleep. Notably, these dreams were remembered and could be

ecalled means that memory is not entirely lost during sleep. This result
s in contrast to propofol-induced anesthesia, during which memory is
ost. It has been shown that the effect of propofol on memory is dif-
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erent from the sedative effect ( Veselis et al., 2001 ). It might be that
his amnestic effect explains why all microstates, and thus all functional
rain networks, were similarly affected by propofol. 

Surgical anesthesia results in a highly significant increase in the spa-
ial correlation of the microstate template maps with the ongoing EEG
from 0.7 to 0.8 – Fig. 5 ). This result further highlights a decrease
n complexity brought forward by deep anesthesia. Few spatial filters
i.e., 5 microstates) can better explain the ongoing EEG, in line with
esults suggesting a reduction in complexity to be a predictor of uncon-
ciousness ( Dasilva et al., 2020 ; Zhang et al., 2001 ). Considering that a
inner-takes-all strategy was used to estimate microstate topographies

see Methods ), an increased duration combined with increased spa-
ial correlation is suggestive of longer-sustained and well-defined states
lower-changing, simpler topographies, better correlated with smooth
anonical microstate topographies. This effect could be attributed to
he incidence of slow waves during propofol-induced anesthesia com-
arable to slow waves during sleep ( Murphy et al., 2011 ). These low-
requency oscillations are associated with neuronal bi-stability and im-
aired network interactions caused by disruption of communication in
nd/or among cortical brain regions ( Bellesi et al., 2014 ). It has been
uggested that the presence of the microstates during low-frequency
ctivity (such as during NREM sleep) reflects a temporary process of
uppression of functional integration between the nodes of the network
hat generated the corresponding microstate, thus a deactivation of the
etwork ( Brechet et al., 2020 ). Following this interpretation, the in-
reased duration of all microstates during a loss of consciousness reflects
 continuous deactivation of the networks. In contrast to NREM sleep,
ll microstates were similarly prolongated and better presented, while
n NREM sleep, only 2 microstates changed compared to wakefulness
 Brechet et al., 2020 ). Only during deep sleep stage N3, the duration of
ll microstates increases ( Brodbeck et al., 2012 ). This effect indicates
hat loss of consciousness during anesthesia is not similar to sleep. 

Regarding the MS-LZC method proposed, previous studies have used
he Lempel-Ziv compression (LZC) algorithm to evaluate the complex-
ty and diversity of EEG signals, either with a single-channel or a mul-
ichannel approach ( Casali et al., 2013 ; Schartner et al., 2015 ). In the
ingle-channel approach, a raw or preprocessed/filtered EEG channel is
ivided into epochs, de-trended, and transformed with a Hilbert trans-
orm to estimate its envelope. The resulting signal is then binarized using
 set threshold calculated as the mean value of the envelope itself: val-
es of “1 ” and “0 ” are assigned to the time points, respectively above or
elow said threshold, and the binarized sequence is then segmented into
binary words ” by the LZC algorithm. The greater the number of “binary
ords", with respect to the number obtained after randomly shuffling

he original binarized sequence, the greater the complexity of the epoch.
he multichannel approach is similar, with the only difference that bi-
arized sequences obtained from each EEG channel are concatenated
efore submitting them to the LZC algorithm. This method (or others
ollowing a similar procedure), however, presents several drawbacks.
irst, both single-channel and multichannel approaches are highly influ-
nced by the preprocessing of EEG data. In fact, noisy channels originate
aximally-random sequences that can greatly reduce the robustness of

he complexity measure. Second, envelope binarization is not represen-
ative of the data structure as both oscillations above and below the
hreshold are lost. Third, the method may result in a different binarizing
hreshold for each epoch, potentially leading to very different complex-
ty values, even for contiguous epochs, if, for instance a particular event
r burst of noise modifies the threshold to either very high or low levels.
ourth, with the multichannel approach, concatenation of binarized se-
uences from different channels may introduce discontinuities that may
rtificially increase estimated complexity. For example if sequence “A
0,0,0,0)", with only one binary word of size 1, ( “0 ”) is concatenated
o sequence B (1,1,1,1), with only one binary word of size 1 ( “1 ”), its
oncatenation A + B (0,0,0,0,1,1,1,1) would be composed by two bi-
ary words of size “1 ” and one artifact binary world of size 2 ( “01 ”).
inally, and most importantly, single-channel analysis is highly depen-
10 
ent on the recording reference, while the topographic analysis used
or microstate segmentation is completely reference-free ( Michel and
urray, 2012 ). The idea of calculating the complexity of Microstate se-

uences has been introduced by Tait et al. (2020) . Our sliding-window
ZMA2 implementation with a 64 MB dictionary size however ensures
he maximum compression ratio of any sequence and the minimization
f the elements of variability that may be artificially introduced by the
ompression algorithm. The sliding-window approach also offers a so-
ution to the issue of comparing complexity of sequences with differ-
nt sizes without having to discard data. Rather than truncating all se-
uences to the length of shortest one, as in Tait et al. (2020) , sequences
ith different lengths can be compared without loss of data as the win-
ow size remains the same. Also, since every data window yields one
omplexity value, if n,m,r are, respectively the sequence length, window
ength and step, the method yields roughly ( n-m)/r complexity values
hat allow to evaluate possible non-stationarities over time. 

