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Abstract. Natural Language Processing (NLP) on electronic health
records (EHRs) can be used to monitor the evolution of pathologies over
time to facilitate diagnosis and improve decision-making. In this study,
we designed an NLP pipeline to classify Magnetic Resonance Imaging
(MRI) radiology reports of patients with high-grade gliomas. Specifically,
we aimed to distinguish reports indicating changes in tumors between one
examination and the follow-up examination (treatment response/tumor
progression versus stability). A total of 164 patients with 361 associated
reports were retrieved from routine imaging, and reports were labeled
by one radiologist. First, we assessed which embedding is more suitable
when working with limited data, in French, from a specific domain. To
do so, we compared a classic embedding techniques, TF-IDF, to a neu-
ral embedding technique, Doc2Vec, after hyperparameter optimization
for both. A random forest classifier was used to classify the reports into
stable (unchanged tumor) or unstable (changed tumor). Second, we ap-
plied the post-hoc LIME explainability tool to understand the decisions
taken by the model. Overall, classification results obtained in repeated
5-fold cross-validation with TF-IDF reached around 89% AUC and were
significantly better than those achieved with Doc2Vec (Wilcoxon signed-
rank test, P = 0.009). The explainability toolkit run on TF-IDF revealed
some interesting patterns: first, words indicating change such as progres-
sion were rightfully frequent for reports classified as unstable; similarly,
words indicating no change such as not were frequent for reports classi-
fied as stable. Lastly, the toolkit discovered misleading words such as T2
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which are clearly not directly relevant for the task. All the code used for
this study is made available.

Keywords: Natural Language Processing (NLP) · Term Frequency - In-
verse Document Frequency (TF-IDF) · Doc2Vec · diagnostic surveillance
· LIME Model Explainability

1 Introduction

In the last decade, Machine Learning (ML) has reshaped research in radiology.
ML models yield state-of-the-art results for numerous medical imaging tasks such
as segmentation, anomaly detection, registration, and disease classification [1].
In addition to images, ML models have also been increasingly applied to radi-
ology reports and more generally to data coming from Radiology Information
Systems (RIS) [2]. However, even though radiology reports contain valuable,
high-level insights from trained physicians, they also come with some associated
drawbacks; in particular, most reports are stored as unstructured, free-text doc-
uments. Consequently, they exhibit a strong degree of ambiguity, uncertainty
and lack of conciseness [3].

Natural Language Processing (NLP) is a branch of ML that helps comput-
ers understand, interpret, and manipulate human language [4]. In the case of
radiology reports, NLP has the goal of extracting clinically relevant information
from unstructured texts. As recently illustrated in one extensive review [5], one
frequent application of NLP for radiology reports is diagnostic surveillance. Its
objective is to monitor the evolution of a pathology in order to extrapolate useful
knowledge and improve decision-making. In line with this trend, our work focuses
on oncology patients with high-grade gliomas that are scanned longitudinally for
frequent follow-up.

According to [5], the majority (86%) of studies published up until 2019 fo-
cused on medical reports written in English, while only 1% of the reviewed
studies utilized French reports. This language gap is understandable given that
a substantial portion of NLP tools was developed using English texts. Nonethe-
less, in medical NLP, researchers need to adapt their models to the language of
the radiology reports. This entails custom precautions and expedients to take
since languages are often syntactically and/or semantically different from En-
glish. In this work, we investigate NLP methods for radiology reports written in
French.

In addition, [5] concluded that although a growing number of Deep Learn-
ing (DL) NLP methods has been applied in recent years, “conventional ML
approaches are still prevalent”. To assess which technique is more suitable for
our dataset, we compare two traditional embedding strategies, namely Term
Frequency–Inverse Document Frequency (TF-IDF) [6] and Doc2Vec [7].

The task that we address is binary document classification. Specifically, we
aim to identify the main conclusion of the medical reports deciding among the
following groups: tumor stability vs. tumor instability. Details about these classes
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are provided in section 2.2. The potential applications of our report classifier are
twofold: first, it could help referring physicians to focus the attention on the
main conclusion of the report, thus accelerating subsequent decisions. Second,
the predicted classes could be used as weak labels for a downstream machine
learning task (e.g. automated cohort creation). In addition, most clinically rele-
vant images in RIS are associated with a radiology report, and thus offer poten-
tial access to several hundred thousands of weakly labelled images in medium to
large hospitals.

