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a b s t r a c t

In recent years, considerable research has focused on the biological effect of endocrine-disrupting chem-
icals. Bisphenol A (BPA) has been implicated as an endocrine-disrupting chemical (EDC) due to its ability
to mimic the action of endogenous estrogenic hormones.

The aim of this study was to assess the effect of perinatal exposure to BPA on cerebral structural
development and metabolism after birth.

BPA (1 mg/l) was administered in the drinking water of pregnant dams from day 6 of gestation until pup
weaning. At postnatal day 20, in vivo metabolite concentrations in the rat pup hippocampus were mea-
sured using high field proton magnetic resonance spectroscopy. Further, brain was assessed histologically
for growth, gross morphology, glial and neuronal development and extent of myelination.

Localized proton magnetic resonance spectroscopy (1H MRS) showed in the BPA-exposed rat a signifi-
cant increase in glutamate concentration in the hippocampus as well as in the Glu/Asp ratio. Interestingly

these two metabolites are metabolically linked together in the malate–aspartate metabolic shuttle.

Quantitative histological analysis revealed that the density of NeuN-positive neurons in the hippocam-
pus was decreased in the BPA-treated offspring when compared to controls. Conversely, the density of
GFAP-positive astrocytes in the cingulum was increased in BPA-treated offspring.

In conclusion, exposure to low-dose BPA during gestation and lactation leads to significant changes in
the Glu/Asp ratio in the hippocampus, which may reflect impaired mitochondrial function and also result

elopm
in neuronal and glial dev

. Introduction

In recent years, considerable research has focused on the asso-
iation between exposure to endocrine-disrupting chemicals and
he onset of disease and reproductive impairment. BPA (4,4′-
sopropylidenediphenol), which is widely used in plastic food and
rink containers, has been implicated as an endocrine-disrupting
hemical due to its ability to mimic the action of endogenous estro-
Please cite this article in press as: Kunz, N., et al., Developmental and
gestation and lactation. Int. J. Dev. Neurosci. (2010), doi:10.1016/j.ijde

enic hormones (Paris et al., 2002; Ranjit et al., 2009; Vom Saal et al.,
998).

Several studies have confirmed the presence of BPA in urine
n human populations (0.3–7.9 �g/day) (Calafat et al., 2005;

∗ Corresponding author at: Service du Développement et de la Croissance,
épartement Enfant & Adolescent, Hôpital des Enfants, 6 rue Willy Donzé, 1211
eneva 14, Switzerland. Tel.: +41 22 382 54 93; fax: +41 22 382 43 15.

E-mail address: stephane.sizonenko@unige.ch (S.V. Sizonenko).

736-5748/$36.00 © 2010 ISDN. Published by Elsevier Ltd. All rights reserved.
oi:10.1016/j.ijdevneu.2010.09.009
ental alterations.
© 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

Fujimaki et al., 2004; Takeuchi and Tsutsumi, 2002). BPA has
been detected in the serum of pregnant women (1–2 ng/ml), fetus
serum (0.2–9.2 ng/ml), amniotic fluid (8.3–8.7 ng/ml), placental tis-
sue (1.0–104.9 ng/g), and breast milk (1.1 ng/l) (Ikezuki et al., 2002;
Schonfelder et al., 2002; Ye et al., 2005), suggesting that the human
fetus is readily exposed to this compound during pre- and post-
natal development.

Furthermore, a number of studies have shown behavioural mod-
ifications after exposure to BPA during gestation and/or lactation
at low and high doses (i.e. 40–400 �g/kg/day), such as masculin-
isation behaviour in female pups or hyperactivity (Dessi-Fulgheri
et al., 2002; Farabollini et al., 2002; Ishido et al., 2004; Palanza et al.,
2008). These behavioural changes suggest some effects of BPA on
metabolic brain alterations in rats exposed to bisphenol A during
vneu.2010.09.009

the developing central nervous system (CNS). The effect of BPA on
the CNS may be of increased importance in the fetal and postnatal
brain development and appears now as a public health concern
(Vandenberg et al., 2009). To date, there have been few in vivo
studies that have examined the impact of BPA exposure during

dx.doi.org/10.1016/j.ijdevneu.2010.09.009
dx.doi.org/10.1016/j.ijdevneu.2010.09.009
http://www.sciencedirect.com/science/journal/07365748
http://www.elsevier.com/locate/ijdevneu
mailto:stephane.sizonenko@unige.ch
dx.doi.org/10.1016/j.ijdevneu.2010.09.009
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Table 1
Primary associated role of the metabolites quantified by 1H MRS and abbreviation in this study.

