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a b s t r a c t 

Neurofeedback is a procedure that measures brain activity in real-time and presents it as feedback to an individual, thus allowing them to self-regulate brain activity 
with effects on cognitive processes inferred from behavior. One common argument is that neurofeedback studies can reveal how the measured brain activity causes 

a particular cognitive process. The causal claim is often made regarding the measured brain activity being manipulated as an independent variable, similar to brain 
stimulation studies. However, this causal inference is vulnerable to the argument that other upstream brain activities change concurrently and cause changes in the 
brain activity from which feedback is derived. In this paper, we outline the inference that neurofeedback may causally affect cognition by indirect means. We further 
argue that researchers should remain open to the idea that the trained brain activity could be part of a "causal network" that collectively affects cognition rather than 
being necessarily causally primary. This particular inference may provide a better translation of evidence from neurofeedback studies to the rest of neuroscience. We 
argue that the recent advent of multivariate pattern analysis, when combined with implicit neurofeedback, currently comprises the strongest case for causality. Our 
perspective is that although the burden of inferring direct causality is difficult, it may be triangulated using a collection of various methods in neuroscience. Finally, 
we argue that the neurofeedback methodology provides unique advantages compared to other methods for revealing changes in the brain and cognitive processes 
but that researchers should remain mindful of indirect causal effects. 
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. Introduction 

In a neurofeedback experiment, the analysis of brain activity keeps
ace with data acquisition allowing it to be fed back to the participant
s a visual, auditory, or another representation of the brain activity.
ontinuation of this process in iterative loops enables an individual to
elf-regulate brain activity linked with a specific behavior or pathology
 Cox et al., 1995 ; Ros et al., 2014 ; Sitaram et al., 2017 ; J. Sulzer et al.,
013 ). Several neuroscientists argue that since these techniques inter-
ene on brain activation as an independent variable, it provides ev-
dence for a causal link between brain activity and cognition as op-
osed to a mere correlation, thus making neurofeedback comparable to
rain stimulation approaches ( Birbaumer et al., 2013 ; Caria et al., 2010 ;
itaram et al., 2017 ; Sulzer et al., 2013 ; Weiskopf et al., 2004 , 2012 ).
hile many researchers have the intuition that neurofeedback research

eems to provide something more than a mere correlation, there is no
onsensus on what this "more" is. In other words, the question of whether
ne can genuinely infer causality using evidence from neurofeedback
tudies has remained unanswered. Despite this, several authors of rt-
MRI and M/EEG neurofeedback papers make causal claims based on
esults showing changes in a cognitive function following a neurofeed-
ack intervention ( Bagherzadeh et al., 2020 ; Brickwedde et al., 2019 ;
kazaki et al., 2015 ; Scharnowski et al., 2015 , 2012 ; Shibata et al.,
011 ; Yoo et al., 2012 ; Yun et al., 2020 ) (excerpts presented in Box 1 ).
n what sense are the causal inferences made in neurofeedback stud-
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es justified? –The question is not whether the neurofeedback training
ntervention causes a collective change in both brain activity and cog-
itive processes, which control groups can confirm ( Ros et al., 2020 ;
orger et al., 2019 ; Thibault et al., 2016 ). Instead, the present question
s whether it can be inferred that neurofeedback training affected a spe-
ific brain activity which in turn caused a specific cognitive function to
hange. 

ox 1 . Examples of Causal Inferences in Neurofeedback Studies 

"The present decoded fMRI neurofeedback method allowed us to 
induce specific neural activity patterns in V1/V2, which caused 
visual perceptual learning" ( Shibata et al., 2011 ). 

"We found that learned voluntary control over these function- 
ally distinct brain areas caused functionally specific behavioral ef- 
fects" ( Scharnowski et al., 2015 ) 

"Thus, neurofeedback training alters alpha lateralization, 
which in turn decreases performances in the untrained hemifield. 
Our findings suggest that alpha oscillations play a causal role for 
the allocation of attention" ( Okazaki et al., 2015 ). 

"We used MEG neurofeedback to train subjects to manipu- 
late the ratio of alpha power over the left versus right parietal 
cortex. The results support the proposal that alpha synchrony 
plays a causal role in modulating attention and visual processing" 
( Bagherzadeh et al., 2020 ). 
 Aarhus University, Universitetsbyen 3, Aarhus, Denmark. 

 2022 

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.neuroimage.2022.119400
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2022.119400&domain=pdf
mailto:timo@cfin.au.dk
https://doi.org/10.1016/j.neuroimage.2022.119400
http://creativecommons.org/licenses/by/4.0/


T.L. Kvamme, T. Ros and M. Overgaard NeuroImage 258 (2022) 119400 

 

q  

w  

c  

P  

i  

i  

t  

w
 

n  

w  

b  

t  

v  

p  

e  

c  

b  

a  

D  

M  

p  

s  

m  

n  

H  

b
 

b  

(  

K  

c  

c  

p  

H  

n  

t  

o  

A  

r  

f  

(

2

 

f  

a  

r  

c  

K  

2  

t  

(  

b  

b  

u  

I
 

d  

(  

M  

t  

e  

S  

b  

s  

f  

w  

2  

c
 

s  

t  

t  

b  

f  

t
P  

l  

t  

w
 

s  

H  

L  

s  

(  

t  

g  

P  

a  

w  

(
 

s  

2  

a  

t  

c  

a  

(  

a  

a  

(  

n  

(  

m
 

e  

v  

o  

v  

B

B

Dominant causal theories hold that to claim causality; it is re-
uired that a variable "X" is intervened on and varied systematically
hile measuring a change in the outcome "Y" while controlling for

onfounding causes of the change in Y ( Pearl and Mackenzie, 2018 ;
eters et al., 2017 ; Woodward, 2005 ). The causal theory of intervention-
sm ( Woodward, 2005 ) emphasizes interventions for discovering causal-
ty and claims that for the definition of causality to make sense, we need
o ask if the intervention appropriately affects X and not confounds Z
hich may also cause Y. 