In this work we also conduct an interpretability analysis of the model’s deci-
sions [8,9], based on the post-hoc interpretation technique LIME [10]. Its main
objective is to identify the most important words that influenced the final predic-
tion, by creating a surrogate linear model that performs local input perturbation
(details in section 2.4).

In summary, this study presents a classifier for French radiology reports in the
context of diagnostic surveillance, while comparing two embedding techniques
and providing a visual interpretation of the model’s decisions.

1.1 Related Works

Here, we present the works most similar to ours. In [11], the authors compared
several embedding techniques and five different classifiers for detecting the radiol-
ogist’s intent in oncologic evaluations. Similarly, [12] investigated a DL model to
identify oncologic outcomes from radiology reports. The authors in [13] utilized
a combination of ML and rule-based approaches to highlight important changes
and identify significant observations that characterize radiology reports. [14] de-
vised a model that extracts radiological measurements and the corresponding
core descriptors (e.g. temporality, anatomical entity, ...) from Magnetic Res-
onance (MR), Computed Tomography (CT) and mammography reports. The
work of [15] describes an NLP pipeline that identifies patients with (pre)cancer
of the cervix and anus from histopathologic reports. Last, [16] detected throm-
boembolic diseases and incidental findings from angiography and venography
reports.

Among all these works, only [16] used French reports, while the others worked
with English documents. Moreover, only [12] addressed the issue of model ex-
plainability which we believe is paramount for the ML community, especially in
the medical domain.

2 Materials and Methods

2.1 Dataset

We retrospectively included 164 subjects that underwent longitudinal MR glioma
follow-up in the university hospital of Lausanne (CHUV) between 2005 and 2019.
71% of the patients in the cohort had Glioblastoma Multiforme (GBM), while
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the remaining 29% had either an oligoastrocytoma or an oligodendroglioma. At
every session, a series of MR scans were performed including structural, perfu-
sion and functional imaging. For the sake of this study, we only focused on the
native T1-weighted (T1w) scan, the T2-weighted (T2w) scan and the T1w-gad
(post gadolinium injection, a contrast agent). For 25 patients, we collected im-
ages and reports across multiple sessions (on average, 9 sessions per subject).
For the remaining 139 patients, we only retrieved images and reports from 1 ran-
dom session. This latter sampling strategy was adopted to increase the chance
of having cases of tumor progression and tumor response, since multiple sessions
of the same subject mostly showed tumor stability and thus led to a very im-
balanced data set. Overall, we ended up with a dataset of 361 radiology reports
to use for the NLP pipeline. Every report was written (dictated) during routine
clinical practice by a junior radiologist after exploring all sequences of interest.
Then, a senior radiologist reviewed each case amending the final report when
necessary. The extracted reports have varying length ranging from 114 to 533
words (average 255, standard deviation 68). The MR acquisition parameters for
the cohort are provided in Table 1. The protocol of this study was approved by
the regional ethics committee; written informed consent was waived.

Table 1: MR acquisition parameters of scans used for the study population.
# sessions ≡ # reports Vendor Scanner Field Strength [T]

174 Siemens Healthcare Skyra 3.0

73 Philips Intera 3.0

46 Siemens Healthcare Prisma 3.0

32 Siemens Healthcare Symphony 1.5

21 Siemens Healthcare TrioTim 3.0

10 Siemens Healthcare Aera 1.5

5 Siemens Healthcare Verio 3.0

2.2 Report Tagging

In order to build a supervised document classifier, one radiologist (4 years of
experience in neuroimaging) tagged the reports with labels of interest. For each
report, the annotator was instructed to perform two separate tasks: first, she had
to assign 3 classes to the reports; one class that indicated the global conclusion
of the report, one class to indicate the evolution of the enhanced part of the
lesion (T1w conclusion) and the last one to indicate the evolution of the lesion
on T2-weighted sequences (T2w conclusion). For each of these three groups, the
annotator could choose between the following labels:

– Stable: assigned when the tumor did not change significantly with respect
to the previous comparative exam.
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– Progression: assigned when the tumor worsened with respect to the pre-
vious comparative exam. This class included cases where the enhanced part
of the tumor increased in size or when the T2 signal anomalies surrounding
the tumor increased in extension.

– Response: assigned when the tumor responded positively to the treatment
(either chemotherapy or radiotherapy).

– Unknown: used when the annotator was not able to assign any of the three
classes above.