Primary associated role Compound Abbreviation

Antioxidants
Ascorbate Asc
Glutathione GSH

Excitatory amino acid Aspartate Asp

Excitatory neurotransmitter
Glutamate Glu
N-Acetylaspartylglutamate NAAG

Precursor of Glu located in astrocytes Glutamine Gln
Inhibitory neurotransmitter �-Aminobutyric acid GABA

Membrane synthesis
Glycerophosphorylcholine GPC
Phosphorylcholine PCho
Phosphorylethanolamine PE

Source of energy d-Glucose Glc
End product of anaerobic glycolysis Lactate Lac

Reservoir of generation of ATP
Creatine Cr
Phosphocreatine PCr
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Putative neuronal marker N-Acetyl-aspart

Osmoregulation
Taurine
Myo-inositol

estation and lactation on brain development (Facciolo et al., 2002).
n addition, BPA (25–50 mg/kg/day, i.p. injection) has been shown
o enhance oxidative stress and lipid peroxidation promoting the
ellular death in several organs (e.g. brain, liver, and kidney) of
xposed rodents (Aydogan et al., 2008; Kabuto et al., 2003).

Some investigators have reported the beneficial effects of BPA on
rain development, mediated for the most part by estrogen recep-
ors (ERs) (Kubo et al., 2004; Shikimi et al., 2004) (50–200 �M of
PA in cell culture or injection of 500 �g/day during 5 days in the rat
erebrospinal fluid, respectively). But most studies, however, have
hown the potential risk of BPA exposure on brain development.
n vitro, BPA exposure has been shown to inhibit oligodendro-
yte precursor cell differentiation and myelin basic protein (MBP)
xpression (Seiwa et al., 2004), and to influence synaptogenesis and
euronal vulnerability in hippocampal cultures (Sato et al., 2002).

n vivo, BPA inhibits estrogen-activated hippocampal spine synapse
ormation (Maclusky et al., 2005; Zhou et al., 2009) (subcutaneous
njection of 40–400 �g/kg of BPA in the rat and from gestational
ay (GD) 8 to PND21 20 �g/kg/day of BPA, respectively) and
isrupts normal neocortical development by accelerating neuronal
ifferentiation/migration (Nakamura et al., 2006) (subcutaneous

njection of 20 �g/kg/day from GD0). It is therefore of substantial
nterest to investigate the effects of pre and post-natal exposures
f BPA on brain development. In particular, in view of the potential
ranslation to human studies, the approach through non-invasive
echniques is attractive.1H MRS is an in vivo investigational
pproach that has been used to study the metabolic changes dur-
ng rat brain development (Tkac et al., 1999). This technique allows
he assessment of the concentration of 21 metabolites, termed
neurochemical profile” (Pfeuffer et al., 1999) (cf. Table 1). Previous
tudies have shown that impaired nutrient supply, such as iron
eficiency (Rao et al., 2003) or chronic hypoxia (Raman et al., 2005)

eads to specific changes in the neurochemical profile that implicate
elayed myelination and impaired development of the neuropil.

The aim of the current study was to assess the effects of BPA
xposure during gestation and lactation on cerebral metabolism
nd development by using in vivo localized 1H MRS in combination
ith quantitative histopathology.
Please cite this article in press as: Kunz, N., et al., Developmental and
gestation and lactation. Int. J. Dev. Neurosci. (2010), doi:10.1016/j.ijde

. Materials and methods

.1. Animals

All animal procedures were reviewed and approved by the university and
tate animal ethics boards. Virgin female (275–300 g) and male (300–325 g)
NAA

Tau
Ins

Sprague–Dawley (Taconic Europe, The Netherlands) rats were used for breeding.
Pregnant dams were housed individually under standard conditions (12 h:12 h
light–dark cycle). To avoid BPA induced potential malformation during the first
days of gestation (Nakamura et al., 2006; Xing et al., 2010), the administration of
BPA started from day 6 of gestation through postnatal day 20 (PND20) of lacta-
tion, where dams were given 1 mg/l BPA (dissolved in 1% ethanol) in their drinking
water (Rubin et al., 2001; Somm et al., 2009). The mean level dosage of intake of
the dams was estimated to approximately 70 �g/kg/day by weighting the drinking
bottle every day. This dose is in the range that does induce neural and behavioural
changes. The dams of control group received drinking water containing the same
amount of ethanol (1%) without BPA. The end of the treatment coincided with the
weaning age (PND20).

To control for dietary phytoestrogen intake, control and BPA-treated dams were
given a chow diet low in phytoestrogens, with genistein content below the detection
limit (Kliba Nafag 3250, Provimi Kliba, Kaiseraugst, Switzerland) 10 days prior to
mating and throughout the gestation and lactation. BPA-free cages and drinking
bottles were used to avoid contamination. Male and female data were combined for
all analyses since no gender differences between BPA-treated and control-offspring’s
neurochemical profiles were seen. Furthermore, the number of offspring per litter
and the ratio of male to female offspring at birth were not statistically different
between control and BPA-treated rats.

