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A B S T R A C T   

The current diagnostic criteria for multiple sclerosis (MS) lack specificity, and this may lead to misdiagnosis, which remains an issue in present-day clinical practice. 
In addition, conventional biomarkers only moderately correlate with MS disease progression. Recently, some MS lesional imaging biomarkers such as cortical lesions 
(CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL), visible in specialized magnetic resonance imaging (MRI) sequences, have shown higher 
specificity in differential diagnosis. Moreover, studies have shown that CL and PRL are potential prognostic biomarkers, the former correlating with cognitive 
impairments and the latter with early disability progression. As machine learning-based methods have achieved extraordinary performance in the assessment of 
conventional imaging biomarkers, such as white matter lesion segmentation, several automated or semi-automated methods have been proposed as well for CL, PRL, 
and CVS. In the present review, we first introduce these MS biomarkers and their imaging methods. Subsequently, we describe the corresponding machine learning- 
based methods that were proposed to tackle these clinical questions, putting them into context with respect to the challenges they are facing, including non- 
standardized MRI protocols, limited datasets, and moderate inter-rater variability. We conclude by presenting the current limitations that prevent their broader 
deployment and suggesting future research directions.  
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1. Introduction 

Multiple sclerosis (MS) is a chronic inflammatory disease and a 
common cause of neurological disability in young adults (Reich et al., 
2018). Its hallmark is demyelinated white matter lesions (WML) forming 
in the central nervous system (Reich et al., 2018). These lesions are 
assessed in-vivo with magnetic resonance imaging (MRI), which is the 
imaging technique of choice to diagnose MS and monitor the disease 
over time (Hemond and Bakshi, 2018). The current MRI diagnostic 
criteria (McDonald criteria) are based on the dissemination in space and 
time of such lesions (Thompson et al., 2018). Moreover, the quantifi
cation of the total lesion volume is important to determine ongoing 
disease activity and monitor treatment effect over time (Giorgio et al., 
2014). Recommended MRI techniques include T2 and T1-weighted 
inversion recovery sequences, such as fluid-attenuated inversion re
covery (FLAIR), and magnetization prepared rapid gradient-echo 
(MPRAGE) (Wattjes et al., 2021). At common clinical magnetic fields 
(1.5 T and 3 T), the use of gadolinium-based contrast agents is useful to 
evaluate patients suspected of MS and monitor disease activity causing 
breakdown of the blood–brain barrier (Filippi et al., 2019). 

As the manual detection of WML is time-consuming and prone to 
inter-rater variability (Hagens et al., 2019), a myriad of automated or 
semi-automated approaches have been developed to facilitate this task 
(Lladó et al., 2012). These methods were initially based primarily on 
MRI intensity features and probabilistic atlases (Lladó et al., 2012), 
whereas, more recently, the vast majority use deep learning (DL) ap
proaches (Zeng et al., 2020), without prior feature extraction. Sub
stantial effort is now being made towards reproducibility of the results 
and open science (Vrenken et al., 2021). Several grand challenges have 
been organized (Carass et al., 2017; Commowick et al., 2018; Commo
wick et al., 2021), in which DL-based methods have achieved the best 
performance, approaching or sometimes even outperforming human 
readers (Carass et al., 2017; Commowick et al., 2021). WML segmen
tation methods have been reviewed recently (Zeng et al., 2020; Kaur 
et al., 2021); the present review thus focuses on machine learning 
techniques tailored for lesional biomarkers specific to MS that require 
advanced MRI techniques and have the potential to improve MS diag
nosis and prognosis. 

One major drawback of the current MS diagnostic criteria is their 
lack of specificity, as they were proposed to identify patients with a high 
likelihood of MS rather than distinguish MS from other conditions 
(Thompson et al., 2018). The lack of specificity of these criteria may lead 
to misdiagnosis, which remains a persistent problem of MS (Solomon 
et al., 2019). Multi-center studies have shown a misdiagnosis rate of 
18% (Kaisey et al., 2019), often associated with atypical clinical or 
imaging findings. Improving the diagnostic specificity would prevent 
harmful consequences for patients (Solomon et al., 2016) and allow 
clinicians to prescribe the appropriate treatment earlier. In addition, 
although clinical relapses are often associated with the appearance of 
new WML, the overall WML burden, which is the most common MRI 
biomarker examined in clinical routine, is only moderately correlated 
with disability and poorly predicts transition to progressive disease 
(Barkhof, 2002). For all these reasons, there is a need for additional 
biomarkers that are highly specific to MS or correlate with disease 
progression. 

Quantitative MRI, such as relaxometry, myelin imaging, or diffusion 
MR, provides information related to the microstructural composition 
and organization of tissues. In MS, quantitative MRI techniques com
plement conventional MRI techniques by providing insights into disease 
mechanisms (Granziera et al., 2021). For instance, diffusion tensor im
aging and microstructure models of diffusion can help better understand 
the MS lesion heterogeneity (myelin and axonal damage). Voxel-wise 
analysis methods allow exploring group-wise differences without the 
need for prior lesion segmentation (Thaler et al., 2021;16(2): 
e0245844.). On the contrary, classification methods in this context have 
been used to cluster different lesion types based on prior lesion 

segmentation and derived scalar measurements from diffusion-based 
measurements (FA, MD, NODDI parameters, etc) averaged at the 
lesion level (Lu et al., 2021; Oladosu et al., 2021; Ye et al., 2020; Mar
tínez-Heras et al., 2020). Further studies, however, are still needed to 
verify the possible use of these quantitative features for patient 
stratification. 

Recently, advances in MR technology, such as the development of 
specialized sequences, acceleration of protocols, and the proliferation of 
ultra-high field MRI, have allowed the imaging of pathologically specific 
MS lesional biomarkers (Cortese et al., 2019; Ineichen et al., 2021). 
These include cortical lesions (CL), the central vein sign (CVS), and 
paramagnetic rim lesions (PRL). Studies have shown that CL and PRL are 
potential prognostic biomarkers: CL are associated with cognitive im
pairments, while patients with PRL experience an earlier progression in 
disability (Calabrese et al., 2010; Absinta et al., 2019). Furthermore, the 
CVS and PRL have proven to be effective for differentiating MS from 
mimicking diseases (Ontaneda et al., 2021; Sati et al., 2016; Clarke et al., 
2020; Maggi et al., 2020). All three biomarkers, however, require 
dedicated MRI sequences at high (3 T) or ultra-high (7 T) magnetic 
fields, and experienced raters for their manual assessment, which can be 
very time-consuming. As done in the past for WML, various automated 
or semi-automated methods, mostly based on machine learning (ML), 
have been developed to facilitate the three aforementioned biomarkers’ 
assessment (see Table 1). Compared to their WML counterparts, how
ever, they face additional challenges, including non-standardized im
aging protocols, moderate inter-rater variability when determining 
ground truth annotations, and smaller datasets. Automated assessment 
could improve standardization and facilitate large-scale assessment in 
clinical routine of the aforementioned biomarkers, with clear benefits in 
terms of MS diagnosis and prognosis. 

In this review, we first briefly describe these advanced imaging 
biomarkers and their imaging requirements and then focus on image 
processing techniques tailored for their automated segmentation and 
classification. We conclude with a discussion on current limitations and 
future lines of research to boost the development of ML approaches in 
this area and encourage their adoption in MS research and clinical 
settings. 