The second task of the annotator was to highlight the most recent compara-
tive date in the reports. Since the reports are not structured, this helped linking
the current report being tagged with the most meaningful previous one. For sim-
plicity, in this work we only focused on the global conclusion of the reports, and
not on the T1 and T2 conclusions. Also, we removed all cases that were tagged
as unknown (21 reports) and we merged progression and response into one
unique class which we denote as unstable. By doing this, we narrowed the task
to a binary classification problem where the model tries to distinguish between
stable and unstable reports. After these modifications, we ended up with 191
stable reports and 149 unstable reports.

To facilitate the annotation process, we utilized the open-source software
Dataturks1. This provided a graphic interface to the annotator which allowed her
to tag, skip, highlight, and review the reports in a user-friendly way. Moreover,
it automatically generated machine-readable labels once the annotation process
was over. One exemplary report is illustrated in Figure 1, together with the
corresponding annotations.

Fig. 1: Dataturks annotation interface. The annotator can select the classes in
the left box and highlight the text of interest. Sensitive information has been
blacked out for privacy.

2.3 Text Preprocessing & Embedding

Several preprocessing steps were carried out to reduce the vocabulary size. First,
we removed all proper nouns such as physicians’ and patients’ names. This was

1 OpenSource Data Annotation tool - http://github.com/DataTurks/DataTurks
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performed using a pre-trained French Part-Of-Speech tagger from the Spacy li-
brary (version 3.0.6) [19]. Second, all the words in the reports were converted
to lowercase. This operation is typical when there are no words that indicate a
specific meaning when expressed with capital letters. Third, we removed punc-
tuation and the most common French stop words, namely [‘de’, ‘la’, ‘en’, ‘et’,
‘du’, ‘d’, ‘le’, ‘l’, ‘un’, ‘une’, ‘les’, ‘des’, ‘ces’, ‘à’, ‘au’, ‘aux’]. Among these, we
ensured to keep the French negation ‘pas’ (not) since it is very frequent in the
reports, and reverses the meaning of the sentence. Fourth, all reports were to-
kenized using the wordpunct class of the Natural Language Toolkit framework
(version 3.6.1) [20]. As last step, since all the reports contain the three sections
‘indications’, ‘description’ and ‘conclusion’, we removed all content before the
‘indication’ section, which is either useless (e.g. department phone number) or
sensitive (e.g. patient identifier).

A key step in any NLP pipeline is text embedding. This corresponds to the
conversion of tokenized text into numerical vectors. Historically, many embed-
ding techniques have been proposed in literature. In this work, we compare two
of the most widespread, namely TF-IDF [6] and Doc2Vec [7]. While the former
is a standard term-weighting embedding scheme (traditional ML) that preserves
the length of the tokenized documents, the latter is a DL-based technique that
creates dense vectors which encode word order and context. TF-IDF was per-
formed at the word level with the sklearn package (version 0.24.1) [21], whereas
Doc2Vec was performed using the gensim library (version 4.0.1) [22].

2.4 Experiments

All experiments were run in a 5-fold, nested, stratified cross validation (CV).
The internal CV was used to tune the hyperparameters of the pipeline with a
custom Grid Search algorithm. Instead, the external CV was used to compute
results on hold-out test samples. For TF-IDF, two hyperparameters were tuned:
first, the types of retained N-grams were searched in the range [3,5]. Second,
the percentage of vocabulary size to use was varied between 100% (all words are
used) and 90% (the 10% rarest words are removed). The other parameters were
fixed: the minimum document frequency was set to 2 and the maximum docu-
ment frequency was set to 0.9 (indicating 90% of the documents). For Doc2Vec,
the algorithm type (PV-DM or PV-DBOW) and the vector dimensionality [10,
30, 50] were tuned with the validation set. The context window was set to 5
words. Five “noise” negative words were drawn. Words with a total frequency
lower than 2 were ignored. The model was trained for 100 epochs. Since stop
words are not necessarily useless for Doc2Vec, we also tried to run the Doc2Vec
pipeline preserving them.

The stratification of the CV guaranteed that both training and test sets con-
tained approximately the same percentage of reports indicating tumor stability
and tumor instability. To avoid overoptimistic predictions, we also ensured that
the reports from multiple sessions of the same subject were not present some in
the train set and some in the test set. Furthermore, to reduce the bias introduced
by the random choice of patients at each CV split, the whole nested CV was
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repeated 10 times, each time performing the splitting anew, and results were
averaged.