2.2. Nuclear magnetic resonance (NMR)

Localized 1H MRS was focused on the investigation of metabolic changes in the
hippocampus region since several studies have reported neuronal alterations in hip-
pocampal cultures after BPA exposure (Choi et al., 2007; Lee et al., 2008; Maclusky
et al., 2005; Ogiue-Ikeda et al., 2008; Sato et al., 2002; Zhou et al., 2009). Pups
from the two animal groups (n = 8 BPA-treated group, n = 6 control), were stud-
ied at PND20. Pups were anesthetized using a mix of isoflurane (3%) and oxygen,
and then maintained under anesthesia using a nose cone with 1–1.5% of isoflurane
during the MRS acquisition (on average 90 min). During the MRS experiment pups
were maintained in a specific home-built holder to restrain head motion. The body
temperature was maintained at 37.5 ± 1 ◦C by circulating heated water and breath
rate was monitored during the whole experiment. To control for basic physiologi-
cal status of the animal, whole blood lactate measurements were done before and
after the MRS acquisition on a GM7 Micro-Stat (Analox Instruments Ltd., UK) by
tail-bleeding; no difference in blood lactate was observed.

2.2.1. Proton spectroscopy
All 1H MRS examinations were performed on a Varian INOVA console (Varian,

Palo Alto, CA) connected to an actively shielded 9.4 T/31 cm magnet (Magnex Sci-
entific, Abingdon, UK) with actively shielded gradients (400 mT/m in 120 �s, 12 cm
inner diameter). A home-built 17 mm-diameter 1H quadrature surface coil was used
for radio frequency transmission and signal reception. A fast spin echo magnetic
resonance imaging (MRI) sequence (echo train length = 16, echo spacing = 10 ms,
effective echo time = 80 ms) was used to obtain anatomical images with an in plane
metabolic brain alterations in rats exposed to bisphenol A during
vneu.2010.09.009

resolution of ∼80 �m and a slice thickness of 0.8 mm. Based on these images, the
volume of interest (VOI) (2 mm × 3 mm × 2 mm) for spectroscopy was positioned on
the left hippocampus. An ultra-short echo time (TE = 2 ms) localized STEAM-based
sequence was used for in vivo 1H MRS. The STEAM sequence is based on three 90◦

radio frequency pulses affording a robust spatial localization and allows short echo
time measurements (Tkac et al., 1999). The water signal was suppressed by a VAPOR

dx.doi.org/10.1016/j.ijdevneu.2010.09.009
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cheme integrating three outer volume suppression modules (Tkac et al., 1999). First
nd second order shim current were adjusted with an EPI-based FASTMAP sequence
Gruetter, 1993) on a volume of 3 mm × 4 mm × 3 mm centered on the VOI. The typ-
cal line width of water resonance (FWHM) was 8–10 Hz. All spectra were acquired

ith a spectral width of 5 kHz, 4096 complex data points, mixing time of 20 ms and
epetition time (TR) of 4 s. Water spectrum was acquired as reference for quantifi-
ation (4 averages) and then the metabolite spectrum was acquired using water
uppression based on VAPOR, applied before the localized spectroscopy sequence.
pectra were acquired in 30 blocks of 12 averages stored separately on disk for a
otal acquisition time of 24 min.

.2.2. Data analysis
The 30 blocks were corrected for B0 shift correction before summation and then

n eddy-current correction was applied. Metabolite concentrations were quanti-
ed using LCModel as in previous studies (Tkac et al., 2003). This software is based
n a frequency domain analysis, fitting the in vivo spectra with a linear combina-
ion of spectra of the individual metabolites (Provencher, 1993). The water signal
as used as reference for quantification as in previous studies (Tkac et al., 2003)

ssuming a water concentration of 82.3% in the rat brain at PND20 (Tkac et al.,
003). The results provided the quantification of the following 17 metabolite con-
entrations: ascorbate (Asc), aspartate (Asp), creatine (Cr), �-aminobutyric acid
GABA), glucose (Glc), glutamate (Glu), glutamine (Gln), glutathione (GSH), glyc-
rophosphorylcholine (GPC), phosphorylcholine (PCho), myo-inositol (Ins), lactate
Lac), N-acetyl-aspartate (NAA), N-acetylaspartylglutamate (NAAG), phosphocre-
tine (PCr), phosphorylethanolamine (PE), and taurine (Tau). The uncertainty on
he quantification was estimated from the Cramér–Rao lower bounds (CRLBs) pro-
ided by the LCModel program. Only metabolites with a CRLB lower than 20% were
onsidered in the statistical analysis.