This has particular relevance for neurofeedback, because an alter-
atively "indirect" causal interpretation could be that training subjects
ith feedback from brain activity X might also affect other types of
rain activity "Z." If this latter brain activity Z is genuinely causal for
he cognitive process "Y", then results from neurofeedback studies pro-
ides no way to distinguish between a direct and indirect causal inter-
retation. In fact, some authors interpret their findings without nec-
ssarily postulating that the trained brain correlate is causal for the
hange in the cognitive process. Instead, they presume that neurofeed-
ack training caused a change in brain activity which correlated with
 change in cognition ( Bauer et al., 2020 ; deBettencourt et al., 2015 ;
eCharms, 2007 ; Gundlach and Forschack, 2020 ; Kvamme et al., 2022 ;
icoulaud-Franchi et al., 2014 ; Ros et al., 2013 ; Rota et al., 2009 ). This

aper aims to explore the reasons for this non-causal interpretation. In
ome sense, the present issue of causality is unimportant for delivering
eaningful therapeutic effects. There is no worry about which brain dy-
amic was responsible for a therapeutic effect, as long as it is reliable.
owever, we will argue that a clearer understanding of causality in the
rain will inevitably lead to more successful therapeutic interventions. 

One issue that often arises when discussing the relation between
rain activity and cognitive functions is the mind-body problem
 Chambliss, 2018 ; Dijkstra and de Bruin, 2016 ; Fell et al., 2004 ;
urthen, 2010 ; Nagel, 1993 ). For the present purposes, we employ the
ommon assumption in neuroscience that all cognitive functions depend
ausally on a specific neural substrate (i.e., its structure) and the tem-
orospatial patterns of neuronal activity it produces (i.e., its dynamics).
ence, "cognitive functions" thus do not necessarily refer to phenome-
al experience but instead pragmatically to the mechanisms of informa-
ion processing that give rise to behaviors such as perception, higher-
rder thoughts, and motor functions ( Bergmann and Hartwigsen, 2020 ).
n important but separate issue is that a satisfying explanation of the
elationship between the brain and cognition is predicated on care-
ully explaining how cognitive functions can be inferred from behavior
 Krakauer et al., 2017 ). 

. Upgrading correlation to causation 

Inferring causality between brain activity and cognitive processes is a
undamental and challenging goal in neuroscience. For instance, there is
 longstanding debate about whether causality can be inferred from neu-
oimaging data using causal models such as Granger causality, dynamic
ausal models, and causal Bayesian nets ( Friston et al., 2013 , 2003 ;
oller and Friedman, 2009 ; Lohmann et al., 2012 ; Marinescu et al.,
018 ). There is a similar debate about whether estimates of connec-
ivity between neural entities are sufficient for a causal interpretation
 Reid et al., 2019 ). It has also recently been discussed whether inter-
rain synchronization (similar brain activity recorded from multiple
rains) can be considered causal for social interactions or if brain stim-
lation approaches are required to confirm causality ( Novembre and
annetti, 2021a , 2021b ). 

Interestingly, neurofeedback has been claimed to provide causal evi-
ence for causal models of neuroimaging and interbrain synchronization
 Grosse-Wentrup et al., 2016 ; Gvirts Provolovski and Perlmutter, 2021 ;
oreau and Dumas, 2021 ). Similarly, neurofeedback is often advocated

o be similar to brain stimulation in terms of being able to derive causal
vidence ( Birbaumer et al., 2013 ; Caria et al., 2010 ; Sitaram et al., 2017 ;
ulzer et al., 2013 ; Weiskopf et al., 2004 , 2012 ). However, neurofeed-
2 
ack is also different from brain stimulation. Unlike traditional brain
timulation, where an exogenous current is applied to the brain, neuro-
eedback can be considered an endogenous version of brain stimulation
here the individual self-stimulates certain brain activities ( Ros et al.,
010 ; Sitaram et al., 2017 ). This, we will argue, has a consequence for
ausal inference. 

At its core, causal inference assigns a direction of the relation-
hip between two variables and assumes that active manipulation of
he cause (experimentally or counterfactually) while holding every-
hing else constant produces the effect. The relationship is said to
e “asymmetric ” because it is always the cause that produces the ef-
ect and not vice versa. This can be formalized via the do opera-
or, where P(effect|cause) = P(effect|do(cause)) while P(cause|effect) ≠
(cause|do(effect) = P(cause) ( Pearl and Mackenzie, 2018 ). A particu-
ar emphasis is placed on the ability of classic experiments to randomize
he allocation of levels of independent variables to observational units
hile observing changes in the dependent variable. 

Importantly, when using these criteria for causal inference, brain
timulation studies can provide causal evidence ( Bergmann and
artwigsen, 2020 ; Dijkstra and de Bruin, 2016 ; Silvanto and Pascual-
eone, 2012 ). Using a simple example in the context of brain
timulation would be a TMS (transcranial magnetic stimulation)
with sufficient intensity) of the primary motor cortex (M1) of
he hand area, which causes or increases the likelihood of a fin-
er movement (P(contraction|do(TMS), but not the reverse the (i.e.
(TMS|do(contraction)). The causal inference is possible because the
symmetry holds for every cause-effect pair throughout the causal chain,
hich mediates the effect from a TMS pulse to the finger movement
 Bergmann and Hartwigsen, 2020 ). 

However, several factors make causal inference for cognitive neuro-
cience studies using brain stimulation more complex ( Beliaeva et al.,
021 ; Bergmann and Hartwigsen, 2020 ; Hobot et al., 2020 ). For ex-
mple, the effects on cognition may depend on co-occurring brain ac-
ivity at the time of brain stimulation. Moreover, the induction of spe-
ific brain activity may also have downstream effects on other brain
ctivities, which could be causally primary for the cognitive process
see Bergmann and Hartwigsen, 2020 for a review). The complications
re hard to formulate using the causal frameworks because they often
ssume that we can change one mechanism without affecting others
 Peters et al., 2017 ), i.e. we can place "X" under the influence of a mecha-
ism (the intervention) while keeping all other mechanisms undisturbed
 Pearl, 2009 ). This is a strong assumption in neuroscience because of the
any interacting mechanisms in the brain. 