2. Cortical lesions, paramagnetic lesions, and central vein sign 

In this section, we present a brief description of CL, CVS, and PRL, 
and their respective imaging protocols. In addition to the CVS and PRL, 
which have emerged as promising MS biomarkers in recent years, we 
also included CL which, although included in the MS diagnostic criteria, 
are not yet commonly analyzed in clinical practice. For the sake of 
completeness, a short description of slowly expanding lesions (SELs) is 
also provided, although these have not been assessed with ML-based 
approaches yet. 

Cortical lesions (CL) - Cortical lesions are a type of MS lesions that 
involve, at least partially, the cortex and have been classified into three 
main categories (Calabrese et al., 2010) (see Fig. 1): leukocortical le
sions are located at the interface between WM and gray matter (GM) 
(type I), intracortical lesions are purely in the cortex and do not reach 
the pial surface (type II), and subpial lesions touch the subpial surface of 
the brain (type III) and sometimes extend all the way to the white matter 
(type IV). Cortical demyelination in MS has long been recognized in 
pathology studies, but only in the last two decades have dedicated se
quences on high- and ultra-high field scanners provided in-vivo evidence 
of cortical damage (Calabrese et al., 2010). Cortical lesions are clinically 
interestingfor several reasons. First, they have been observed in the 
early stages of the disease and in all of the major MS phenotypes (Kidd 
et al., 1999). Second, they are associated with disability (Harrison et al., 
2015; Nielsen et al., 2013; Calabrese et al., 2012) and in some studies, 
their number was associated with cognitive disability more strongly 
than the number of WML (Harrison et al., 2015; Favaretto et al., 2016). 
Third, longitudinal studies have linked them with disease progression 
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(Treaba et al., 2019; Mainero et al., 2015; Scalfari et al., 2018; Calabrese 
et al., 2013). Fourth, subpial cortical demyelination is highly specific to 
MS (Junker et al., 2020); CL have been observed in patients with 
radiologically isolated syndrome (Giorgio et al., 2011), but not in pa
tients with neuromyelitis optica (Sinnecker et al., 2012). Since 2017, CL 
have been included in the MS diagnostic criteria (Thompson et al., 
2018), but their visualization from routine MRI sequences remains 
difficult. For instance, a postmortem study showed that 3D FLAIR at 3 T 
could detect about 41% of leukocortical lesions and only 5% of intra
cortical and subpial lesions (Geurts et al., 2005). This supports the need 
for specialized MRI techniques (see Fig. 2) such as the phase-sensitive 
inversion recovery (PSIR), double inversion recovery (DIR), and 
magnetization-prepared 2 rapid gradient echoes (MP2RAGE) (Filippi 
et al., 2019; Müller et al., 2022). However, these sequences are still 
relatively insensitive to CL at 1.5 T and 3 T (Müller et al., 2022; Kilsdonk 
et al., 2016; Beck et al., 2020). Ultra-high field MRI, with its higher 
signal-to-noise ratio and increased susceptibility effects, has proven to 
be a powerful tool for increasing the sensitivity to CL, especially for 
intracortical and subpial lesions (Madsen et al., 2021; Beck et al., 2022; 
Maranzano et al., 2019). Even with the most sensitive methods, how
ever, CL are small and often subtle, making manual segmentation 
extremely time consuming and subject to relatively low inter-rater 
reliability (Harrison et al., 2015; Faizy et al., 2017). 

Central vein sign (CVS) - Recently, studies have suggested that an 
MRI-detectable central vein inside MS lesions might be evidence of 
pathological processes specific to MS (see Fig. 3) (Maggi et al., 2018; 
Solomon et al., 2016). This marker, referred to as the “central vein sign,” 
has gained attention in recent years, as it could help to differentiate MS 
from mimicking diseases (Sati et al., 2016; Sinnecker et al., 2019; Ciotti 
et al., 2022; Sparacia et al., 2018; Tranfa et al., 2022). Small cerebral 
veins can be detected with susceptibility-based MRI sequences, taking 
advantage of the magnetic properties of venous blood that is rich in 
deoxyhemoglobin (Haacke et al., 2009; Mittal et al., 2009). The CVS can 

be reliably observed across different T2* sequences at 3 T, although the 
sensitivity depends on the sequence considered (Samaraweera et al., 
2017). To obtain the best detection sensitivity for the CVS, optimized 
MRI acquisitions have been proposed (T2*-weighted acquired with 3D- 
segmented echo-planar-imaging or T2*w 3D-EPI (Sati et al., 2014), 
combined T2-FLAIR and T2*, also called FLAIR* (Sati et al., 2012), and 
susceptibility-based sequence, called SWAN-Venule (Gaitán et al., 
2020). These sequences were shown to provide superior CVS detection 
compared to clinical acquisitions at 1.5 T and 3 T (Castellaro et al., 2020; 
Suh et al., 2019). Single-center and multi-center retrospective studies 
imaging patients with clinically established diagnoses have demon
strated a significantly higher proportion of CVS-positive white matter 
lesions (%CVS + ) in MS (mean pooled incidence: 79%, 95% CI: 
68–87%) (Suh et al., 2019) as compared to other neurological disorders 
mimicking MS (mean pooled incidence: 38%, 95% CI: 18–63%) (Suh 
et al., 2019) such as cerebral small vessel disease (Campion et al., 2017), 
neuromyelitis optica spectrum disorder (NMOSD) (Cortese et al., 2018), 
inflammatory vasculopathies (Maggi et al., 2018), and migraine (Solo
mon et al., 2016). To distinguish MS from other neurological conditions, 
different CVS-based criteria have been proposed to date, some based on 
the percentage of perivenular lesions (from 35% to 60%) and others 
simply on the CVS lesion count (3-lesion or 6-lesion rule) (Maggi et al., 
2018; Tallantyre et al., 2011; Mistry et al., 2016; Solomon et al., 2018). 
From a diagnostic perspective, retrospective studies have shown excel
lent diagnostic discrimination by applying the ‘40% rule’ (Tallantyre 
et al., 2011) with sensitivity = 91% [95% CI, 82%-97%] and specificity 
= 96% [95% CI, 88%-100%]) (Castellaro et al., 2020). However, 
applying percentage-based criteria requires manual exclusion of lesions 
that are confluent or have multiple or eccentric veins, and performing 
the CVS evaluation on all the remaining lesions present in patients’ 
brains, which is a time-consuming process difficult to accomplish in 
clinical practice. 

Paramagnetic rim lesions (PRL) - Recent pathology studies have 

Table 1 
Summary of the methods proposed for the automated or semi-automated analysis of cortical lesions, the central vein sign, and paramagnetic rim lesions. The task is 
abbreviated as follows: segmentation (S), classification (C). If not specified, all sequences were 3D. Other abbreviations: k-nearest neighbors algorithm (K-NN), 
convolutional neural network (CNN), partial volume (PV).  

