
R E S E A R CH A R T I C L E

Beyond broadband: Towards a spectral decomposition of
electroencephalography microstates

Victor Férat1 | Martin Seeber1 | Christoph M. Michel1,2 | Tomas Ros1,2

1Functional Brain Mapping Laboratory,

Department of Basic Neurosciences, Campus

Biotech, University of Geneva, Geneva,

Switzerland

2Centre for Biomedical Imaging (CIBM),

Lausanne-Geneva, Geneva, Switzerland

Correspondence

Victor Férat, Functional Brain Mapping

Laboratory, Department of Basic

Neurosciences, Campus Biotech, University of

Geneva, Geneva, Switzerland.

Email: victor.ferat@live.fr

Funding information

NCCR Synapsy, Grant/Award Number:

51NF40-185897; Swiss National Science

Foundation, Grant/Award Number:

320030_184677

Abstract

Originally applied to alpha oscillations in the 1970s, microstate (MS) analysis has

since been used to decompose mainly broadband electroencephalogram (EEG) signals

(e.g., 1–40 Hz). We hypothesised that MS decomposition within separate, narrow

frequency bands could provide more fine-grained information for capturing the

spatio-temporal complexity of multichannel EEG. In this study, using a large open-

access dataset (n = 203), we first filtered EEG recordings into four classical frequency

bands (delta, theta, alpha and beta) and thereafter compared their individual MS seg-

mentations using mutual information as well as traditional MS measures (e.g., mean

duration and time coverage). Firstly, we confirmed that MS topographies were spa-

tially equivalent across all frequencies, matching the canonical broadband maps (A, B,

C, D and C0). Interestingly, however, we observed strong informational independence

of MS temporal sequences between spectral bands, together with significant diver-

gence in traditional MS measures. For example, relative to broadband, alpha/beta

band dynamics displayed greater time coverage of maps A and B, while map D was

more prevalent in delta/theta bands. Moreover, using a frequency-specific MS taxon-

omy (e.g., ϴA and αC), we were able to predict the eyes-open versus eyes-closed

behavioural state significantly better using alpha-band MS features compared with

broadband ones (80 vs. 73% accuracy). Overall, our findings demonstrate the value

and validity of spectrally specific MS analyses, which may prove useful for identifying

new neural mechanisms in fundamental research and/or for biomarker discovery in

clinical populations.
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1 | INTRODUCTION

Multichannel electroencephalography (EEG) is a long-established tool

for exploring the human brain's spatio-temporal activities. Microstate

(MS) analysis (Michel & Koenig, 2018), first introduced by

Lehmann (1971), takes advantage of EEG's high temporal resolution

to segment EEG signals into short successive periods of time

characterised by metastable scalp topographies. Initially applied to

narrowband alpha oscillations (8–12 Hz)(Lehmann, 1971), MS analysis

is nowadays usually performed on broadband EEG signals (1–40 Hz)

(Michel & Koenig, 2018; Zanesco, King, Skwara, & Saron, 2020). His-

torically, only a limited number of studies (Javed, Croce, Zappasodi, &
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Del Gratta, 2019; Merrin, Meek, Floyd, & Enoch Callaway, 1990;

Musaeus et al., 2020) have focused on applying MS analysis to the tra-

ditional frequencies associated with cortical oscillations (e.g., delta,

theta, alpha, beta, etc.). For example, Merrin et al. (1990) were the first

to report on a significant difference in MS segments between schizo-

phrenic patients and controls specifically in the theta EEG band. On the

other hand, more recent work in healthy subjects found that MS

dynamics were independent of EEG power fluctuations across the fre-

quency spectrum (Britz, Van De Ville, & Michel, 2010), which techni-

cally supported the rationale for performing broadband MS analysis.