Here, the causal framework of interventionism is relevant because it
xplicitly states that to speak of the causal effect of X on Y when inter-
ening on X, we need a clear notion of how to appropriately intervene
n X without affecting confounding Z. One of the most established inter-
entionist definitions of causation comes from Woodward (2005) (see
ox 2 ). 

ox 2 . Interventionist Principles of Causation 

Interventionism originate from ( Woodward, 2003 ): 
(M) A necessary and sufficient condition for X to be a direct 

cause of Y with respect to a variable set V is that there is a possible 
intervention on X that will change Y or the probability distribution 
of Y when one holds fixed at some value all other variables Z i in 
V. 

A necessary and sufficient condition for X to be a contributing 
cause of Y with respect to variable set V is that (i) there be a di- 
rected path from X to Y such that each link in this path is a direct 
causal relationship…

And that (ii) there is some intervention on X that will change 
Y when all other variables in V that are not on this path are fixed 
at some value. 
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Critically for the above definition to make sense, we need to 
ask what an appropriate intervention of X is. Woodward defines 
an Intervention variable as follows: 

(IV) I is an intervention variable for X with respect to Y if: 
1. I causes X; 
2. I acts as a switch for all the other variables that cause X. That 

is, certain values of I are such that when I attains those values, X 

ceases to depend on the values of other variables that cause X and 
instead depends only on the value taken by I; 

3. Any directed path from I to Y goes through X. That is, I does 
not directly cause Y and is not a cause of any causes of Y that are 
distinct from X except, of course, for those causes of Y, if any, that 
are built into the I–X–Y connection itself; that is, except for (a) any 
causes of Y that are effects of X (i.e., variables that are causally 
between X and Y) and (b) any causes of Y that are between I and 
X and have no effect on Y independently of X. 

4. I is (statistically) independent of any variable Z that causes 
Y and is on a directed path that does not go through X. 

An intervention can be understood in terms of an intervention variable
 for X with respect to Y. When I takes on a specific value, it causes X to
ake on some determinate value. From the perspective of experimental
cience, an intervention can be anything that changes the variable X
ith an effect on Y. However, to claim that the intervention revealed a

ausal effect of X on Y, the intervention must meet the requirements in
IV). 

Critically, the interventionist definition of causality lists several cri-
eria for an appropriate intervention on X. With the interventionist
ausal framework in mind; the issue for neurofeedback addressed in the
resent paper is mentioned in IV4, e.g. that we cannot be sure that the
ntervention "I" is statistically independent of any variable Z that causes
 and is on a directed path that does not go through X. In neuroscientific
erms, we cannot be certain that co-occurring brain activity does not af-
ect the target brain activity we are attempting to induce, nor that the
ntervention affects confounding brain activity involved in the cognitive
unction. 

One separate issue is the issue of confounding variables intersecting
he relationship between X and Y. One everyday example is the causal ef-
ect of “pain killer medication ” as X on “headache relief ” as Y, which one
ould consider directly causal. However, suppose one would consider
he biochemical processes Z that mediate the effect of the medication
n headache relief. In that case, one could say that the causal relation
etween X and Y becomes indirect because Z is a mediator (X → Z → Y).
owever, according to interventionism (IV3 exception a), X can still be
onsidered as contributing cause of Y because the biochemical processes
re built into the I–X–Y connection itself. In other words, the cascade of
ctivity that occurs after the induced or trained activity which ultimately
ffects the cognitive process, is a separate issue for causal inference, one
hat is also shared between brain stimulation and neurofeedback. 

The complications in causal inference for brain stimulation are ar-
uably lesser than in neurofeedback studies because we know that there
s an asymmetric relationship between the TMS pulse and the electrical
eld. We can be certain that it was not the participant’s brain that pro-
uced the TMS pulse. The main issues for causal inference in brain stim-
lation studies arise after a known electrical field strength is induced in
 known region ( Bergmann and Hartwigsen, 2020 ). For neurofeedback
tudies, the added issue is that the initial induction of brain activity
ay be caused by a cascade of intricate brain activity patterns that have
ownstream effects on the brain activity that is being trained. 

Neurofeedback is fundamentally different from traditional exoge-
ous brain stimulation because it works using operant learning princi-
les rather than an externally applied electric current. Transient neu-
al activities are ideally reinforced immediately – i.e., speed of re-
nforcement is crucial. Most neurofeedback protocols, therefore, fo-
us on providing feedback as soon as possible ( Belinskaia et al.,
3 
020 ; Jackson et al., 2006 ; LaConte et al., 2007 ; Sherlin et al., 2011 ;
metanin et al., 2019 , 2018 ; Stoeckel et al., 2014 ; Sudre et al., 2011 ).
owever, delayed timing of reinforcement does not make neurofeed-
ack impossible. Instead, it merely leads to the requirement of more
onditioning trials ( Cox et al., 1995 ; Grice, 1948 ; Posse et al., 2003 ;
herlin et al., 2011 ; James Sulzer et al., 2013 ; Yoo and Jolesz, 2002 ). 

This has a critical yet often overlooked consequence for causal infer-
nce of neurofeedback results. Suppose the targeted brain activity X in
 region of interest or frequency component is itself caused by an up-
tream (e.g., supervisor) dynamic "Z," which also occurs close enough
n time to the resulting reward signal. The brain dynamic Z could po-
entially cause the brain activity X to change within the same time win-
ow for reinforcement ( Lattal, 2010 ). In that case, Z might get condi-
ioned as well. Formalistically it may be that the probability of P(brain
ctivity X |do(regulate brain activity Z)) and P(cognitive function “Y ”
do(regulate brain activity Z)) is greater than 0. In other words, we can-
ot appropriately intervene on X. For instance, in a study by deCharms
t al., participants were trained to down-regulate activity in the rostral
nterior cingulate cortex (rACC) using rt-fMRI to reduce pain perception
 deCharms et al., 2005 ). Although successful down-regulation of rACC
ctivity was correlated with decreases in pain perception, the authors
aution that top-down connections from an upstream region might drive
hanges in rACC activity ( deCharms et al., 2005 ; Sulzer et al., 2013 ). In
ther words, neurofeedback might intend to regulate a specific brain
ctivity but might inadvertently only be able to do so by regulating its
rior causes. 