Biomarker Authors (year) Method Task MRI sequences (magnetic field 
strength) 

Dataset size 
(n. of sites) 

Code 
available 

Cortical 
lesions 

Tardif,C. L., et al. (Tardif et al., 2010) 
(2010) 

Laminar profile shape analysis S Quantitative high-resolution 
scan (3 T) 

1 post mortem brain 
scan (1) 

No 

Fartaria, M.J., et al. (Fartaria et al., 
2016) (2016) 

K-NN S FLAIR, MPRAGE, MP2RAGE, 
DIR (3 T) 

39 MS patients (1) No 

Fartaria, M.J., et al. (Fartaria et al., 
2017) (2017) 

K-NN with partial volume 
constraints 

S FLAIR, MPRAGE, MP2RAGE, 
DIR (3 T) 

39 MS patients (1) No 

Fartaria, M.J., et al. (Fartaria et al., 
2019)(2019) 

PV estimation and topological 
constraints 

S MP2RAGE (7 T) 25 MS patients (2) No   

La Rosa, F., et al. (La Rosa et al., 2020) 
(2020) 

CNN S FLAIR, MP2RAGE (3T) 90 MS patients (2) Yesb 

La Rosa, F., et al. (La Rosa et al., 2020) 
(2020) 

CNN S and 
C 

MP2RAGE, 2D T2*-w GRE, 
T2*w 3D-EPI (7T) 

60 MS patients (1) Yesc 

La Rosa, F., et al 
(2022) (La Rosa et al., 2022) 

CNN S 
and 
C 

MP2RAGE, 2D T2*-w GRE, 
T2*w 3D-EPI (7T) 

80 MS patients (2) Yesc 

Paramagnetic rim 
lesions 

Barquero, G., et al. (Barquero et al., 
2020) (2020) 

CNN C FLAIR, T2*w 3D-EPI (3T) 124 MS patients (2) No 

Lou, C., et al. (Lou et al., 2021) (2021) Random forest classifier C FLAIR, T1-w, T2*w 3D-EPI (3T) 20 MS patients (1) Yesd 

Zhang, H. et al. (2022) (Zhang et al., 
2022) 

Residual network and 
radiomic features 

C FLAIR, QSM (3T) 172 MS patients (1) No 

Central vein sign Maggi, P., Fartaria, MJ, et al. (Maggi 
et al., 2020) (2020) 

CNN C T2*w 3D-EPI, FLAIR (3T) 42 MS patients, 33 mimics, 
5 others (3) 

No 

Dworkin, J. D., et al. (Dworkin et al., 
2018) 
(2018) 

Probabilistic method C T2*w 3D-EPI, FLAIR (3T) 16 MS patients, 15 MS 
mimics (1) 

Yese 

bhttps://github.com/FrancescoLR/MS-lesion-segmentation 
chttps://github.com/Medical-Image-Analysis-Laboratory/CLaiMS 
dhttps://github.com/carolynlou/prlr 
ehttps://github.com/jdwor/cvs 
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demonstrated that about 30% of chronic demyelinated lesions are 
pathologically characterized by perilesional accumulation of iron-laden 
microglia and macrophages, showing evidence of smouldering demye
lination and axonal loss around an inactive hypocellular core (see Fig. 4) 
(Frischer et al., 2015; Luchetti et al., 2018). This type of MS lesion has 
been defined as “chronic active/smouldering lesions”. Due to their pe
ripheral paramagnetic iron rim, these lesions can be depicted using in- 
vivo susceptibility-based MRI techniques (T2*-weighted magnitude, 
phase images, and quantitative susceptibility mapping, QSM) at both 3 T 
and 7 T (Absinta et al., 2018; Absinta et al., 2016), and are therefore 
termed “paramagnetic rim lesions” (PRL). 

Direct comparison among different MRI sequences and post
processing techniques for PRL detection is still limited. A recent study 
(Huang et al., 2022) has compared QSM and high-pass-filtered (HPF) 
phase imaging for identifying PRL. Of 2062 MS lesions detected in 80 
patients, 9.1% were identified as PRL in both QSM and HPF phase, 9.8% 
were PRL only in HPF phase, and the rest were rim negative. QSM- 
identified PRL showed stronger association with clinical disability 
compared to those detected by HPF phase imaging. 

Overall, in vivo studies have shown that about 50% of relapsing and 
about 60% of progressive MS patients have at least one PRL (Absinta 
et al., 2019; Maggi et al., 2020). Of clinical relevance, PRL accrual has 
been recently linked to a more aggressive disease course and disability 
accumulation at a younger age and/or shorter disease duration (Absinta 
et al., 2019). Reasons for such association directly rely on a few typical 
features of these lesions: PRL are destructive (Absinta et al., 2016; Kolb 
et al., 2021), they do not remyelinate (Absinta et al., 2016), and they can 
expand over time, (Absinta et al., 2019) demyelinating the surrounding 
tissue and injuring axons, as corroborated by the elevation of serum 

neurofilament light chain in patients with PRL who are not forming new 
white matter lesions (Maggi et al., 2021). The recent discovery that the 
paramagnetic rim can significantly shrink or disappear (Absinta et al., 
2021; Dal-Bianco et al., 2021) holds promise regarding its potential use 

as an outcome measure in clinical trials designed to halt the chronic 
inflammation at the lesion edge. In addition to their prognostic role, PRL 
appear specific to MS, as they have been rarely detected in patients with 
other neurological conditions (52% of MS vs 7% of non-MS in a multi
center study of 438 individuals) (Maggi et al., 2020). PRL have the 
promise of becoming a clinically relevant biomarker to both improve MS 
diagnosis and monitor treatment efficacy over time. 

Overall, there are not yet imaging guidelines for the visual detection 
of PRL which requires specific training and remains challenging and 
time-consuming. The development of ML-based approaches, described 
in the next section, may help alleviate these issues and facilitate PRL 
assessment. 

Slowly evolving/expanding lesions (SELs) – A different computa
tional approach, designed to detect in vivo longitudinal volumetric 
lesional changes not associated with gadolinium enhancement, iden
tifies the so-called “slowly evolving/expanding lesions” or SELs. Linear 
and radial lesion expansion is computed as a function of the Jacobian 
determinant of the non-linear deformation field between baseline and 
follow up scans (linearity assessment requires a minimum of 3 scans) 
(Elliott et al., 2019). Advantages of this approach relate to the use of 
retrospective conventional T1-weighted and T2-weighted scans. re- 
analysis of the ORATORIOa clinical trial found reduced rate of T1- 
SELs expansion in progressive patients treated with ocrelizumab vs 
placebo (Elliott et al., 2019). A recent study showed that SELs are in
dependent predictors of EDSS worsening after a median follow up of 9 
years (Preziosa et al., 2022). The neuropathological correlate of SELs is 
currently not yet determined and preliminary data showed only modest 
correlation with PRL (Elliott et al., 2021). 

Overall, CL, PRL, and CVS have the potential to considerably 

Fig. 1. Representative examples of the three main types of CL. From left to right: 3 T MP2RAGE (0.75 mm isometric), 7 T MP2RAGE (0.5 mm isometric), 7 T T2*-EPI 
(0.5 mm isometric) and 7 T T2*-GRE (0.5 mm isometric). CL, including leukocortical, intracortical, and subpial subtypes, are seen better at 7 T due to higher signal- 
to-noise ratios, allowing higher resolution scans, and increased susceptibility effects. The 7 T MP2RAGE image shown was obtained as the average of 4 acquisitions. 

a A phase 3, randomized, parallel-group, double-blind, placebo-controlled 
trial. 
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improve the specificity of MS diagnosis (Junker et al., 2020; Maggi et al., 
2018; Maggi et al., 2018). Moreover, studies have shown that CL, PRL, 
and SELs can be useful to assess prognosis (Calabrese et al., 2012; 
Absinta et al., 2016). Their manual assessment, however, particularly 
for CL, is both time-consuming and prone to inter-rater variability. As for 
conventional WML, some automated or semi-automated methods have 
been proposed to accelerate this task (Fartaria et al., 2017; Fartaria 
et al., 2019; La Rosa et al., 2020; La Rosa et al., 2020; Fartaria et al., 

2016; Tardif et al., 2010; Barquero et al., 2020; Lou et al., 2021; Maggi 
et al., 2020; Dworkin et al., 2018). In the next section, we describe the 
challenges these approaches have been facing and how these differ from 
the segmentation of WML. 