Neuroimaging studies have nevertheless emerged showing that ana-

tomically distinct cortical regions display different dominant EEG fre-

quencies, with occipitoparietal regions more active in the alpha band,

and prefrontal regions being biased more towards delta or theta power

(Groppe et al., 2013; Keitel & Gross, 2016; Mellem, Wohltjen, Gotts,

Ghuman, & Martin, 2017). Moreover, ongoing cortical dynamics have

been reported to fluctuate from a local resting/idling alpha oscillatory

state to task-specific active mode(s) dominated by other rhythms [e.-

g., theta (Ribary, Doesburg, & Ward, 2017) and gamma (Hipp, Engel, &

Siegel, 2011)]. As a consequence, cortical regions could combine differ-

ent frequencies for integrating/segregating information across large-

scale networks, a phenomenon termed ‘oscillatory multiplexing’
(Akam & Kullmann, 2014). Finally, of more clinical significance, a grow-

ing body of work has indicated abnormal EEG spectral power in distinct

frequencies across cortical regions in a variety of brain disorders (Ros,

Baars, Lanius, & Vuilleumier, 2014; Schulman et al., 2011). Therefore,

given that different spatial topographies uncovered by MS analysis

imply anatomically distinct cortical generators [according to the

forward-model of EEG generation (Michel & Koenig, 2018)], it is rea-

sonable to hypothesise that distinct MS topographies may display dif-

ferent spatial and/or temporal profiles across the frequency spectrum.

To investigate this question as well as gain a deeper understand-

ing of frequency-specific MS signature(s), we sought to explicitly

decompose MS spatio-temporal dynamics within discrete, narrowband

frequency bands (i.e., delta, theta, alpha and beta), with the aim of com-

paring them to the classical analysis of the broadband signal.

Here, we employed a validated, open-source dataset (Babayan

et al., 2019) of resting-state EEG recordings from 203 healthy subjects

during both eyes-open (EO) and eyes-closed (EC) conditions. These

were then filtered in the classical EEG bands (delta: 0–4 Hz, theta: 4–

8 Hz, alpha: 8–12 Hz and beta: 15–30 Hz) to obtain band-specific sig-

nals. These narrowband signals, in addition to the broadband (1–

30 Hz) signal, were then independently subjected to standard MS

analysis (Pascual-Marqui, Michel, & Lehmann, 1995). Map topography,

mean duration (MeanDurs), occurrence, time coverage (TimeCov) and

global explained variance (GEV) were used as quantitative measures

of spatio-temporal MS dynamics. In summary, and using spatial corre-

lation analysis, we firstly demonstrate remarkably similar MS topogra-

phies across frequencies, closely matching the classical broadband

maps. Interestingly, however, we observed strong informational inde-

pendence of MS sequences between frequencies, in addition to signif-

icant differences in established measures of temporal dynamics

(MeanDurs, occurrence and TimeCov).

In conclusion, our results support a more diverse, frequency-

specific application of MS analysis compatible with the narrowband

MS analyses of early pioneers (Lehmann, 1971; Merrin et al., 1990).

We anticipate this approach to provide a more fine-grained spectral

information not visible to the standard broadband analysis, for exam-

ple, in the identification of biomarkers in clinical populations or for

understanding the mechanisms underlying EEG MSs.

2 | METHODS

2.1 | Dataset

EEG recordings were obtained from 203 anonymized participants enrolled

in the Mind-Brain-Body study (Babayan et al., 2019). Detailed protocol

and inclusion criteria are reported in the literature (Babayan et al., 2019).

The overall sample consisted of 227 participants divided into two groups:

the younger adults group with participant age ranging between 20 and

35 years (N = 153, 45 females, mean age = 25.1 years and SD = 3.1) and

an older adults group with age ranging between 59 and 77 years (N = 74,

37 females, mean age= 67.6 years and SD= 4.7). Medical and psycholog-

ical screening was conducted on all participants at the Day Clinic for Cog-

nitive Neurology of the University Clinic Leipzig and the Max Planck

Institute for Human and Cognitive and Brain Sciences to include only

healthy patients. The study protocol was approved by the ethics commit-

tee of the University of Leipzig (reference 154/13-ff). Data were obtained

in accordance with the Declaration of Helsinki.

2.2 | Recordings

Resting-state EEGs were recorded using 61 scalp electrodes (ActiCAP,

Brain Products GmbH, Gilching, Germany), and one additional vertical

electrooculography electrode for recording right eye activity. All electrodes

were placed according to the international standard 10–20 extended local-

ization system with FCz reference, digitised with a sampling frequency of

fs= 2500 Hz, and an amplitude resolution of 0.1 microV, and bandpass fil-

tered between 0.015 Hz and 1 kHz. The ground was located at the ster-

num, and scalp electrode impedance was kept below 5 kΩ. Recordings

took place in an electrically shielded and sound-attenuated EEG booth.

Here, 60s blocks alternated between EO and EC conditions for a total

recording of 16 min (eight blocks EC, eight blocks EO, starting with EC).