This is not to say that the issue of causal inference in exogenous brain
timulation studies is non-trivial. In fact, there are similar "costimula-
ion" issues, such as the "click" sound and mechanical vibration affecting
he peripheral nervous system generated by the discharging TMS coil,
hich may also affect brain activity in targeted regions ( Bergmann and
artwigsen, 2020 ). However, with the endogenous stimulation em-
loyed in neurofeedback, it is a bigger question what brought about the
nitial induction of brain activity, making an indirect causal explaination
 possibility researchers should not ignore. 

. Indirect causality 

A neurofeedback study is typically motivated by a series of prior
euroimaging studies that are themselves unable to test a hypothetical
ausal relation between variations in specific brain activity and a cor-
elated cognitive function. For instance, neurofeedback studies that aim
o regulate the alpha activity, rACC activity, and amygdala activity are
ll based on prior studies correlating these brain variables with cogni-
ive functions such as attention, pain perception, and emotional pro-
essing, respectively ( Bagherzadeh et al., 2020 ; deCharms et al., 2005 ;
erwig et al., 2019 ). Because traditional correlative neuroimaging stud-

es cannot rule out that the measured brain activity is epiphenome-
al to the cognitive function, the nature of the correlation is uncon-
rmed ( Keizer et al., 2010 ). In other words, the specific brain activity
nd specific cognitive function might be spuriously or non-spuriously
orrelated. We use the term spurious correlation in the general neu-
oimaging sense, to denote an actual correlation that is not due to an
nderlying causal relation (commonly occurring because of ignorance
f confounds ( Lazic, 2010 )) i.e. not spurious due to the lack of a normal-
zation term ( Pearson, 1897 ), to circularity in the analysis ( Vul et al.,
009 ) or low sample size and improper outlier correction ( Rousselet and
ernet, 2012 ). 

To explain spurious correlations, an often-used analogy is the known
purious correlation between ice cream sales and shark attacks. No
mount of regulation of ice cream sales (e.g., a ban or decreasing the cost
f ice cream) will ever affect shark attacks. In other words, ice-cream
ales are epiphenomenal to shark attacks as it is a mere byproduct of
nother co-occurring process. Instead, it is warmer temperatures that
ltimately cause an increase in ice cream sales and an increase in shark
ttacks. Alternatively, regulating something like beach attendance is suf-
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Fig. 1. A. Everyday Example: The ice-cream sales and shark attacks analogy. A spurious correlation rather than a causal relation exists between ice-cream sales and 
shark attacks as they are independently affected by temperature. Regulating beach attendance or beach parking will affect shark attacks because they are non-spurious 
correlates of shark attacks. However, only beach attendance is directly causing changes in the probability distribution of shark attacks, whereas beach parking is 
only indirectly causing shark attacks. Manipulating beach parking and seeing changes in shark attacks reveals that beach parking is part of the causal network which 
affects shark attacks while not showing beach parking is causally primary for shark attacks. B. Neurofeedback Example: an example of a causal network of brain 
areas involved in changing the cognitive process. The targeted brain activity, "X" is affected by another brain activity, "Z" which is inadvertently affected by the 
neurofeedback training; this latter brain activity could be truly causal for the cognitive process “Y ”. 
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cient to cause changes in the probability of shark attacks (see Fig. 1:
. Everday Example). 

Concerning neurofeedback, if researchers repeatedly attempt to reg-
late a specific brain activity and find that successful conditioning of the
rain activity does not lead to changes in a correlated cognitive function.
or example, suppose that repeated neurofeedback studies consistently
emonstrate strong evidence for the null hypothesis indicated by Bayes
actors ( Dienes, 2014 ). In this case, we can conclude that training in-
ividuals to self-regulate using neurofeedback using the specific brain
ctivity is insufficient for influencing the cognitive function. This pro-
ides evidence that the correlation between the brain activity and the
ognitive function is likely spurious (i.e., the correlation is in some sense
imilar to the correlation between ice cream sales and shark attacks). 

On the other hand, if the neurofeedback study is successful, mean-
ng that researchers can demonstrate changes in the cognitive function
ccurring following the trained specific brain activity. Ideally, the speci-
city of the effect is confirmed by various control groups (such as in-
erse feedback group, yoked feedback, feedback from unrelated brain
ctivity, or placebo control) ( Lubianiker et al., 2019 ; Ros et al., 2020 ;
orger et al., 2019 ; Thibault et al., 2016 ). In that case, we can categori-
ally confirm that the trained brain activity is non-spuriously correlated
ith the cognitive function. We can conclude that the trained brain ac-

ivity must be part of the "causal network" which causes the cognitive
unction. However, we cannot disentangle whether we have affected
rain activity that directly affects the cognitive process or affected brain
ctivity that is only indirectly causal (see Fig. 1: B. Neurofeedback Exam-
le). In the ice-cream sales and shark attacks analogy, this is similar to
ot knowing whether we have affected beach attendance directly (direct
ausality) or something like beach parking (indirect causality), which
nly indirectly affects the prospect of beach attendance and thereby af-
ects shark attacks. The central claim of the present paper is that prelim-
nary neurofeedback studies cannot provide evidence for direct versus
4 
ndirect causality but rather only for non-spurious versus spurious cor-
elates. 

Even in the case of a null-finding, neurofeedback cannot completely
onfirm that the trained brain area is non-causally related or spuri-
usly correlated with the cognitive function because neurofeedback may
lso inadvertently activate compensatory brain activations, which may
ancel the effect ( Mehler and Kording, 2018 ). I.e. neurofeedback re-
earchers should be wary of potentially "false negative" non-causal in-
erences as well (a possible partial solution to this issue is provided by
mplicit neurofeedback, which we will explain in Section 6 ). 