2.1. Added challenges for CL, PRL, and CVS assessment 

Compared to conventional imaging biomarkers, the visual 

Fig. 2. examples of CL seen in different MRI contrasts at 3 T. From left to right: MP2RAGE, DIR, PSIR, IR-SWIET, T2*. Red arrows point to leukocortical lesions and 
blue arrows to subpial lesions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. A central vein running through a lesion visible in the three planes (zoomed-in boxes) in a 3D FLAIR* obtained combining FLAIR and T2*-EPI acquisitions at 3 
T. Resampling was applied to the magnified images for visualization purposes. FLAIR, T2*-EPI and FLAIR* are the MRI contrasts that have been used by ML ap
proaches for CVS detection. Refer to the supplementary material for additional examples of the CVS on different susceptibility-weighted imaging sequences. 
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assessment of CL, PRL and CVS present some additional challenges. 
Imaging and assessment guidelines- The first obstacle is repre

sented by the lack of consensus guidelines for imaging protocols. 
Although efforts have been made to standardize the use of MRI in 
clinical practice for conventional biomarkers (Wattjes et al., 2021), 
guidelines are still in a preliminary stage for CL, PRL, and the CVS. CL 
were included in the MS diagnostic criteria in 2017 (Thompson et al., 
2018), but, currently, there is no single gold standard sequence at 3 T for 
their detection in a clinical setting. PSIR, DIR, and MP2RAGE are all 
recommended by an international consensus (Filippi et al., 2019). 
However, these contrasts remain primarily acquired in research settings 
and are not yet widely used in clinical routine. Moreover, although 7 T 
MRI is increasingly used to detect CL, no guidelines have been presented 
yet to standardize their imaging sequences and their identification. 

Regarding the CVS, in a 2016 consensus statement, the North 
American Imaging in MS Cooperative (NAIMS) proposed a standard 
radiological definition and suggested specific MRI acquisitions (Sati 
et al., 2016). Following these recommendations, recent studies have 
shown that high-resolution T2*w 3D-EPI or FLAIR* improve the detec
tion of the CVS compared to clinical acquisitions (Castellaro et al., 2020; 
Suh et al., 2019). Nevertheless, a standardized clinical protocol for CVS 
detection is still missing. Among the three aforementioned biomarkers, 
PRL is probably the one at the earliest stages. Although recent studies 
support the feasibility of its assessment on clinical scans and its utility in 
improving the diagnosis and prognosis of MS (Maggi et al., 2020), there 
are currently no international guidelines for its definition nor a stan
dardized MRI protocol for its analysis. Several different imaging mo
dalities have been used for the PRL assessment, including phase 3D-EPI, 
susceptibility weighted imaging (SWI), QSM, and multi-echo T2* GRE at 
both 3 T and 7 T (Absinta et al., 2018; Absinta et al., 2016). However, 
there is a paucity of studies that have systematically compared the 

sensitivity of these acquisition techniques for PRL detection, especially 
when implemented at different field strengths. 

These evolving or unclear criteria for CL, the CVS, and PRL, wide 
variety of imaging settings, and lack of clear guidelines for standardized 
protocols clearly jeopardize the development and wide use of these 
biomarkers and of targeted ML techniques. 

Expert assessment - Even for experts, the task of segmenting CL, 
detecting the CVS, or classifying PRL is intrinsically more challenging 
than segmenting WML. CL are generally smaller in size and more 
affected by partial volume (PV) effects, compared to WML. The cortex is 
convoluted, so lesion shape is not as regular as in WM, and traditional 
methods of radiological evaluation (scrolling through an image stack) 
are less effective in this context. The detection of the CVS requires 
susceptibility-based MRI and its exclusion criteria need to be carefully 
considered when performing its assessment (Sati et al., 2016). 
Susceptibility-based images used to detect PRL present variability in the 
susceptibility signal and several artifacts, therefore experienced raters 
are needed. Moreover, as these three biomarkers have been so far mainly 
studied in research settings, clinicians do not commonly see them in 
clinical practice and might need specific training and dedicated time to 
perform a proper assessment. 

2.2. Machine learning specific challenges 

From a ML perspective, the automated segmentation or classification 
of CL, PRL, and the CVS faces new challenges as compared to their WML 
counterparts. 

Limited datasets - An additional limitation, particularly for super
vised DL-based approaches, is the scarcity and limited size of datasets in 
which these biomarkers were manually annotated. For their assessment, 
CL, CVS, and PRL all require advanced MRI sequences at high or ultra- 

Fig. 4. (A) Representative paramagnetic rim lesion seen on a 3 T T2*-weighted seg-EPI magnitude and unwrapped filtered phase in the three orthogonal planes 
(zoomed-in red boxes, the rim is indicated with red arrows). The central vein (yellow arrows) is also clearly visible within the lesion. (B) Representative periven
tricular MS lesion with a paramagnetic rim. Paramagnetic rims are visible on both unwrapped phase and QSM-reconstructed images (white arrows). (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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high magnetic field and experienced raters, and this makes it difficult to 
have large multi-site datasets. Although national MS registries exist in 
most countries, the data sharing of MRI in MS is still limited and often 
includes only conventional sequences (Vrenken et al., 2021). Moreover, 
the CVS or the rim-shape in PRL are visible only on a few slices per 
lesion, reducing, even more, the data available to train a supervised 
approach. 

Inter-rater variability - The lack of standardization for both the 
definition and imaging of these biomarkers contributes to a modest 
inter-rater variability. Barquero et al. (Barquero et al., 2020) showed 
that, in a cohort of 124 MS patients, approximately 38% of PRL needed a 
consensus review from two raters classifying PRL independently (Cohen 
k of 0.73). Absinta et al. observed similar inter-rater agreement between 
three experts at 3 T (Fleiss coefficient of 0.71), with somewhat higher 
intra-rater reliability (Cohen k of 0.77) (Absinta et al., 2018). Similar 
values were reported at 7 T for the same set of patients, whereas the 
agreement between 3 T and 7 T annotations was substantial (Cohen k of 
0.78). In a similar way, the inter-rater agreement was shown to be 
moderate for the segmentation of CL (Harrison et al., 2015; Nielsen 
et al., 2012; Geurts et al., 2011) and high, but not perfect, for the CVS 
(Cohen k of 0.9) (Maggi et al., 2020; Kau et al., 2013). Imaging quality 
and motion artifacts are other factors to consider as they can result in 
inconspicuity of all three biomarkers and, therefore, contribute to poor 
inter-rater agreement. Overall, the inter-rater variability represents an 
additional challenge for the development of automated approaches, as 
there might be large inconsistencies in the annotations of the training or 
testing set due to different raters performing the manual assessment. 

3. Methods 

Despite the recent discovery of the CVS and PRL and the above- 
mentioned challenges, a few groups have already attempted to sup
port their analysis with automated or semi-automated ML methods. To 
these two novel biomarkers, we add also CL, which, although studied for 
several years, have only recently been assessed automatically. As there 

are no ML-based approaches to assess SELs yet, the prospect of analyzing 
this additional biomarker with ML is presented in the Discussion section. 
Overall, many fewer methods have been proposed for the assessment of 
CL, PRL, and the CVS compared to WML. In what follows, we briefly 
describe these state-of-the-art techniques by grouping them according to 
the biomarker they assess. A summary of the main characteristics for 
each method is presented in Table 1, and a scheme of the MRI sequences 
used to detect these three biomarkers at both 3 T and 7 T is shown in 
Fig. 5. 