For all experiments, we adopted the Random Forest algorithm [23] to classify
the embedded documents, using once again the sklearn package. As hyperparam-
eters, we set a fixed number of 501 trees and we tuned the maximum retained
features in the internal CV, choosing between 0.8 (only 80% of the features are
used) and 1.0 (all features are used).

To compare the two pipelines (Doc2Vec vs. TF-IDF embedding), we com-
puted all standard classification metrics, namely accuracy, sensitivity, specificity,
positive predictive value, negative predictive value and F1-score. Moreover, we
also plotted the Receiver Operating Characteristic (ROC) and Precision-Recall
(PR) curves. The reports indicating tumor stability were considered as negative
samples, whereas those indicating a change in the tumor were considered as pos-
itive samples. The classification metrics and the curves were averaged across the
10 runs. To statistically compare the classification results, a Wilcoxon signed-
rank test was performed [24]. For simplicity, the test only accounted for the area
under the ROC curve (AUC) across the 10 runs. A significance threshold level
α = 0.05 was set for comparing P values.

The explainability analysis was performed with the LIME toolkit on the TF-
IDF pipeline only since it resulted in higher performances (see Table 2). We set
the best hyperparameters obtained across the random runs and we ran LIME
over all test reports. For each report, the toolkit performs a post-hoc interpre-
tation following a two-step approach: first, it randomly generates neighborhood
data in the vicinity of the example being explained; then, it “learns locally
weighted linear models on this neighborhood data to explain each of the classes
in an interpretable way”. The user can choose how many features (words) are
shown in the explanation. For this work, we set a maximum of 6 features per doc-
ument. These weighted features represent the linear model which approximates
the behaviour of the random forest classifier in the vicinity of the explained test
example.

All the Python 3.6 code developed for this study is available on github2.

3 Results

3.1 Classification performances

The nested CV with the Doc2Vec embedding took 50 minutes per run, while the
one with TF-IDF took 2 hours. The most frequent hyperparameters chosen in
the internal CV for Doc2Vec across the 10 random runs were a vector size of 10
and the PV-DV version of the algorithm. Instead, for TF-IDF, n-grams in the
range (1,3) were the most frequent, and the optimal percentage of vocabulary
size was 90%. For the Random Forest classifier, the configuration with 80% of
the features was most frequent.

2 https://github.com/connectomicslab/Glioma NLP
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We report in Table 2 the classification results of the two pipelines (TF-IDF
vs. Doc2Vec), averaged over the 10 runs. Similarly, figures 2 and 3 illustrate the
average ROC and PR curves. When comparing the two pipelines across the 10
random runs with the Wilcoxon signed-rank test, the AUC values of TF-IDF
were significantly higher than those of Doc2Vec (P = 0.009). Last, classification
results of the Doc2Vec pipeline run preserving the stop words led to higher
results (average AUC = .85± .03). However, these were still significantly lower
than the TF-IDF pipeline.

Table 2: Classification results across the 10 random runs. Values are presented as
mean ± standard deviation. Bold values indicate the highest performances. Acc
= accuracy; Sens = sensitivity; Spec = specificity; PPV = positive predictive
value; NPV = negative predictive value; F1 = F1-score; AUC = area under the
ROC curve; AUPR = area under the PR curve.
Embedding Acc % Sens % Spec % PPV % NPV % F1 % AUC AUPR

TF-IDF 88±1 91±1 75±0 95±0 60±2 93±0 .89±.01 .97±.00

Doc2Vec 86±2 94±3 38±10 89±1 57±10 92±1 .83±.05 .96±.01

Fig. 2: Receiver operating characteristic (ROC) curves of the two pipelines (TF-
IDF vs. Doc2Vec) averaged across the 10 runs.
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Fig. 3: Precision-Recall (PR) curves of the two pipelines (TF-IDF vs. Doc2Vec)
averaged across the 10 runs.

3.2 Error Analysis & Model Interpretation

To further understand the decisions taken by the random forest algorithm, we
applied the LIME post-hoc interpretability toolkit. Specifically, we investigated
both the explanations created for the correctly classified reports and for the false
positive and false negative reports. Table 3 shows the most frequent words used
by the linear classifier created by LIME. We notice that most of the words intu-
itively make sense for the True Positive and True Negative samples. For instance,
words like ‘progression’, ‘augmentation’ and ‘diminution’ that all indicate some
sort of change are recurrent for predicting TP samples and outweigh the corre-
sponding words indicating tumor stability such as ‘sans’ (without) or ‘récidive’
(recurrence). A similar trend can be observed for TN samples where words like
‘pas’ (not), ‘stabilité’ (stability) and ‘inchangé’ (unchanged) outweigh words in-
dicating instability like ‘apparition’ (appearance). However, the error analysis
also highlighted some recurrent mistakes, such as the importance given to the
words ‘t2 ’ and ‘axial ’ in the FN samples or ‘2007 ’ in the FP which ultimately
deteriorate the predictions. To have a qualitative idea of the output of the LIME
toolkit, we show in Figures 4 and 5 one TP and one FN example, respectively.