To further illustrate how neurofeedback may work through an in-
irect causal route, imagine a researcher who performs a biofeedback
tudy using electromyography (EMG) in a clinical ADHD population.
y training individuals to down-regulate muscle activity, the researcher
bserves similar beneficial effects on ADHD symptoms as EEG-based
eurofeedback ( Barth et al., 2017 ; Maurizio et al., 2014 ). Should the
esearcher conclude that the muscles are causally involved in ADHD? Al-
hough that interpretation is not disproved, the researcher should con-
ider that muscular hyperactivity is a correlate in a causal chain that
eads all the way up to the brain. Hence, there are brain circuits that
ontrol motor neurons that control hyperactive muscles. When revers-
ng along the causal chain, EMG-biofeedback can indirectly train the
rain circuits related to ADHD symptoms ( Barth et al., 2017 ). This is
ot to dismiss the importance of muscle activity in ADHD symptoms;
n fact, the findings clearly underlie their usefulness in bringing about
herapeutic effects. However, when inferring causality, it cannot be ex-
luded that EMG-biofeedback evokes systematic activations in brain ac-
ivity that is causally involved in ADHD, even though direct feedback
rom said brain activity was not provided (see Fig. 2 ). 

In the case of neurofeedback, things become less clear, as the brain
ctivity that feedback is provided from might also be indirectly affected
y other types of brain activity. This makes both the indirect causal and
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Fig. 2. Top row: Methods used to investigate the brain and cognition. Going from left to right, neuroimaging (typically single-sample) measures variability in specific 
brain activity and relates it with variability in a cognitive phenomenon. EMG biofeedback decreases hyperactive muscles, and changes in cognition (such as ADHD 

symptoms) are observed. Neurofeedback is a process where brain activity is measured using (fMRI or M/EEG) and fed back to the individual in real-time to influence 
the activity (up-regulation or down-regulation), which leads to changes in cognition. Lastly, brain stimulation is the induction of current, which causes direct changes 
in brain activity and a given cognitive phenomenon. Bottom row: Predominant inferences follow the top row’s specific method (grey arrows). Neuroimaging studies 
using a single sample are only correlative (purple arrows). Effects of EMG biofeedback studies can arise from the indirect training of brain activity (not used to 
provide feedback from). However, this activity is causing (blue arrows) a change in muscle activity and the cognitive phenomenon. Neurofeedback has two possible 
inferences. An indirect causal inference (similar to EMG biofeedback), where a certain brain activity (blue activity) not used to provide neurofeedback causes 
(potentially bidirectionally) changes in both the brain activity that is used to provide feedback (red activity) and in the cognitive phenomenon. Another option for 
neurofeedback is the direct causal inference, where the trained brain activity and the brain activity causing a change in the cognitive phenomenon are the same. 
Lastly, brain stimulation studies can dismiss the indirect causal inference because the brain activity is induced directly using an electro/magnetic current (although 
several other causal inference issues arise for brain stimulation; see ( Beliaeva et al. 2021 , Bergmann and Hartwigsen 2020 , Hobot et al. 2020 )). 
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he direct causal interpretation able to explain results from neurofeed-
ack studies (see Fig. 2 ). This does not mean that the neurofeedback
ethodology cannot provide evidence. We argue that evidence from
eurofeedback research can constrain the likelihood of causal hypothe-
es by showing that correlations between specific brain activity and cog-
itive phenomena are either spuriously or non-spuriously correlated. 

. Alpha band activity and attention 

One research topic where we will argue that neurofeedback evidence
as been misinterpreted as revealing direct causality is the relationship
etween oscillatory alpha-band activity and attention. Here, two MEG-
eurofeedback studies trained participants to lateralize alpha-band ac-
ivity while visuospatial attention was measured ( Bagherzadeh et al.,
020 ; Okazaki et al., 2015 ). Critically, because measures of attention
hanged following neurofeedback, both studies claim that alpha-band
ctivity plays a causal role in allocating attention (see Box 1 ). Unlike
rior studies, ( Bagherzadeh et al., 2020 ) did not cue participants with
timuli that directed their attention to the trained hemifield during neu-
ofeedback. Instead, participants fixated on a centrally presented grat-
ng stimulus and were instructed to use "mental effort" to enhance its
isibility during neurofeedback. Thus, unknown to the participants, the
eal-time measure of the asymmetry of alpha activity from their parietal
ortex (meaning more alpha activity in one parietal hemisphere than the
ther) was directly related to the visibility of the grating stimulus. An in-
erse control group was used, where the alpha asymmetry training was
5 
eversed (i.e., alpha was increased in the opposite hemisphere). As de-
reased alpha activity is hypothesized as an attentional mechanism that
nhances visual processing, the strength of visual evoked responses was
ssessed with a task-irrelevant probe stimulus (small gray dot) during
eurofeedback ( Jensen and Mazaheri, 2010 ; Noesselt et al., 2002 ). To
est if alpha neurofeedback produced changes in attention, the authors
mployed a Posner-paradigm to assess reaction time changes to visual
robes in either hemifield ( Posner, 1980 ). Consistent with the study’s
ypotheses, the results showed group-specific changes in the asymme-
ry of alpha activity that correlated with enhanced probe-related evoked
esponses during neurofeedback and with reaction time changes after
eurofeedback training. 

The authors claim that their results support the proposal that al-
ha synchrony plays a causal role in modulating attention and visual
rocessing. They claim that since the participants were only instructed
o alter their alpha activity using the feedback display, they can con-
lude that participants did not covertly shift their attention during neu-
ofeedback. The authors further provide eye-tracking measures to sub-
tantiate this claim; however, such overt measures of attention cannot
e used to disprove that covert attentional strategies were employed
 Gundlach and Forschack, 2020 ; Jones and Sliva, 2020 ). Covertly shift-
ng attention is a well-documented strategy to modulate alpha-band ac-
ivity often used in BCIs ( Jensen et al., 2011 ; Schneider et al., 2020 ;
reder et al., 2011 ). 