3.1. Cortical lesions 

ML-based methods automatically segmenting CL have been explored 
with both 3 T and 7 T MRI. The first work (Tardif et al., 2010) present in 
the literature considered a postmortem MS brain imaged at 3 T with 
different sequences (T1, T2, and relative proton density) at high reso
lution (0.35 mm isotropic) (Tardif et al. (2012)). Tardif et al. (Tardif 
et al., 2010) proposed to first identify the cortical and white matter 
surfaces, then extract laminar profiles between the two tissues, and 
finally apply a k-means classifier to the profile intensity and shape fea
tures to parcellate the cortex and detect lesions. Although showing 
promising results on one postmortem MS brain, this method was never 
validated with larger cohorts nor in-vivo data. A few years later, Fartaria 
et al. (Fartaria et al., 2016) proposed the first automated method for the 
segmentation of both WM and cortical lesions. In their study, they 
analyzed a cohort of 39 early-stage MS patients and considered both 
conventional (FLAIR, MPRAGE) and advanced (MP2RAGE, DIR) MRI 
sequences at 3 T. In a nutshell, their method consisted of co-registering 
the different MRI contrasts, leveraging prior tissue probability maps 
from existing brain atlases of healthy subjects, and finally classifying 
each voxel either as being a lesion or healthy tissue with a k-nearest 
neighbor (k-NN) algorithm. Additionally, as post-processing, all lesions 
smaller than 3.6 µL were discarded, and a region-growing algorithm was 
applied to improve the lesion delineation. Results were promising, 
showing a CL detection rate of 62% when advanced imaging (FLAIR, 

Fig. 5. Scheme showing the main MRI sequences used for detecting each biomarker at both 3 T and 7 T.  
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MP2RAGE, and DIR) was included. An extension of this segmentation 
framework with a Bayesian partial volume (PV) estimation method was 
presented by the same authors (Fartaria et al., 2017). They argued that 
CL, being generally small and located at the interface between WM and 
GM, suffer from strong PV effects. The addition of this PV model indeed 
improved the delineation of CL in terms of both total lesion volume 
estimation and dice coefficient (Fartaria et al., 2017). 

The same research group also proposed a different segmentation 
method for WML and CL using only 7 T MP2RAGE images (called 
MSLAST: Multiple Sclerosis Lesion Analysis at Seven Tesla) (Fartaria 
et al., 2019). MSLAST computes tissue concentration maps with a PV 
algorithm and unifies them based on topological constraints. A 
connected-components analysis is then performed on gray matter and 
cerebrospinal fluid maps, and small components are classified as MS 
lesions. This method was evaluated with 25 MS patients’ scans from two 
research centers and reached a 58% patient-wise CL detection rate 
(when 6 μL was considered as minimum lesion volume) with a false 
positive rate of 40%. Moreover, it showed promising scan-rescan 
repeatability within the same session, with a mean total lesion volume 
difference (WML and CL combined) of 0.29 mL (mean total lesion vol
ume 5.52 mL), vs 0.13 mL for the manual segmentations. More recently, 
DL-based approaches have been presented as well (La Rosa et al., 2020; 
La Rosa et al., 2020). In the first study, La Rosa et al. proposed a 
framework for the automated segmentation of WML and CL at 3 T using 
FLAIR and MP2RAGE (La Rosa et al., 2020). Their method extracts 3D 
patches of 88x88x88 voxels from the two MRI contrasts and feeds them 
to a convolutional neural network (CNN). The CNN, inspired by the U- 
Net, has an encoder and decoder path, each one with three resolution 
levels. Evaluated on two datasets acquired in different centers, for a total 
of 90 MS patients, the framework showed competitive performance, 
with a CL detection rate of 76% and a false positive rate of 29%. 

In a second study, the same group proposed a similar approach, this 
time tailored exclusively for the detection of CL using multi-contrast 7 T 
MRI (La Rosa et al., 2020). The contrasts considered were MP2RAGE, 
T2*-weighted GRE, and T2*-w 3D-EPI. A cohort of 60 patients was 
analyzed with a total of over 2000CL manually segmented by two ex
perts. The CNN architecture proposed was similar to the one just 
described, but with a modified output. In addition to the CL segmenta
tion, the CNN provided a classification into two types (leukocortical and 
intracortical/subpial lesions) and a separate branch with a simple tissue 
segmentation in WM/GM. CL were correctly classified into the two types 
by the network with an accuracy of 86%. Setting a minimum lesion size 
of 0.75 μL, it achieved a CL detection rate of 67% with, however, a quite 
high false positive rate of 42% (see Fig. 6). Importantly, about 24% of 
these false positives were retrospectively judged as CL or possible CL by 
an expert (La Rosa et al., 2020). 

In a following publication (La Rosa et al., 2022), this method was 
further improved and evaluated on a multi-site dataset. Its main modi
fications included an added resolution level in the CNN architecture, a 
larger 3D patch input size of 96x96x96 voxels, and the use of the focal 
loss for training. Finally, a domain adaptation approach was applied to 
verify the performance on external datasets. On 20 MRI scans of patients 
imaged in a different center, this method achieved superior performance 
(CL detection rate of 71%) compared to MSLAST (48%) when setting a 
minimum lesion size of 6 μL. 

3.2. The central vein sign 

As of today, two automated ML methods for the classification of MS 
lesions as CVS+ (MS lesions showing the presence of the CVS) or CVS- 
(MS lesions without the CVS) have been proposed in the literature 
(Maggi et al., 2020; Dworkin et al., 2018). Both approaches were 
developed and evaluated only with 3 T MRI. Dworkin et al. (Dworkin 
et al., 2018) proposed a probabilistic method based on the Frangi ves
selness filter (Frangi et al., 1496). They first perform an automated WML 
segmentation using T1 and FLAIR 3D MRI volumes acquired at 3 T 

(Valcarcel et al., 2018; Valcarcel et al., 2018) and obtain a map of the 
veins by applying the vesselness filter to a T2*w 3D EPI image. Confluent 
lesions are then separated, and lesion centers are detected by textural 
analysis (Dworkin et al., 2019). Periventricular lesions are discarded as 
suggested by consensus guidelines (Sati et al., 2016), and a permutation 
algorithm is applied to verify whether veins occur at the lesions’ centers 
more often than would be expected due to random chance. Finally, to 
account for scan motion, the single lesion CVS + probabilities are 
weighted by the noise in their T2*-w 3D-EPI intensities and averaging 
across the total number of lesions, a patient-wise CVS value is obtained. 
This method was evaluated on a cohort of 31 adults, of whom 16 had 
MS. When considering a 40% cutoff rule, the method yielded a sensi
tivity of 0.94 and a specificity of 0.67 on a patient-wise classification 
level. The performance of the method on a lesion-wise level was not 
assessed. Although still far from experts’ performance, this was a first 
attempt to automatize the CVS assessment and encouraged further 
improvements. 