Results are expressed as mean of means ± SEM (histological parameters). Sig-
ificant differences between controls and BPA-treated animals were assessed using
Mann–Whitney U test for independent samples. A probability of p < 0.05 was con-

idered to be significant. Two animals were rejected from the MRS study (one in
ach group) based on poor spectral quality and health criteria.

.3. Histological analysis

At PND20, pups from each group (n = 7 BPA-treated animals, n = 4 controls), taken
rom 2 to 4 different litters, were deeply anesthetized using ketalar (50 mg/ml;
.2–0.5 ml, i.p.). Animals were perfused intracardially with 0.9% NaCl, then 4%
araformaldehyde. Brains were removed and postfixed in 4% paraformaldehyde
vernight, then 20% in sucrose for 24 h, and stored at −80 ◦C until sectioned. Coro-
al sections (10 �m) at the level of the dorsal hippocampus were cut on a cryostat
Microm Cryo-Star HM 560M, Microm International, Germany). Three sections at
Please cite this article in press as: Kunz, N., et al., Developmental and
gestation and lactation. Int. J. Dev. Neurosci. (2010), doi:10.1016/j.ijde

00 �m intervals were collected from each animal and were alternately processed
or haematoxylin and eosin (H&E) staining and specific immunochemistry.

.3.1. Histology
Sections were stained with H&E and assessed qualitatively for the presence of

aemorrhages, lesions or infarcts.

ig. 1. Proton nuclear magnetic spectroscopy (1H NMR). Typical 1H NMR spectrum acqu
ote the excellent spectral resolution, evidenced for example by the separation of PCr, Cr
aussian width = 0.12 and shift = 0.05. Acquisition parameters: echo time = 2 ms, repetitio
as applied. The inset shows in vivo T2-weighted fast-spin echo image (16 echo train wit
atrix = 256 × 256, FOV = 20 mm × 20 mm, slice thickness = 1 mm). The black box indicate
 PRESS
cience xxx (2010) xxx–xxx 3

2.3.2. Immunohistochemistry
The areal densities of astrocytes and neurons were assessed using glial fibril-

lary acidic protein (GFAP) and neuronal nuclei (NeuN), respectively. Non-specific
binding was blocked by incubating sections in PBS containing 4% bovine serum albu-
min (BSA) for 30 min at room temperature. Sections were then incubated in rabbit
anti-GFAP (1:400, Z334, Dako Cytomation, Denmark), and mouse anti-NeuN (1:400,
MAB377, Chemicon, USA) in 0.25% BSA in PBS overnight at 4 ◦C. This was followed
with a 2 h incubation at room temperature with Alexa 555 anti-mouse (1:200) or
Alexa 488 anti-rabbit (1:200) secondary antibodies, respectively (Molecular Probes,
Invitrogen, Paisley, UK). Sections were rinsed in PBS and mounted using PBS–glycine
media.

The extent of myelination was assessed using myelin basic protein (MBP).
Activity of endogenous peroxidases was blocked with 0.3% H2O2 in methanol for
20 min. Nonspecific binding was blocked by incubating the slides in 4% BSA for
30 min at room temperature. Sections were then incubated in primary antibody
for MBP (1:400, MAB386, Chemicon, USA) overnight at 4 ◦C. This was followed
by 60 min incubation at room temperature in secondary antibody (1:200 anti-
mouse immunoglobulin G; Vectastain kit, Vector Laboratories, Burlingame, CA)
and the avidin–biotin complex (1:200, Vector Laboratories). Sections were then
developed with the chromagen, 3,3 diaminobenzidine (DAB) in 0.01% hydrogen
peroxide.

2.4. Quantitative analysis

Quantitative analyses were performed using MetaMorph® Imaging System
(Meta Imaging Software, Molecular Devices Corporation, PA, USA). Measurements
were made on coded slides blinded to the observer with the codes not being dis-
closed until the conclusion of analyses.

2.4.1. Areal density of neurons
The density of NeuN-positive neurons was assessed in 6 fields within the motor

and somatosensory cortices, respectively. The density of neurons in the hippocam-
pus was also assessed (9 fields per animal). Values for each animal in each region
were pooled and a mean value was calculated. A mean of means ± SEM was calcu-
lated for each group.

2.4.2. Areal density of astrocytes
The density of GFAP-positive astrocytes was assessed in the cingulum. Six fields

per animal were examined; values for each animal were pooled and a mean value
was calculated. A mean of means ± SEM was calculated for each group.