4 Discussion

In this work, we explored the potential of NLP for the task of diagnostic surveil-
lance in patients with high-grade gliomas. As pointed out in [5], and subse-
quently shown in other works [25,26], traditional ML embedding techniques can
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Table 3: Six most frequent features (words) used by the linear model generated by
LIME to predict the class of the reports, sorted in descending order. For instance,
the word ‘progression’ is the most frequent word indicating instability used by
the linear classifier for the TP test documents, whereas ‘pas’ (French negation)
is the most frequent word indicating stability used for the TN test documents.
TP = True Positive (i.e. reports indicating tumor instability and predicted as
such); TN = True Negative; FP = False Positive; FN = False Negative.

Stable Unstable Stable Unstable

TP

sans
récidive

pas
signe

anomalie
ou

progression
augmentation

oedème
plus

diminution
spectroscopie

FP

sans
depuis

appareil
réalisé

inchangé
pondération

progression
axial

diminution
plus

oedème
2007

TN

pas
récidive

sans
stabilité

transverse
inchangé

apparition
augmentation

axial
spectroscopie

plus
postérieure

FN

récidive
pas
sans

transverse
t2

stabilité

apparition
spectroscopie
augmentation

diminution
axial
dans

lead to comparable results with respect to DL techniques when properly tuned.
Moreover, they are still frequent when the dataset size is limited such as in med-
ical imaging applications. Our work confirms this trend since, given the same
classifier, the TF-IDF pipeline statistically outperformed the Doc2Vec one. The
explainability analysis highlighted interesting trends. For the correctly classified
reports, it confirmed that the model is focusing on relevant words. When investi-
gating reports indicating instability, most of the recurrent terms indeed indicate
a status of change such as ‘diminution’, ‘progression’ or ‘plus’ (more). Similarly,
the recurrent words for the reports indicating tumor stability reflect a status
of no-change (e.g. ‘pas’ (French negation)). Regarding the errors of the model,
the LIME toolkit also uncovered some misleading words which obfuscate the
final predictions. For instance, the words ‘appareil ’ (MR scanner), ‘t2 ’, ‘axial ’
or ‘transverse’ are recurrent in the explanations of FP and FN even though they
are related to the acquisition process rather the status of the tumor.

The following limitations must be acknowledged. First, the annotations were
performed by one single radiologist which is not the optimal scenario for ambigu-
ous NLP tasks. Second, the dataset size is still limited with respect to similar
studies [11,12,14].

In future works we are planning to enlarge the dataset and add a second
annotator to assess inter-rate variability (and ideally intra-rater variability as
well). Also, we would like to investigate which part of the report is the most
important with respect to the final prediction. For instance, we would like to
evaluate classification performances when using only description and conclusion
of the reports, or even just the conclusion. In addition, we are planning to ex-
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Fig. 4: LIME toolkit explanations for a TP report. Words such as ‘diminu-
tion’ and ‘augmentation’ correctly outweigh words indicating stability like ‘pas’
(French negation) or ‘sans’ (without). Sensitive information has been blacked
out for privacy.

Fig. 5: LIME toolkit explanations for a FN report. Words such as ‘sans’ and
‘transverse’ incorrectly outweigh the key word indicating instability in this report
which is ‘apparition’ (appearance). Sensitive information has been blacked out
for privacy.

periment different classifiers, or French pre-trained embedding models developed
with larger corpora. Next, we will investigate what happens when shifting from
a binary problem (stable vs. unstable) to a more granular task. Last, we will
leverage the information extracted by the explainability toolkit to further pre-
process the documents, for instance removing terms related to the acquisition
protocol.

In conclusion, this work presented an NLP pipeline for the classification of ra-
diology reports for patients with high-grade gliomas. The top-performing model
(TF-IDF + Random Forest) attained satisfactory performances (AUC = .89)
that lays a good foundation for generating weak labels, and the post-hoc ex-
plainability toolkit that we used holds promise for the development of a robust
and transparent ML analysis.
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