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Abstract The tonotopic representations within the pri-

mary auditory cortex (PAC) have been successfully map-

ped with ultra-high field fMRI. Here, we compared the

reliability of this tonotopic mapping paradigm at 7 T with

1.5 mm spatial resolution with maps acquired at 3 T with

the same stimulation paradigm, but with spatial resolutions

of 1.8 and 2.4 mm. For all subjects, the mirror-symmetric

gradients within PAC were highly similar at 7 T and 3 T

and across renderings at different spatial resolutions; albeit

with lower percent signal changes at 3 T. In contrast, the

frequency maps outside PAC tended to suffer from a

reduced BOLD contrast-to-noise ratio at 3 T for a 1.8 mm

voxel size, while robust at 2.4 mm and at 1.5 mm at 7 T.

Overall, our results showed the robustness of the phase-

encoding paradigm used here to map tonotopic represen-

tations across scanners.
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Introduction

Tonotopic gradients have been repeatedly demonstrated

with fMRI in the human primary auditory cortex (PAC),

albeit with varying interpretations of their spatial orien-

tation. Mirror-symmetric gradients of high-low–high fre-

quencies were described along (1.5 T: Seifritz et al. 2006;

3 T: Schönwiesner et al. 2002; 7 T: Formisano et al.

2003) or across the long axis of Heschl’s gyrus (HG;

1.5 T: Talavage et al. 2004; Woods et al. 2010; 3 T:

Humphries et al. 2010; Striem-Amit et al. 2011; Langers

and Dijk Langers and van Dijk 2012; 7 T: Da Costa et al.

2011). It is currently unclear to what extent these dis-

crepancies are due to inter-individual variability of HG

and PAC configuration (Rademacher et al. 1993; Viceic

et al. 2009; Clarke and Rivier, 1998; Morosan et al. 2001;

Rademacher et al. 2001; Rivier and Clarke 1997) or to

differences in magnetic field strength and spatial resolu-

tions used in these studies.

Mapping of small functional subunits, such as ocular

dominance columns in the human visual cortex (Yacoub

et al. 2007) or tonotopic organization in human PAC (Da

Costa et al. 2011) and inferior colliculus (De Martino et al.

2013), requires high spatial resolution which is more easily

achieved with fMRI at ultra-high magnetic field strengths,

due to the combination of increased signal-to-noise ratio

and BOLD signal allowing smaller voxel sizes. Further-

more, the short venous T2* reduces venous blood signal

and restricts the BOLD signal more to cortical gray matter,

thus increasing spatial specificity (van der Zwaag et al.

2009).
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As a gold standard for tonotopic mapping, ultra-high

field fMRI is currently of limited use, because of the small

number of 7 T scanners available for human studies. The

majority of cognitive investigations which would benefit

from tonotopic mapping (including studies of speech pro-

cessing, sound recognition, auditory spatial functions, and

audioneurological disorders), both in normal subjects and

in patients, are carried out with 3 T scanners. Here, we

compare the high-resolution 7 T mapping from (Da Costa

et al. 2011), with standard-resolution maps acquired at 3 T

in five normal subjects to evaluate consistency of the

tonotopic gradients at different field strengths and resolu-

tions. Each subject underwent tonotopic mapping sessions

at both 7 T (1.5 mm spatial resolution) and 3 T (1.8 and

2.4 mm resolution, with other parameters (TE/bandwidth/

flip angle) optimised per field strength.. For detailed

methods see Supplementary Material). The ethics Com-

mittee of the Faculty of Biology and Medicine of the

University of Lausanne approved all experimental

procedures.

Results and Discussion

The tonotopic gradients visualized on HG were very sim-

ilar at 7 T and at either spatial resolution at 3 T as shown

for one subject in (Fig. 1), as well as across subjects (Fig.