2.4.3. Myelination
metabolic brain alterations in rats exposed to bisphenol A during
vneu.2010.09.009

The optical density (OD) of MBP-stained fibres was measured in the corpus
callosum and cortex using ImageJ (Rasband, 1997–2009). Eight fields within the
corpus callosum, and six fields within the cortex, were examined. Optical den-
sity was measured at grey levels. Non-specific background ODs were measured
at each brain level in a region devoid of MBP-immunostaining and were sub-
tracted from the corpus callosum and cortex values. The area of MBP-positive fibres

ired in a volume of 12 �l on the control group showing the metabolite resonances.
at 3.9 ppm and NAA, NAAG at 2 ppm. Processing for display: Gaussian filtering with
n time = 4 s, mixing time = 20 ms, number of transient = 360. No baseline correction
h 10 ms echo spacing, effective echo time = 80 ms, repetition time = 6 s, acquisition
s the voxel position placed on the hippocampus (3 mm × 4 mm × 3 mm).

dx.doi.org/10.1016/j.ijdevneu.2010.09.009
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Table 3
Metabolite concentration.

Metabolite Concentration [�mol/g] ± SE

Control BPA

Asc 3.3 ± 0.1 3.2 ± 0.1
Asp 2.3 ± 0.2 1.9 ± 0.2
Cr 3.8 ± 0.1 3.8 ± 0.1
PCr 5.2 ± 0.1 5.3 ± 0.1
GABA 1.9 ± 0.1 1.9 ± 0.1
Glc 3.4 ± 0.2 3.2 ± 0.1
Gln 2.0 ± 0.2 1.9 ± 0.1
Glu 9.0 ± 0.2 9.7 ± 0.2*

GSH 1.0 ± 0.1 0.9 ± 0.1
Ins 4.0 ± 0.1 4.1 ± 0.2
Lac 0.7 ± 0.1 0.9 ± 0.2
NAA 10.0 ± 0.2 9.6 ± 0.2
NAAG 0.9 ± 0.1 0.8 ± 0.1
PE 3.1 ± 0.1 3.3 ± 0.1
Tau 12.0 ± 0.3 12.00 ± 0.1
NAA + NAAG 10.8 ± 0.1 10.44 ± 0.2
Glu + Gln 11.0 ± 0.4 11.59 ± 0.2
GPC + PCho 1.0 ± 0.1 1.1 ± 0.1
Cr + PCr 8.9 ± 0.2 9.2 ± 0.2
Glu + Asp 11.2 ± 0.9 11.57 ± 0.5
PCr/Cr 1.4 ± 0.1 1.4 ± 0.1
Glu/Gln 4.6 ± 0.3 5.3 ± 0.2
Glu/Asp 4.0 ± 0.3 5.5 ± 0.4*
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n the cortex, relative to cortical size, was assessed using MetaMorph® Imaging
ystem.

. Results

.1. Nuclear magnetic resonance

During the in vivo MRS measurements, the whole blood lactate
easurement done before and after the experiment did not show

ny significant difference. Moreover, excellent spectral quality
as achieved, as judged from water line width, ranging from
Hz to 10 Hz (9 ± 0.7 Hz) in the hippocampus (Fig. 1). Water

uppression typically resulted in a residual water signal below that
f N-acetyl-aspartate (NAA) and a highly stable baseline. Signal
o noise ratio was on average 20 ± 3. In addition, the separation
f NAAG from NAA and PCr from Cr was consistently observed
Fig. 1). Such high spectral quality allowed the quantification of the
oncentration of 21 metabolites (neurochemical profile), of which
4 had a precision better than 20% and especially Cr, Tau, Cr + PCr,
lu, NAA, NAA + NAAG had a precision better than 5% (Table 2).
nly these 14 metabolites were analysed for the study.

Overall, the neurochemical profile of the BPA-treated ani-
als was very similar to that of the control group (Table 3).
owever, a statistically significant increase of glutamate (Glu)

rom [Glu]control = 9.0 ± 0.3 �mol/g, to [Glu]BPA = 9.7 ± 0.2 �mol/g
p = 0.035, unpaired t-test) was noted. Interestingly, aspar-
ate (Asp), which is metabolically linked to Glu by the
ransaminase reaction showed a trend towards a decrease.
onsequently, the Glu/Asp ratio significantly increased from
Glu/Asp]control = 4 ± 0.3 �mol/g to [Glu/Asp]BPA = 5.5 ± 0.4 �mol/g
p = 0.02) (Fig. 2), whereas the sum of Asp + Glu concentrations did
ot change significantly (p > 0.5). Glu and Asp resonances were
ell separated in the 1H spectra, therefore the correlation between

hese two metabolites during the quantification was very low
average correlation coefficient of 0.04). However, it is important
o notice that Asp concentration was quantified with a CRLB of 35%
Please cite this article in press as: Kunz, N., et al., Developmental and
gestation and lactation. Int. J. Dev. Neurosci. (2010), doi:10.1016/j.ijde

n the BPA-treated animals. Due to the biological implication of Asp
n this model, its quantification was kept as a significant result. Fur-
hermore, the Glu/Asp ratio was still significant despite the higher
ariability on the Asp concentration.

able 2
ramér–Rao lower bound (CRLB) of the metabolite concentration quantified with
CModel.