Maggi, Fartaria et al. (Maggi et al., 2020) introduced an optimized 
CNN for the automated CVS assessment, called CVSnet. CVSnet is 
inspired by the VGGnet (Simonyan and Zisserman, 2015) but composed 
of only three convolutional layers followed by rectified linear unit 
(ReLU) activations. Dropout was applied in each layer, and then two 
fully-connected layers of size 32 and 2, respectively, were added to 
provide the output. The authors selected 3D patches of size 21x21x21 
voxels as input for the network, where each patch was centered on an MS 
lesion and FLAIR* was the only MRI contrast used. Moreover, an 
ensemble of 10 networks with the same architecture was trained and the 
probability outputs were averaged to provide the final prediction. This 
study considered a cohort of 80 patients imaged at three different sites, 
of whom 42 had MS, 35 an MS-mimic, and 5 an unknown diagnosis. On 
the test set, CVSnet reached a lesion-wise sensitivity, specificity, and 
accuracy of 0.83, 0.75, and 0.79, respectively. On a patient-wise level, 

Fig. 6. Three representative axial slices from one MS patient showing the CL 
segmentation results of an automated CL segmentation method (La Rosa et al., 
2020). 7 T MP2RAGE (left column) and CL mask (right column) showing true 
positives (green), false negatives (red), and false positives (blue) of the auto
mated approach with respect to the CL manual segmentation. (For interpreta
tion of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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using a 50% cut-off, CVSnet achieved a sensitivity, specificity, and ac
curacy of 0.89, 0.92, and 0.90, respectively, outperforming the vessel
ness filter (Frangi et al., 1496) and approaching expert performance. 
However, as argued by the authors, these results are not directly com
parable with those of Dworkin at al. (Dworkin et al., 2018), as the 
CVSnet considered different exclusion criteria to pre/select the lesions, 
and the initial lesion segmentation was performed manually. 

3.3. Paramagnetic rim lesions 

To our knowledge, only three methods have been proposed so far for 
the detection of rim-like features and classification of PRL (Barquero 
et al., 2020; Lou et al., 2021; Zhang et al., 2022). All three methods 
considered 3 T MRI sequences, whereas 7 T imaging has not yet been 
explored for the automated assessment of PRL. Barquero et al. (2020) 
introduced a DL-based approach (called RimNet) for the semi- 
automated classification of PRL, which considered 3D FLAIR and 
T2*w 3D-EPI and phase 3D-EPI images. RimNet’s architecture is inspired 
by the VGGnet (Simonyan and Zisserman, 2015) and composed of two 
parallel CNN (one for either FLAIR or T2*w 3D-EPI image and one for 
the phase 3D-EPI image), where each CNN is made of three convolu
tional layers followed by a max-pooling operation. 3D patches of size 
28x28x28 (centered around each MS lesion) are fed to each branch, and 
both high-level and low-level feature maps are concatenated. An auto
mated lesion segmentation based on FLAIR and MPRAGE/MP2RAGE (La 
Rosa et al., 2020; La Rosa et al., 2019) was modified by an expert to split 
confluent lesions. The performance of RimNet was assessed on a cohort 
of 124 adults with MS who underwent 3 T MRI at two different sites with 
two scanners from the same vendor. Two experts annotated PRL inde
pendently and reached consensus in a joint session (462 PRL in total). 
The proposed multimodal approach based on FLAIR and phase 3D-EPI 
image achieves lesion-wise sensitivity and specificity of 0.70 and 0.95, 
respectively. When considering a previously identified clinical threshold 
of 4 PRL (Oladosu et al., 2021) for classifying patients as “chronic 
active” and “non-chronic active”, RimNet reaches an accuracy of 0.90 
and an F1-score of 0.84. These values are within 5% of the single ex
perts’ metrics, suggesting that RimNet could be a valuable tool in sup
porting the PRL analysis. The main drawback of RimNet, however, is 
that the method is not fully automated, as confluent lesions were split 
manually by an expert. 

Lou et al. (Lou et al., 2021), on the other hand, proposed a fully 
automated ML method for PRL assessment. They considered a cohort of 
20 subjects with MS imaged with 3D FLAIR, 3D MPRAGE, and T2*-w 
3D-EPI and phase 3D-EPI images. One neurologist inspected the T2* 
magnitude and unwrapped phase images and annotated PRL (113 PRL 
over the entire cohort). The automated pipeline, after some pre- 
processing steps that included lesion segmentation (Valcarcel et al., 
2018; Valcarcel et al., 2018), lesion center detection (Dworkin et al., 
2019), and lesion labeling, consisted of extracting 44 different lesion- 
wise radiomic features. A random forest classifier was then fitted on 
these features, and its ability to classify PRL was evaluated on a test set 
of 4 patients. Sensitivity and specificity of 0.75 and 0.81, respectively, 
were achieved. Although fully automated, this study has three limita
tions. First, the extremely small testing dataset (4 patients only with 47 
PRL), annotated by a single expert, does not guarantee the generaliza
tion of the proposed method. Second, all patients analyzed had at least 
one PRL, and this might add a bias to the trained model. Finally, as 
acknowledged by the authors, about 65% of misclassified lesions were 
confluent, highlighting the need for a better solution to address these 
lesions. 

Inspired by these two previous works, Zhang et al. introduced QSM- 
RimNet (Zhang et al., 2022), a QSM-based approach that combines a 
two-branch feature extraction network and a synthetic minority over
sampling technique. QSM-RimNet receives as input 3D patches of size 
32x32x16 voxels where a masking out of non-lesional area is applied. 
One branch of the network employs residual blocks to extract 

convolutional features from QSM and FLAIR images, whereas the second 
consists in a fully-connected network that processes previously obtained 
radiomic features. Convolutional and radiomic features are concate
nated and a minority oversampling network is used to alleviate the issue 
of class imbalance. Finally, a probability of being a PRL is assigned to 
each lesion. QSM-RimNet was evaluated with a stratified 5-folds cross- 
validation over 172 MS patients with a total of 177 PRL. Compared to 
RimNet and the automated approach of Lou et al., it outperformed both 
methods achieving a lesion-wise sensitivity and specificity of 0.68 and 
0.99, respectively, although the differences were not statistically sig
nificant. Ablation studies showed that fusing convolutional and radio
mic features improves the PRL identification (Zhang et al., 2022). Of 
note, QSM-Rimnet is not fully-automated as during training and evalu
ation it relies on manual corrections by experts of both PRL and 
confluent lesions. Similarly to RimNet, this strong limitation currently 
prevents its wider deployment and applicability. 

Overall, two methods have tackled the PRL detection problem 
considering mainly the T2*-w 3D-EPI sequence and one method has 
focused on the QSM. Thus, none of the three frameworks has investi
gated the effect of differences in SWI and QSM processing on ML-based 
tools performance and this important aspect should be explored in 
future studies. 

4. Discussion 

The methods described in the present review tackle challenging and 
clinically relevant problems. Automated and reliable solutions for 
detecting, classifying, and segmenting CL, PRL, and CVS are needed to 
improve the standardization of these biomarkers and facilitate their 
assessment in clinical routine. As of today, however, these methods are 
still in an early stage and are slightly less sensitive than WML segmen
tation approaches. 

Nevertheless, such tools would provide obvious advantages, either as 
stand-alone or adjunctive approaches as all three biomarkers are diffi
cult and time-consuming to analyze using conventional radiological 
workflows. In these particular cases, manual reading is so involved that 
automated methods might actually boost the biomarkers’ widespread 
adoption. First, they can substantially reduce analysis time, as compared 
to a manual rating. Maggi, Fartaria et al., for instance, showed that 
CVSNet was 600-fold faster on the test set compared to the manual 
assessment (4 s vs 40 min) when considering a 50% CVS + lesions 
criteria to distinguish MS from MS mimics (Maggi et al., 2020). A lower 
time gain, however, would be expected if CVS + lesion-count criteria, 
such as the 3-lesion and 6-lesion, were to be considered. Reduced 
analysis time can be predicted also for PRL and CL assessment. In La 
Rosa et al. (La Rosa et al., 2020), for instance, the automated CL seg
mentation of one subject is computed on average in 20 s. Although a 
direct comparison with the manual labeling was not reported, seg
menting CL manually is known to be a much more time-consuming 
process. A second main advantage of automated ML methods is their 
ability to base their decision on 3D multi-contrast MRI analyzed 
simultaneously. This stands in contrast to expert reviews, which typi
cally involve comparison of 2D slices across several contrast mecha
nisms in a variety of planes and are thus inherently limited in the 
amount of information that can be readily gleaned. 