S1 and S2 in Supplementary Material). Tonotopic gradients

ran antero-posteriorly across the long axis of HG, as sug-

gested in previous studies (1.5 T: Talavage et al. 2004;

Woods et al. 2010; 3 T: Humphries et al. 2010; Striem-

Amit et al. 2011; Langers and van Dijk 2012; 7 T: Da

Costa et al. 2011, 2013). Although, 3 T—1.8 mm tono-

topic maps showed fewer activated voxels at a p value of

0.05 (r [ 0.13, uncorrected). Tonotopic gradients outside

PAC were less robust at 3 T (outside the dotted regions

indicating PAC, Fig. S1), especially for the 1.8 mm spatial

resolution and voxels tended also to be less frequency-

specific.

We manually identified the two primary gradients

(‘‘high-to-low-to-high’’) running across the medial 2/3rds

of HG as PAC (dotted lines, Fig. 1). The distribution of

preferred-frequencies within PAC followed a bell-shaped

curve (Fig. 2 top). The percentage of PAC voxels devoted

to a given frequency was analyzed with fourteen 3 9 2

ANOVA (one for each frequency) with factors ‘‘Protocol’’

(7 T—1.5, 3 T—1.8, 3 T—2.4 mm) and Hemisphere

(right, left), showing no significant main effects or inter-

actions (p [ 0.05, Bonferroni corrected). Independently of

the resolution, the proportion of voxels dedicated to a

specific frequency did not differ, reflecting the reproduc-

ibility of the tonotopic maps at both resolutions and mag-

netic field strengths. A non-significant main effect of

Protocol (p \ 0.05, uncorrected) was found for the 250 and

4,000 Hz bins, where the 7 T—1.5 mm protocol differed

by approximately 5 % from the other two.

Percent signal change (PSC) between the maximum and

the minimum of the frequency-related time courses tended

to be larger at 7 T than 3 T (Fig. 2 bottom), as expected

(van der Zwaag et al. 2009). PSCs were analyzed with

fourteen 3 9 2 ANOVA with factors Protocol (7 T—1.5,

3 T—1.8, 3 T—2.4 mm) and Hemisphere (right, left),

which showed a significant main effect of Protocol for all

Fig. 1 Tonotopic maps in the human primary auditory cortex.

a Color-coded tonotopic maps were projected onto each subject’s

cortical surface meshes (minimally inflated). b–c Enlargement of the

region delimited by the white square. Individual tonotopic maps in

left and right hemispheres (r [ 0.13, p = 0.05, uncorrected) at 7 T

(b) and 3 T (c) of the same subject. RH right hemisphere; LH left

hemisphere
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frequency bins from 125 to 500 Hz (125 Hz: F(2,4) =

16.55; 177 Hz: F(2,4) = 29.23; 250 Hz: F(2,4) = 19.18;

354 Hz: F(2,4) = 18.38; 500 Hz: F(2,4) = 18.16 p \ 0.05,

Bonferroni corrected) and of Hemisphere for the 1,000 Hz

(F(1,4) = 190.95; p \ 0.05, Bonferroni corrected), but no

interaction for any frequency bin. Post-hoc analysis suggests

that the main effects of Protocol were driven by differences

between 7 T—1.5 and 3 T—2.4 mm maps for 88 and

354 Hz (p = 0.001 and 0.002, respectively, Bonferroni cor-

rected), whereas the main effect of Hemisphere was driven

by difference between hemispheres in the 3 T—2.4 mm map

for the 354 Hz response (p = 0.001, Bonferroni corrected).

These dissimilarities could be attributed to (1) larger

voxel sizes at 3 T and (2) differences in overall gradient

design and available readout bandwidth in the EPI and

the resulting acoustic resonance of the scanners used.

These latter two aspects could explain the discrepancies

between tonotopic studies which reported varying spatial

arrangements.

Overall, our results showed clear, highly similar tono-

topic gradients across scanners with no or minor significant

differences in the observed frequency distributions and

PSCs, respectively. They illustrated the robustness of the

phase-encoding paradigm used to map tonotopic repre-

sentations independently of the scanner, provided sufficient

spatial resolution and limited interference of scanner

acoustical noise with the tonotopic stimuli.
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