Metabolite CRLB [%]

Control BPA

Asc 10 11
Asp 19 35
Cr 7 7
PCr 5 5
GABA 12 12
Glc 13 15
Gln 13 13
Glu 4 3
GSH 18 19
Ins 6 6
Lac 25 24
NAA 2 2
NAAG 19 21
PE 8 9
Tau 3 3
NAA + NAAG 2 2
Glu + Gln 4 3
GPC + PCho 9 8
Cr + PCr 2 2

ll selected metabolites have a CRLB lower than 20% assuring a robust quantification
f metabolite concentrations.
Concentrations of brain metabolites present in the hippocampus at PND20 in the
control and BPA groups (mean ± SEM).

* p < 0.05, versus control offspring.

3.2. Histological analysis

There were no gross morphologic changes (haemorrhages,
lesions or infarcts) in the brains of either control or BPA-treated
offspring.

The morphology and density of NeuN-positive neurons were
assessed in the motor and somatosensory cortices, and hippocam-
pus. In both the motor and somatosensory cortices, no striking
changes in neuronal morphology could be seen and there was no
significant difference between control and BPA-treated offspring in
the density of neurons (p > 0.05, Table 4). In the hippocampus, neu-
ronal morphology appeared to be similar in the two groups but the
NeuN-positive neuron density was decreased in the BPA-treated
offspring when compared to controls (p < 0.05).

The density of GFAP-positive cells was assessed in the cin-
gulum. Astrocytes appeared with increased processes in the BPA
metabolic brain alterations in rats exposed to bisphenol A during
vneu.2010.09.009

treated pups compared to controls. GFAP density in astrocytes was
increased in BPA-treated offspring compared to controls (p < 0.05;
Table 4).

Fig. 2. 1H NMR metabolite concentrations. Concentration of glutamate (Glu) and
aspartate (Asp) in hippocampus at PND20 in the control group (black) and in the
BPA group (white). Glu was significantly increased in the BPA group (p = 0.035). The
Glu/Asp ratio shows a significant decrease (p = 0.02). Error bars are the error of the
mean. *p < 0.05, versus control offspring.

dx.doi.org/10.1016/j.ijdevneu.2010.09.009
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Table 4
Histology results.

Control BPA

Motor cortex (neurons/mm2) 1281.0 ± 72.0 1162.9 ± 44.1
Somatosensory cortex (neurons/mm2) 888.7 ± 44.1 882.3 ± 45.1
Hippocampus (neurons/mm2) 4437.6 ± 136.0 3753.0 ± 83.0*

Astrocyte density (GFAP/mm2) 664.6 ± 102.7 1080.6 ± 104.3*

Myelin: cortex (OD) 0.135 ± 0.014 0.125 ± 0.004
Myelin: corpus callosum (OD) 0.291 ± 0.026 0.317 ± 0.017
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Percent of myelination fibres in cortex (%) 53.1 ± 1.4 56.2 ± 0.7

ensity of neurons and glia in the cortex and hippocampus of control and BPA-
reated offspring.

* p < 0.05, versus control offspring.

In order to determine the extent of myelination, MBP staining
n the corpus callosum and cortex was assessed. There was no dif-
erence in MBP staining in the corpus callosum or cortex (p > 0.05;
able 4) between the groups. In addition, the area of MBP-positive
bres in the cortex, relative to cortical area, was not significantly
ifferent between the groups (p > 0.05).

. Discussion

In the present study, a combination of 1H MRS and histopathol-
gy was used in order to characterize different mechanisms likely
o contribute to adverse neurodevelopmental outcomes follow-
ng BPA exposure. This study has shown that offspring from dams
xposed to BPA during pregnancy and lactation, exhibit alterations
n localized cerebral metabolism, in neuronal and glial develop-

ent. The NMR in vivo results show that a consistent neurochemical
rofile can be obtained from small volumes in the developing rat
ippocampus, with a precision of better than 20% allowing the

nvestigation of the neurochemical profile sequelae of environmen-
al disruptors on brain development. Treatment of rat pups with
Please cite this article in press as: Kunz, N., et al., Developmental and
gestation and lactation. Int. J. Dev. Neurosci. (2010), doi:10.1016/j.ijde

PA altered the Glu/Asp ratio reinforcing the determination of the
eurochemical profile as a robust investigational tool in environ-
ental science.
The stable concentration of whole blood lactate during the 1H

RS confirms the non-invasive capability of the MRS techniques.

ig. 3. Correlation graph between SD and CRLB. The CRLB follows very closely to the
tandard deviation within the two groups with a correlation factor close to 1.
 PRESS
cience xxx (2010) xxx–xxx 5

The neurochemical profile and average precision of 12% of the con-
trol group was in excellent agreement with a previous study on
developing rat brain (Tkac et al., 2003). The precision of the mea-
surement was determined from the CRLB, a standard output of the
LCModel program. The CRLB follows very closely the SD inside the
group with a correlation factor close to one (Fig. 3). Consequently
this implies negligible inter-animal variability.