4.1. Common trends 

Some common trends can be observed in most of the proposed 
pipelines. The large majority of the methods are supervised, relying on 
expert annotations. Regarding the DL-based approaches, they all used 
patch-based 3D CNN, exploiting the 3D intrinsic information, and often 
considered more than one MRI contrast simultaneously. In addition, a 
shared tendency consists of the use of relatively shallow architectures, 
with a limited number of trainable parameters, due to the lack of large 
datasets (La Rosa et al., 2020; La Rosa et al., 2020; Barquero et al., 2020; 
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Maggi et al., 2020). Combining this with extensive data augmentation 
techniques can help when datasets are small and unbalanced. Alterna
tively, other groups have tackled the problem of overfitting by proposing 
approaches based on classical ML techniques, such as k-NN (Fartaria 
et al., 2017; Fartaria et al., 2016) or random forest classifier (Commo
wick et al., 2018). In these studies, either intensity-based, radiomic, or 
probabilistic features are extracted and then fed to the respective clas
sifier. Overall, their current performance is inferior compared to their 
DL-based counterparts. 

In addition, some common pre-processing steps can also be identi
fied. First, some methods use intensity normalization techniques, either 
based on entire 3D volumes (Lou et al., 2021; Dworkin et al., 2018; 
Fartaria et al., 2017; Fartaria et al., 2019; La Rosa et al., 2020; La Rosa 
et al., 2020) or on single patches (Barquero et al., 2020; Maggi et al., 
2020). Second, the approaches using multiple MRI contrasts always 
register all images to the same space (Lou et al., 2021; Fartaria et al., 
2017; Fartaria et al., 2019; La Rosa et al., 2020; La Rosa et al., 2020). 
Registration errors might affect the methods’ performance. Finally, a 
shared pre-processing step in all approaches for the CVS or PRL assess
ment is the prior WML segmentation, obtained either manually (Maggi 
et al., 2020) or with an automated tool (Barquero et al., 2020; Lou et al., 
2021; Dworkin et al., 2018). In both cases, this can be a source of error 
that negatively affects the subsequent biomarkers’ classification 
accuracy. 

4.2. Current limitations 

Currently, a major limitation hinders the deployment of the above- 
described methods to the clinic: the methods proposed were trained 
and evaluated on small datasets acquired from one or at most two 
centers. Moreover, the MRI protocols used were often similar and not 
representative of the current diversity of images acquired in the clinics, 
including different processing, scans affected by noise and artifacts or 
protocols missing certain modalities. Therefore, the automated ML 
methods’ robustness on larger datasets and different scanners, especially 
from multiple vendors, remains to be proven. This limitation is 
emphasized by the current lack of standardized acquisition protocols 
which increases the diversity of the MRI sequences considered for the 
same biomarkers. This also represents a major hurdle for potential 
regulatory approval of such methods. As regulatory approval is neces
sary for widespread adoption in the clinics, which is, in turn, the pre
requisite for the availability of large datasets, this is currently a circular 
dependency issue. 

In addition, the achieved performance levels of the automated ML 
methods are still inferior compared to the human experts. Considering 
the high inter-rater variability and the limited amount of data available, 
there is also a considerable risk of having methods that perform well on 
data annotated by a single expert and not as well with annotations from 
other raters. To mitigate this issue, several methods have already 
considered consensus annotations from two or more experts (La Rosa 
et al., 2020; Barquero et al., 2020; Maggi et al., 2020). Regarding CL, no 
automated method presented in the literature was compared, on the 
same dataset, with the experts’ inter-rater variability, thus a proper 
evaluation is not possible. With respect to CVS, Maggi, Fartaria et al. 
(Maggi et al., 2020) compared the performance of CVSnet with the 
consensus of two experts. Following the “50% rule,” CVSnet achieved on 
the testing set a classification accuracy of 79%, whereas the experts 
reached 100% accuracy in differentiating MS and mimic diseases. In a 
similar way, Barquero et al. (Barquero et al., 2020) compared RimNet’s 
performance with those of two experts in classifying PRL. In a lesion- 
wise analysis, RimNet achieved a sensitivity of 71% and a negative 
predictive value of 96%, approaching the experts, who reached 78% and 
98%, respectively. 

Another main limitation is represented by the fact that some methods 
presented are not fully automated. CVSnet (Maggi et al., 2020), for 
instance, used manually annotated MS lesion masks in which lesions 

were excluded based on the NAIMS criteria (Sati et al., 2016), whereas 
in the pipeline proposed by Dworkin et al. (Dworkin et al., 2018), scans 
affected by noise were discarded following a manual rating. Similarly, 
RimNet (Barquero et al., 2020) exploits lesion masks where confluent 
lesions have been previously split into single units by an expert. In 
contrast, all methods described to date for CL segmentation or detection 
are fully automated (Fartaria et al., 2017; La Rosa et al., 2020; La Rosa 
et al., 2020; Fartaria et al., 2016). Another persistent issue in the auto
mated analysis of the CVS and PRL is the presence of confluent lesions. 
Large, periventricular white matter lesions which include several single 
units pose additional challenges as the current methods classify each 
lesion singularly (Lou et al., 2021; Dworkin et al., 2018), and some of 
them extract 3D patches centered on the lesion of interest (Barquero 
et al., 2020; Maggi et al., 2020). In RimNet (Barquero et al., 2020), for 
instance, an expert manually split confluent lesions, whereas Lou et al. 
observed a consistent drop in performance in PRL classification in the 
presence of confluent lesions (Lou et al., 2021). Although methods to 
automatically split confluent lesions have been proposed (Dworkin 
et al., 2019; Zhang et al., 2021), further developments are needed in 
order to properly apply these in the presence of the CVS or PRL. 

Finally, for every automated tool the regulatory environment re
mains a critical barrier, as up to date less than 90 AI/ML-based medical 
devices or algorithms have been approved by the US Food & Drugs 
Administration (FDA). This challenge, however, is not unique to the 
three biomarkers considered (Pinto et al., 2020) but shared also by 
automated approaches segmenting WML or estimating brain atrophy. 

4.3. Future research avenues 

Standardization of the biomarkers’ assessment- The first two 
necessary steps toward the improvement of the above-referred ap
proaches are the validation of the biomarkers’ specific criteria and 
standardization of the relative MRI protocols. CL have been recently 
included in the MS diagnostic criteria (Thompson et al., 2018), however, 
a consensus on imaging and on their definition is still missing. In a 
similar way, PRL urgently need a consensus definition and standardized 
clinical protocols, whereas the initial criteria proposed for the CVS (Sati 
et al., 2016) need to be updated in light of the latest studies. This would 
clarify the automated methods’ goals, which so far have been extremely 
dependent on specific expert labeling of each dataset or on the specific 
criteria adopted. 