Although the study by Bagherzadeh et al. (2020) methodologically
epresents a state-of-the-art neurofeedback investigation, the claim that
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he results are sufficient to show that alpha activity causes visuospa-
ial attention is an overreached inference. It is plausible that partic-
pants simply employed attentional strategies caused by other brain
echanisms underlying attention. A recent line of research investigating
ow spatial attention is related to alpha activity and steady-state visual
voked responses (SSVEPs) found evidence that the two change inde-
endently of each other ( Antonov et al., 2020 ; Gundlach et al., 2020 ;
utteling et al., 2022 ; Keitel et al., 2019 ; Zhigalov and Jensen, 2020 ). In
ne study, changes in alpha-band activity appeared after behavioral and
europhysiological measures of attentional selection, such as hit rates
nd SSVEPs ( Antonov et al., 2020 ). Hence, these findings are consistent
ith the notion that alpha-band activity may not be a singular cause of

ncreased sensory responses and may instead be one of several contribut-
ng mechanisms subserving the attentional process ( Gundlach et al.,
020 ). A more likely interpretation is that alpha activity is part of the
ausal network involved in attention or alpha activity is rather a con-
istent product of attention, such that operant conditioning of alpha us-
ng neurofeedback leads indirectly to correlated changes in attention
 Ros et al., 2013 ). 

It’s important to stress that the relationship between alpha and at-
ention is an active area of research. It is thus still debatable whether
lpha indeed fulfils a causal role for attention. Brain stimulation-induced
lpha-band activity (e.g. ( Romei et al., 2010 ) establishes a clear causal
elationship between alpha oscillations and visual perception; however,
lpha oscillations might still only exert their influence at a later point
n visual processing and thus remain a product of multiple stages of at-
ention ( Schneider et al., 2021 ; Van Diepen et al., 2019 ; Zhigalov and
ensen, 2020 ). The objective of the present paper is not to argue whether
r not alpha causes attention or not (see ( Peylo et al., 2021 ) for a re-
iew). Instead, our goal is merely to state that preliminary neurofeed-
ack studies cannot conclusively confirm direct causal evidence when
he underlying neurophysiological mechanisms of the brain state being
egulated remain unclear ( Gundlach and Forschack, 2020 ; Jones and
liva, 2020 ). We argue that a more parsimonious interpretation is that
lpha neurofeedback studies that demonstrate behavioral effects pro-
ide evidence that alpha is part of the "causal network" involved in at-
ention (although potentially only indirectly) while not demonstrating
hat alpha is causally primary for attention. 

. rt-fMRI regulation of brain metabolism 

To further explain the concept of causal network, it is instructive to
escribe studies that aim to down-regulate amygdala activity using rt-
MRI neurofeedback. Emerging evidence points to the down-regulation
f amygdala activity as a potential treatment option for anxiety and af-
ective disorders ( Herwig et al., 2019 ). Here, neurofeedback studies gen-
rally find that down-regulation of amygdala activity is accompanied
y changes in other brain dynamics such as increased prefrontal activ-
ty and the increased connectivity between the prefrontal cortex and
he amygdala ( Brühl et al., 2014 ; Herwig et al., 2019 ; Nicholson et al.,
018 , 2017 ; Paret et al., 2018 , 2016 , 2014 ). Moreover, when prefrontal
ortex activity is up-regulated, it is accompanied by amygdala down-
egulation ( Sarkheil et al., 2015 ), and neurofeedback aimed at increas-
ng the connectivity between the two areas also reduces measures of
nxiety ( Zhao et al., 2019 ). Consequently, what characterizes the causal
nterpretations of these studies is that none of the authors claim that
ny particular brain activity or dynamic is the primary cause of anxi-
ty, but rather that each makes up individual nodes in a network that
ollectively causes anxiety. This should be seen in addition to the brain
reas involved in neurofeedback self-regulation per se ( Emmert et al.,
015 ; Ninaus et al., 2013 ; Sitaram et al., 2017 ). The inclination to in-
erpret the effects of neurofeedback in this manner may derive from
he well-established neurobiological model of affective disorders in-
olving a collection of brain regions ( Etkin et al., 2015 ; Herwig et al.,
019 ; LeDoux, 2000 ). We will argue that the inclination to infer that
he trained brain variable only indirectly affected the target cognitive
6 
unction should be the default causal interpretation following neuro-
eedback studies. This is in contrast to authors employing neurofeed-
ack approaches which do make direct causal claims from the trained
rain variable to the cognitive process ( Caria et al., 2010 ; Kawato, 2017 ;
rlov et al., 2018 ; Scharnowski et al., 2012 ; Shibata et al., 2019 ;
ang et al., 2021 ). 

Another question that arises is whether rt-fMRI neurofeedback can
ver uncover causal relations since it relies on the blood oxygena-
ion level-dependent (BOLD) signal, representing indirect vascular cou-
ling to neuronal activity ( Kim and Ogawa, 2012 ; Logothetis et al.,
001 ). Because of the immense complexity of biophysical, physiolog-
cal, and engineering procedures which generate the BOLD, it has been
iscussed whether there are brain changes that ultimately are not cap-
ured by fMRI ( Hillman, 2014 ; Kim and Ogawa, 2012 ; Logothetis, 2008 ;
agistretti and Allaman, 2015 ; Poldrack and Farah, 2015 ). Conse-

uently, our appeal to the indirect causal interpretation should be seen
n the light of both potential changes in upstream areas, the changes
n brain regions involved in self-regulation per se, and the undetected
europhysiological changes which are not captured by the employed
euroimaging modality. 