BPA pre and post-natal treatments resulted in small changes
in the neurochemical profile that reached statistical significance
for glutamate, where an increase was noted. This Glu increase
could be reflecting an alteration of Glu uptake by the astrocytes
through ERs (Sato et al., 2003). We further observed a trend for
Asp to decrease and thus evaluated the Glu/Asp ratio, which was
significantly increased. However, it is important to notice that Asp
concentration was quantified with a CRLB of only 35% in the BPA-
treated animals, which may explain why Asp decrease was not
significant. Glu and Asp fulfil many roles in mammalian cells of
the nervous system and are metabolically linked by the transam-
inase reaction. The altered Glu/Asp ratio may thus indicate an
impaired aspartate amino-transferase reaction, a key step in the
malate–aspartate shuttle, a scheme of which is shown in Fig. 4.
The malate–aspartate shuttle serves to transport reducing equiv-
alents across the inner mitochondrial membrane and is thus a
crucial component in glucose respiration, which powers almost all
energy demands in the brain. The malate–aspartate shuttle has a
rate-controlling step at the Glu/Asp antiporter, which transports a
proton and glutamate in exchange for Asp across the inner mito-
chondrial membrane. The observation of increased Glu is consistent
with excess glutamate that is not adequately transported into the
mitochondrion. Likewise, the reduced Asp is consistent with insuf-
ficient transport of Asp out of the mitochondrion, compared to the
activity of the cytosolic dehydrogenases. It is thus likely that the
altered Asp/Glu ratio indicates impaired malate–aspartate shuttle
activity and thus implies impaired mitochondrial function.

In this context, it is of interest to note that BPA has been reported
to interfere with mitochondrial integrity. Nakagawa and Tayama
(2000) demonstrated in isolated rat’s liver mitochondria that the
intracellular levels of ATP are decreased due to an inhibition of
NAD+- and FAD-linked respiration. The malate–aspartate shuttle
is central to NAD+ regeneration. Bindhumol et al. (2003) have also
reported a decrease in the activity of antioxidant enzymes, which
further support impaired mitochondrial function. Furthermore, it
has been shown that BPA induced ROS production and oxida-
tive stress, which compromised mitochondrial function (Ooe et al.,
2005).

In vivo, BPA exposure during pregnancy and lactation has been
shown to decrease neuronal density in the hippocampus (Choi
et al., 2007; Ogiue-Ikeda et al., 2008; Sato et al., 2002). Several
studies have reported alterations in hippocampal morphology
with altered estradiol and testosterone induced spine synapse for-
mation not only in rats but also in non human primates following
BPA exposure (Lee et al., 2008; Leranth et al., 2008; Maclusky et al.,
2005; Zhou et al., 2009). Synapse plasticity in the striatum is also
perturbed after pre- and postnatal exposures with alteration of the
function of dopaminergic receptors and disturbance in the devel-
opmental pattern of synaptic plasticity, which causes controlling
deficits in motor behaviour (Zhou et al., 2009). Earlier studies
(Ikemoto et al., 2004) reported that the exposure to BPA during
pre- and postnatal developments has long-lasting effects on central
dopaminergic systems linked with behavioural rewarding effects.
In vitro exposure to BPA results in a marked influence on synap-
metabolic brain alterations in rats exposed to bisphenol A during
vneu.2010.09.009

togenesis and potentially neuronal vulnerability in hippocampal
cultures (Sato et al., 2002; Zhou et al., 2009). The effects of BPA on
synaptogenesis could be mediated through several mechanisms,
including a number of receptor systems, such as estrogen (ER-� and
ER-�) and thyroid receptors (TRs). As synapse remodelling in the

dx.doi.org/10.1016/j.ijdevneu.2010.09.009
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ig. 4. The malate–aspartate shuttle. It recycles the reducing equivalents, links toge
he malate–aspartate shuttle function.

ippocampus is implicated in memory acquisition, retention and
earning (Silva, 2003), it is likely that BPA exposure during critical
eriods of development could lead to altered cognitive function.

Further, direct neuronal toxicity of BPA induced apoptotic cell
eath have been suggested to be through calcium, ROS, ERK, and

NK in vitro. In contrast, NF-kappaB cascade was activated for sur-
ival signalling after BPA treatment (Lee et al., 2008). Therefore
he mechanisms leading to decrease of hippocampal volume and
euronal density seen in our study are likely multi-factorial not
nly with a direct toxicity of BPA on the developing neurons, but
lso with BPA’s ability to alter synaptogenesis that would lead to
ncreased developmental pruning of neurons unable to establish
ufficient synaptic activity for survival.