This study has two main limitations. First, in the absence of an ob-
ective, clinical tool that allows quantification of the degree of uncon-
ciousness, we were using the OAAS scale as a surrogate measure of
lertness. The OAAS scale has been validated for sedative drugs, but
t cannot be used to clinically measure the depth of surgical anesthesia.

e, therefore, added an artificial score (DEEP) to the scale in deepening
he degree of sedation to a status that empirically corresponded to surgi-
al anesthesia. Based on daily clinical practice, we assumed that thanks
o the combination of propofol and a strong opioid, surgical anesthe-
ia was reached, although that state could not be quantified clinically.
his also implies that, strictly speaking, our observations apply to dif-
erent degrees of unconsciousness induced by propofol, with or without
ufentanil. Second, the pathway from fully alert (BASE) to loss of con-
ciousness (LOC) and then further to surgical anesthesia (DEEP) is a
ontinuum. For instance, the end of “deep sedation ” and the beginning
f “surgical anesthesia ” is not clearly defined. Also, this continuum is
ikely to depend on individual factors, such as a subject’s co-morbidities
nd the drugs used for sedation. 

It is important to note that although the microstate temporal param-
ters are within the range observed in other studies without changes
f consciousness, the changes observed here are distinctly different
rom those reported in other studies on alterations of functional brain
tates. Many studies reported distinct changes of EEG microstate pa-
ameters in neurological and psychiatric diseases such as schizophre-
ia, mood disorders, autism, ADHD, dementia, and others. All these
tudies showed variations in the equilibrium between the microstates
ith specific microstates increasing their presence while others de-

reased. For example, it has repeatedly been shown that schizophre-
ia leads to an increase of microstate C and a decrease of microstate
 compared to controls ( da Cruz et al., 2020 ; Kikuchi et al., 2007 ;
ehmann et al., 2005 ; Rieger et al., 2016 ; Tomescu et al., 2014 , 2015b ).
ntipsychotic medication helps to normalize this imbalance between

he two states ( Kikuchi et al., 2007 ). Also, in healthy subjects hypnosis
 Katayama et al., 2007 ), meditation ( Bréchet et al., 2021 ; Zanesco et al.,
021 ) or sleep ( Brechet et al., 2020 ) lead to variation of specific mi-
rostates. In NREM sleep, for example, microstate C and D increase,
hile the other microstates are unchanged, despite drastic changes of

he spectral content of the EEG between awake and NREM sleep. Dream-
ng in NREM sleep leads to differential effects in microstate C and D
 Brechet et al., 2020 ). Here, Propofol-induced altered states of con-
ciousness result in changes in the temporal and complexity parameters
f all microstates. We therefore believe that this observation of effects
n all microstates as well as the u-shaped behavior are specific to altered
tates of consciousness induced by Propofol. 

Overall, microstate sequence complexity and microstate features
ffer a granular and synthetic description that opens new perspec-
ives on the neural correlates of transitions to loss of consciousness.
he performance of current loss of consciousness decoders may be

mproved by considering the existence of a paradoxical excitation
rain state, for example, by tracking the change of the slope in com-
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lexity rather than simply comparing features with the baseline con-
ition. In future works, the microstate features and sequence com-
lexity (see Fig. 8 ) may also be used to track the path of recov-
ry from loss of consciousness, explore possible relations to intra-
perative awareness and sensitivity to propofol, or prevent propofol
verdosing. 
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ppendix 

Full inclusion/exclusion criteria. 

Subjects satisfied all of the following criteria to be enrolled in the
tudy: 

• Adult patients (age between 18 and 40 years). 
• Right-handed. 
• American Society of Anesthesiology (ASA) status I-II. 
• Scheduled for elective surgery requiring a general anesthetic. 
• Able to read and understand the information sheet and to sign and

date the consent form. 

Subjects who potentially met any of the following criteria were ex-
luded from participating in the study: 

• Patients with significant cardio-respiratory or another end-organ dis-
ease (renal or hepatic disease influencing metabolism or elimination
of study drugs). 
11 
• Patients with depression, neurological or psychiatry disorders. 
• Dementia or inability to understand the informed consent. 
• Patients with a history of esophageal reflux, hiatus hernia, or any

other condition requiring rapid sequence induction of anesthesia. 
• History of drugs (opioids) or alcohol abuse. 
• Patients with a body mass index > 30 kg m 

–2 . 
• Left-handed patients. 
• History of allergy or hypersensitivity to Propofol. 
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