. Implicit MVPA approaches may hold an advantage 

A new trend in fMRI neurofeedback that might resolve causality
s afforded by employing multivariate pattern analysis (MVPA) or de-
oded brain responses ( Haxby et al., 2001 ; Haynes and Rees, 2005 ;
aConte et al., 2007 ; Shibata et al., 2011 ). The technique is also be-
ng developed in the electrophysiological domain ( Rana et al., 2020 ;
ay et al., 2015 ; Tuckute et al., 2021 ); however, rt-fMRI neuro-

eedback is currently the predominant form of MVPA neurofeedback
 Sitaram et al., 2017 ). Whereas most conventional rt-fMRI neurofeed-
ack studies aim to increase or decrease the average amplitudes of
he fMRI signal in a region of interest (ROI), a key feature of MVPA
eurofeedback is that a fine-grained multivariate and distributed pat-
ern of brain activations is used for training ( Shibata et al., 2019 ;

atanabe et al., 2017 ). The MVPA neurofeedback approach is thus ca-
able of finding, in a data-driven way, the multivariate brain activations
ost related to a given cognitive process. 

A further characteristic of investigations employing MVPA neuro-
eedback is that the participants are often not provided with an explicit
trategy to regulate their brain activity. Instead, the MVPA approach of-
en employs the neurofeedback training "implicitly," e.g., without pro-
iding participants with a strategy or informing them of the purpose of
he experiment ( Amano et al., 2016 ; Cortese et al., 2016 ; Koizumi et al.,
017 ; Oblak et al., 2017 ; Ramot and Martin, 2022 ; Shibata et al., 2016 ,
011 ; Taschereau-Dumouchel et al., 2018 ). In contrast to prescribing
n explicit strategy to participants, the implicit approach attempts to
void the possibility of the targeted neural activity being influenced by
eural activity related to meta-cognitive aspects like intention, explicit
trategy, and conscious effort ( Ninaus et al., 2013 ; Ros et al., 2014 ). 

Concerning the present issue of causal inference, the argument has
een made that implicit MVPA neurofeedback provides the ability to
nduce specific activities at the neuronal level, which are empirically
erived rather than defined a priori ( Shibata et al., 2019 ). The implicit
VPA approach thus attempts to limit the possibility that various cogni-

ive factors or physiological artefacts may also influence and change the
ognitive process ( Ramot and Martin, 2022 ). The implicit MVPA neuro-
eedback approach thus attempts to finds the sufficient neural dynamic
hat, when trained, leads to a change in the desired behavior, i.e., train-
ng this neural dynamic (X) and ensuring that another neural dynamic
Z) associated with conscious effort is not altered, thereby increasing
he confidence that intervening on X was sufficient for a change in the
ehavior, and not a change in Z ( Shibata et al., 2019 ). By limiting the
mount of cognitive processes involved, the argument is that the im-
licit neurofeedback approach also attempts to circumvent the issue of
otential compensatory regions being activated by explicit strategies.
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mplicit neurofeedback may also circumvent compensatory effects that
ould have been present and would have produced a false negative null
nding. 

The causal claim from implicit MVPA neurofeedback can become
tronger by showing that activity elsewhere in the brain is unrelated to
hanges in the induced activity. This can be done formally with an in-
ormation transmission analysis that ideally complements MVPA neuro-
eedback studies ( Taschereau-Dumouchel et al., 2020b ). An information
ransmission analysis can be used to conduct a whole-brain searchlight
nalysis that quantifies the degree to which activation patterns in other
rain areas can predict the likelihood of neurofeedback-induced activ-
ty. In a seminal paper, it was shown that induced activity was confined
o the trained area (e.g., V1/V2), except for brain responses involved
n reward processing (e.g., the striatum) ( Koizumi et al., 2017 ). More-
ver, it has been demonstrated that information transmitted from other
reas to the target area drops significantly when implicit neurofeed-
ack is performed (unconscious occurrence of target stimuli-induced
rain activity), compared with target presentation during decoder con-
truction (conscious occurrence of target stimuli-induced brain activity)
 Taschereau-Dumouchel et al., 2018 ). This provides evidence that im-
licit neurofeedback (e.g., neurofeedback without strategies) remains
ess affected by upstream regions than explicit neurofeedback. However,
t has also been recently found that implicit MVPA neurofeedback de-
ends on similar "network" effects among a collection of brain areas for
raining fear processing similar to conventional explicit neurofeedback
pproaches ( Taschereau-Dumouchel et al., 2020a ). 

Implicit MVPA neurofeedback is an exciting new frontier that cur-
ently provides the strongest evidence for specific causal relationships
etween brain activations and cognitive functions. However, the tech-
ique is not resistant to the argument that there are brain responses that
MRI does not capture. Moreover, the issue of conscious awareness of
he targeted cognitive function being trained during neurofeedback is
rguable only an issue if said cognitive function can be assumed to be
nfluenced by the awareness of the participant (e.g. similar to placebo
ffects in clinical neurofeedback studies). There is also debate about the
xtent to which implicit neurofeedback truly works in a completely im-
licit manner ( Kvamme et al., under review ; Muñoz-Moldes and Cleere-
ans, 2020 ; Ros et al., 2014 ). 

However, the larger issue facing MVPA and conventional neuro-
eedback is the finding that the patterns of brain activity under con-
rol changes dynamically during training. Therefore, the latest ad-
ances within MVPA-neurofeedback make use of decoding methods
hat dynamically adapt to the changing brain ( deBettencourt et al.,
015 ; Taschereau-Dumouchel et al., 2020a ; Taschereau-Dumouchel and
oy, 2020 ; Zhang et al., 2020 ). One consequence for causal inference

s that it also makes it difficult to say with absolute confidence which
rain dynamic(s), at any given time, is being regulated and its precise
europhysiological underpinnings ( Sitaram et al., 2017 ). 