The decrease in hippocampal neuronal density and volume may
eflect inadequate accelerated neuronal differentiation and mat-
ration with an increase in the normal developmental process
f programmed cell death. On the other hand, BPA exposure has
lso been shown to increase cell growth of immature neurons and
eurospheres in vitro (Kubo et al., 2004), and in vivo, to promote
urkinje dendritic growth (Shikimi et al., 2004) and accelerate
eocortical neuronal differentiation/migration (Nakamura et al.,
006). This neuronal differentiation/migration could be transitory
nd counter-balanced by the altered synaptogenesis and increased
euronal pruning. The current study cannot differentiate between
hese mechanisms of altered neuronal development but certainly
onfirms that gestational and postnatal exposition to BPA provides
ltered hippocampal development.

The areal density of GFAP-positive astrocytes was increased
n BPA-treated offspring compared to controls (Cai et al., 2006).
everal mechanisms of astrocyte activation have been linked to
PA exposure. Hydroxy radical formation has been shown to be

ncreased in adult mouse brain following 5 days of BPA expo-
ure (Kabuto et al., 2003) and BPA exposure during pregnancy and
actation increases lipid peroxidation in the postnatal mice brain
Kabuto et al., 2004). Thus, the activation of astrocytes in the white

atter observed in the present study may be due to BPA-induced
issue oxidative stress and peroxidation. In vitro, low-level BPA has
Please cite this article in press as: Kunz, N., et al., Developmental and
gestation and lactation. Int. J. Dev. Neurosci. (2010), doi:10.1016/j.ijde

een shown to increase the production of GFAP protein in differ-
ntiating astrocyte progenitor cells, an effect mediated through
he activation of signal transducer and activator of transcription 3
STAT3), and mothers against decapentaplegic homolog 1 (Smad1)
Yamaguchi et al., 2006). Several recent reports show that BPA binds
lu and Asp during the aspartate aminotransferase. An impaired Glu/Asp ratio alters

to thyroid hormone receptors (THRs), and has selective effects on
thyroid function (Bindhumol et al., 2003; Zoeller, 2007). Thyroid
hormone (TH) is a pivotal factor in astrocyte development (Adachi
et al., 2002; Seiwa et al., 2004), thus, the increase in GFAP expression
in the present study may reflect BPA’s ability to influence TH sig-
nalling in the developing brain. The effects of BPA on brain develop-
ment are also mediated for the most part by ERs and astrocytes are
important target cells for estrogens and express all types of ERs dur-
ing development and in the adult brain (Chaban et al., 2004; Hosli
et al., 2001; Sato et al., 2003). Treatment of mouse purified astro-
cytes with BPA in vitro causes astrocyte activation, as detected by
an increase in the levels of GFAP-immunoreactivity (Miyatake et al.,
2006). Thus, GFAP upregulation and increase in astrocyte observed
in the present study may also be ER-mediated. Further, estro-
gens and BPA down-regulate l-Glu uptake activity of astrocytes
through ERs, which regulates the l-Glu concentration in the synap-
tic clefts, thereby altering synaptic transmissions and glutamate
excitotoxicity. BPA might then alter not only directly synapse for-
mation and activity but also through ERs on astrocytes (Sato et al.,
2003). In summary, BPA has the capability of modulating astrocyte
development and function through several different mechanisms
leading to changes in the glial role and function within the
brain.

Taking into account the significant change in the Glu/Asp ratio in
the hippocampus observed by MRS, it is possible that the decrease
in neuronal density in the hippocampus may be secondary to
impaired mitochondrial function and reduced ability of the brain
to oxidize glucose, thus leading to cell death. A critical experiment
for future studies will be to examine the long-term effects of BPA-
exposure on the brain, as alterations in brain structure may appear
secondary to further impairments in cerebral metabolism, which
may exacerbate during normal aging.

In conclusion, exposure to low dose BPA during gestation
and lactation results in subtle and regional neuronal and glial
alterations in brain development in offspring. Furthermore, BPA
exposure leads to significant changes in the Glu/Asp ratio in the
hippocampus, which is postulated to reflect impaired mitochon-
metabolic brain alterations in rats exposed to bisphenol A during
vneu.2010.09.009

drial function and probably implicates a reduced ability of the
brain to oxidize glucose especially in conditions of elevated ener-
getic demand. The changes we observed in brain structure and
metabolism after prenatal BPA exposure will likely imply long-
lasting effects on cognitive development and function.

dx.doi.org/10.1016/j.ijdevneu.2010.09.009
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