Standardization and extensive validation of the automated 
methods - Currently, it is difficult to compare the performance of 
automated ML methods considering different criteria (such as the min
imum lesion size) and being evaluated on private datasets. In the future, 
the generalization of the proposed methods should be validated on large, 
multi-site datasets with standardized metrics. For this purpose, we urge 
research groups to organize grand challenges and release publicly 
available datasets with manual annotations of CL, PRL, and CVS. As 
already proved for several other tasks in medical imaging (Antonelli 
et al., 2021), including for WML segmentation (Carass et al., 2017; 
Commowick et al., 2018), such open data initiatives boost on the one 
hand the development of state-of-the-art methods, and on the other 
hand, help set benchmarks for a fair assessment. Only 5 of the 12 
methods covered in this review are publicly available. In order to extend 
their usage and foster a culture of open science, research groups should 
make their code publicly available and possibly provide Docker (Docker, 
2014)/Singularity (Kurtzer et al., 2017) images to facilitate their eval
uation. Moreover, as successfully done for WML segmentation (Valverde 
et al., 2019), domain-adaptation techniques should also be explored in 
order to improve robustness of the automated ML methods to noise, 
artifacts, and different protocols. So far, all three biomarkers have been 
primarily studied at 3 T and 7 T, and therefore robust methods able to 
work with images acquired at both magnetic field strengths would be 
very valuable. Machine learning algorithms could exploit 7 T enhanced 
spatial resolution and tissue contrast by domain adaptation techniques 
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to improve their performance on 3 T imaging, which will continue to be 
the main tool for clinicians as well as for clinical research and trials for 
the foreseeable future. Although it would be highly desirable to have 
methods that work also at the most accessible field strength of 1.5 T, this 
seems currently unlikely as the sensitivity to these biomarkers is field- 
dependent. 

Transfer learning - Considering the scarcity of large, annotated 
datasets, an additional strategy that should be explored consists of 
transfer learning. Sharing of neural network weights between research 
groups could foster interdisciplinary applicability of CNN trained on 
relatively large datasets towards different purposes, such as CL, PRL, and 
CVS, by fine-tuning the trained models in smaller datasets. Potential 
advantages would include a shorter training time and robust feature 
extraction across different MRI device manufacturers or different pulse 
sequence acquisition parameters (Valverde et al., 2021). 

Longitudinal assessment - Another possible research direction is an 
expansion of the current methods to analyze longitudinal data. To the 
best of our knowledge, only one study has tackled the automated lon
gitudinal assessment of CL at 3 T (Fartaria et al., 2019), whereas PRL 
evolution over time has not yet been assessed with automated ap
proaches. CL are known to play a major role in disease progression 
(Mainero et al., 2015) and considerable changes in their volume were 
observed in longitudinal studies (Calabrese et al., 2008; Faizy et al., 
2019). Of similar interest, PRL and slowly-evolving lesions (SELs) vol
ume assessment over time is a plausible future clinical measure of 
treatment response (Absinta et al., 2021; Dal-Bianco et al., 2021; Elliott 
et al., 2019; Elliott et al., 2019). Therefore, automated longitudinal 
assessment of both CL and PRL could be of high relevance. Regarding 
SELs, longitudinal WML segmentation approaches (Lladó et al., 2012) 
could be adapted to track their evolution in a fully-automated way. This 
would facilitate their assessment as currently, following an automated 
cross-sectional WML segmentation, the lesion masks at each timepoint 
are manually reviewed (Elliott et al., 2019). 

Joint assessment of multiple biomarkers- To date, all the methods 
proposed tackled the assessment of a single lesional biomarker, although 
in the case of CL some methods consider WML as well (Fartaria et al., 
2019; La Rosa et al., 2020; Fartaria et al., 2016). Future work may aim at 
automatically analyzing multiple biomarkers in a unified framework 
(eg. with the same input images and algorithm) as this would be 
extremely useful for research purposes or in clinics. Moreover, ML-based 
algorithms have the potential to be useful also for prediction purposes. A 
few automated methods based either on MRI (Tousignant et al., 2021; 
Marzullo et al., 2019; Roca et al., 2020), optical coherence tomography 
(Montolío et al., 2021), or clinical information (Pinto et al., 2020) have 
already been presented to predict MS progression. Specifically to the 
biomarkers considered in the present review, Treaba et al. have pro
posed a ML approach for the regression of both CL and PRL, in the same 
cohort of patients, with disability progression (Treaba et al., 2021;3(3): 
fcab134.). In this prospective, longitudinal study, the authors analyzed 
brain scans of 100 MS patients using 7 T susceptibility-sensitive MRI in 
which CL and PRL were segmented manually. Although the study had 
some limitations, including the fact that the disability progression was 
assessed only by the EDSS and only one ML-based method (gradient 
boosting algorithm, XGBoost) was tested, it showed that 7 T MRI and the 
combination of different biomarkers are promising in predicting MS 
disability progression. Future studies should aim to combine the auto
mated assessment of multiple biomarkers with clinical information and 
other relevant markers to predict clinical outcomes or treatment effect. 

Explainable AI - As discussed in this paper, ML methods combined 
with specialized MRI sequences could play a fundamental role in sup
porting the diagnosis of, and prognostication in, MS. However, the 
complexity of DL algorithms hinders their interpretation, which has led 
some to consider these methods as “black boxes.” The lack of an obvious 
connection between biology, pathophysiology, and features revealed by 
DL might diminish clinicians’ confidence in these algorithms, again 
hindering the adoption of such tools in clinical research and healthcare. 

Explainable AI (XAI) methods are needed as to on one side provide 
uncertainty estimates regarding the output provided and on the other 
side transparency on the decisions taken by the DL-models. By 
explainability, we refer to a set of domain features such as pixels of an 
image or human-understandable high-level attributes that contribute to 
the output decision of the model and its internal working. To our 
knowledge, there are only two groups that have investigated XAI in MS. 
Eitel et al. (Eitel et al., 2019) explored explainability to reveal relevant 
voxel-wise locations that a trained CNN uses for distinguishing between 
a normal and MS brain MRI. They found that diagnostic success relied on 
the appearance of both lesions and non-lesional tissue (thalamus). Nair 
et al.Nair et al. (2020) studied the uncertainty of DL-based lesion seg
mentation to quantify the AI model reliability. Interestingly, their results 
showed that discarding lesions with high estimated uncertainty from the 
output segmentation would improve the performance of the model. 
These two pioneering approaches strengthen the idea that explainability 
and uncertainty measures can reliably provide new insights into how DL 
models for MS work and potentially improve them and increase their 
transparency. 

Overall, we believe that developing explainable AI tools is crucial in 
the ML MS research roadmap and would have an impact at both meth
odological and clinical levels. First, explainable DL in MS would provide 
new insights into model decisions and help identify any bias. Second, the 
inclusion of uncertainty and explainability will help in increasing the 
confidence of clinicians considering their use, as well as improve the 
quality of decision making and ultimately the clinical impact. Finally, 
they may foster a better understanding of MS progression by generating 
biologically interpretable measures of inflammation and degeneration. 

5. Conclusions 

To summarize, automated or semi-automated ML-based approaches 
aiming to segment and classify CL, CVS, and PRL are still in an early 
stage. Nevertheless, these pioneering methods have the potential to 
provide standardized identification of the biomarkers and facilitate their 
large-scale assessment in clinical routines. Automated or semi- 
automated tools could considerably reduce the current amount of time 
and effort needed for a manual assessment. To date, however, some 
limitations still hinder a broader adoption of these tools. First, there is a 
general need for consensus criteria and standardized clinical protocols 
for all three aforementioned biomarkers. Further, a major barrier to the 
automated methods’ deployment is their lack of validation on multi- 
center datasets acquired with different protocols. Future work should 
focus on improving the robustness of the automated methods, extending 
their framework with longitudinal data, and including interpretable 
measures into their decisions. Finally, we encourage research groups to 
organize grand challenges and release publicly available datasets. This 
would boost the development of new methods and provide benchmarks 
for a fair and standardized comparison that is currently lacking. 
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