. Overall perspectives 

This paper aimed to ask whether neurofeedback studies can derive
irect causal evidence from brain activity to cognitive processes. We
elieve that the opening argument to this discussion is that neurofeed-
ack can clarify whether a given brain dynamic is non-spuriously cor-
elated with a cognitive function and provide evidence only for indirect
ausality. In contrast, the assumption that neurofeedback can reveal di-
ect causality is inherently problematic. In other words, we question
hether, through successful manipulation of the targeted behavior, neu-

ofeedback is only ever capable of revealing that the targeted brain dy-
amic is merely part of a "causal network" causing the behavior without
t being causally primary for the behavior. The idea of a causal net-
ork is also similarly appropriate for lesion studies, where a lesion to a
articular area may have affected a hub region, which although it may
efine the network it may not be causally primary ( Siddiqi et al., 2022 ).
t could be the tacitly intended meaning in many of the papers we high-
7 
ight as performing a direct causal interpretation of causality. However,
e believe that raising this issue is important for other neuroscientific

esearchers who are not necessarily well-versed in this limitation. 
A question and perspective that arises from the line of inquiry in

his paper is; how simple or complex do our causal inferences need
o be in neuroscience? ( Dijkstra and de Bruin, 2016 ; Gundlach and
orschack, 2020 ). We suggest that the issue facing neurofeedback is
imilar to other interventional techniques, such as TMS, where un-
quivocal and direct causal evidence has also recently been questioned
 Beliaeva et al., 2021 ; Bergmann and Hartwigsen, 2020 ; Hobot et al.,
020 ). 

One might argue that given the vast complexity of brain dynam-
cs, which includes self-organization, non-linearity, degeneracy, redun-
ancy, and closed-feedback loops, it is theoretically impossible to estab-
ish clear-cut unidirectional causal relationships ( Kelso, 1995 ; Ros et al.,
014 ; Varela et al., 2001 ). We believe that although it is appealing to
ast the issue of causal inference off as too complex, it is nevertheless
ossible to create a framework for discussing and considering causal-
ty using the current variables available in neuroscience ( Dijkstra and
e Bruin, 2016 ; Weichwald et al., 2015 ; Weichwald and Peters, 2021 ).
n other words, we argue that it is possible to infer that emergent enti-
ies such as regional BOLD activity and oscillatory activity act as ca-
ual entities without making sense of the causality of the individual
6 billion neurons in the brain ( Herculano-Houzel, 2012 ). Moreover,
lthough the brain is a self-organizing system involving complex feed-
ack loops and circular causality, we still have to make sense of cir-
ular causality using notions of linear and "unidirectional" causation
 Dijkstra and de Bruin, 2016 ; Von Bertalanffy, 1967 ). To this end, we
ropose that evidence from neurofeedback studies cannot stand alone in
eriving causation but instead require multiple neuroscientific methods.
or instance, ( Grosse-Wentrup et al., 2016 ) provide an example of infer-
ing from TMS causality ( Chen et al., 2013 ) to neurofeedback causality
 Grosse-Wentrup and Schölkopf, 2014 ) and finally to causal modeling.
n short, no cognitive neuroscience method alone is perfect for deriv-
ng causality. A combination of methods is thus required such that the
imitations of one method are compensated by the strengths of another
 D’Esposito, 2013 ; Mehler and Kording, 2018 ; Siddiqi et al., 2022 ). The
urden of causality is thus present for all methods and causal frame-
orks. The central issues in neuroscience is mainly the assumption of

ausal sufficiency, whether all causally relevant variables have been ac-
ounted for, and the issue of meaningfully constructing causal entities
rom lower-level entities ( Bergmann and Hartwigsen, 2020 ; Dijkstra and
e Bruin, 2016 ; Grosse-Wentrup et al., 2016 ; Weichwald et al., 2015 ;
eichwald and Peters, 2021 ). 
Our central argument is that preliminary evidence from neurofeed-

ack studies has an additional issue regarding potential upstream brain
ctivities being concurrently affected along with the intended-to-be-
rained brain activity. Consequently, the value for causal inference that
reliminary neurofeedback research brings to neuroscience is that it can
e employed to arbitrate between spurious versus non-spurious corre-
ates. In this sense neurofeedback can provide stronger causal inferences
han traditional task-based neuroimaging thus transcending mere corre-
ations ( Siddiqi et al., 2022 ). When neurofeedback is used in addition
o exogenous brain stimulation, it can be used to confirm that a causal
ffect is also achievable using endogenous brain stimulation. This pa-
er is not meant to discourage researchers from pursuing investigations
hat employ the neurofeedback methodology. We argue that while it is
ften unclear how neurofeedback causally brings about the brain and
ognitive state changes, it still holds particular advantages compared to
ther methods. 

For instance, neurofeedback holds an unparalleled capacity to in-
uce endogenous brain activity. This is a particular disadvantage with
ther invasive and non-invasive brain stimulation methods because they
ay potentially induce exogenous brain activity at artificial and unnat-
ral levels than what is found under normal physiological conditions
 Bagherzadeh et al., 2020 ; Krakauer et al., 2017 ). The development of
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VPA-neurofeedback also holds a unique advantage compared to brain
timulation methods in being capable of affecting multiple brain areas
t once as well as the network connectivity between them ( Bauer et al.,
020 ; Koush et al., 2013 ; Scheinost et al., 2020 ; Watanabe est al., 2017 ).
e predict that the next decade of neurofeedback research will see a

reater emphasis on the training of multiple brain activation patterns
nd their concurrent connectivity (e.g., a greater multivariate focus).
or example, the recent advance in dual-modality EEG and fMRI neuro-
eedback holds an additional advantage in being able to target subcor-
ical neural substrates in a non-invasive manner ( Keynan et al., 2019 ,
016 ; Mano et al., 2017 ; Perronnet et al., 2017 ; Zotev et al., 2018 ). 

. Conclusion 

In sum, we argue that researchers only employing neurofeedback
s a methodology should reserve judgment about whether their results
an reveal direct causality from brain activity to a particular cognitive
tate. Plausible causal inferences in neuroscience arise from the use of
ultiple methods of inquiry, and preliminary neurofeedback methods

hould at least entertain the possibility of indirect causality. Neurofeed-
ack holds several other advantages than providing causal evidence, and
n overemphasis on causal inference may detract from the true potential
f neurofeedback. 
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