During the EO condition, participants were asked to stay awake while fix-

ating their eyes on a black cross presented on a white background.

2.3 | Preprocessing

The preprocessing steps are extensively described in the literature

(Babayan et al., 2019), which we summarise below. All EEG recordings

were down-sampled from 2500 to 250 Hz and filtered between 1 and

45 Hz (eighth order, Butterworth filter). Blocks sharing the same con-

dition were concatenated leading to the creation of two datasets per
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subject. After visual inspection, outlying channels were rejected and

EEG segments presenting noise and/or artefacts were removed

(except eye movements and eye blinks that were kept for further pre-

possessing). Principal component analysis was used to reduce data

dimensionality, by keeping PCs (N ≥ 30) that explain 95% of the total

data variance. Then, independent component analysis (ICA) was per-

formed using the Infomax (runica) algorithm. Retained independent

components for EO (mean: 19.7, range: 9–30) and EC (mean: 21.4,

range: 14–28). Components reflecting eye movement, eye blink, or

heartbeat related artefacts were removed.

Before performing MS analysis, the following additional prepos-

sessing steps were conducted using MNE-python (Gramfort

et al., 2013): missing/bad channels were interpolated using spherical

spline interpolation, the reference was re-projected to average, and

recordings were down-sampled to 100 Hz. Finally, each recording was

filtered into broadband plus the five traditional EEG frequency bands:

broadband (1–30 Hz), delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz)

and beta (15–30 Hz). Filter design consisted of a two-pass forward

and reverse, zero-phase, non-causal bandpass finite-impulse response

filter with the following parameters.

• Broadband (1–30 Hz): Lower passband edge: 1.00; lower transition

bandwidth: 1.00 Hz (�12 dB cut-off frequency: 0.50 Hz); upper

passband edge: 30.00 Hz; upper transition bandwidth: 7.50 Hz

(�12 dB cut-off frequency: 33.75 Hz); filter length: 331 samples

(3.310 s).

• Delta (1–4 Hz): Lower passband edge: 1.00; lower transition band-

width: 1.00 Hz (�12 dB cut-off frequency: 0.50 Hz); upper pass-

band edge: 4.00 Hz; upper transition bandwidth: 2.00 Hz (�12 dB

cut-off frequency: 5.00 Hz); filter length: 331 samples (3.310 s).

• Theta (4–8 Hz): Lower passband edge: 4.00; lower transition band-

width: 2.00 Hz (�12 dB cut-off frequency: 3.00 Hz); upper pass-

band edge: 8.00 Hz; upper transition bandwidth: 2.00 Hz (�12 dB

cut-off frequency: 9.00 Hz); filter length: 165 samples (1.650 s).

• Alpha (8–12 Hz): Lower passband edge: 8.00; lower transition band-

width: 2.00 Hz (�12 dB cut-off frequency: 7.00 Hz); upper pass-

band edge: 12.00 Hz; upper transition bandwidth: 3.00 Hz (�12 dB

cut-off frequency: 13.50 Hz); filter length: 165 samples (1.650 s).

• Beta (15–30 Hz): Lower passband edge: 15.00; lower transition band-

width: 3.75 Hz (�12 dB cut-off frequency: 13.12 Hz); upper pass-

band edge: 30.00 Hz; upper transition bandwidth: 7.50 Hz (�12 dB

cut-off frequency: 33.75 Hz); filter length: 89 samples (0.890 s).

For all filters, a Hamming window with 0.0194 passband ripple and

53-dB stopband attenuation was used to reduce border effects.

2.4 | MS segmentation

2.4.1 | Segmentation

MS segmentation was applied to each combination (case) of fre-

quency band (broadband, delta, theta, alpha and beta) � behavioural

condition (EO, EC) leading to the computation of optimal clusters

using the methodology described below.

The first step (Figure S1—Step 1) consisted in computing within

each case and for each individual, 20 clusters (each composed of

k centroids (1 ≤ k ≤ 12). For this purpose, local maxima of the global

field power (GFP) known to represent the portions of EEG data

with highest signal-to-noise ratio (Koenig & Brandeis, 2016) were

extracted from each individual recording. Twenty random subsam-

ples each composed of 500 of those GFP peaks were indepen-

dently submitted to a modified k-means cluster analysis using the

free academic software Cartool (Brunet, Murray, & Michel, 2011).

This k-means clustering algorithm is modified to change the way

the similarity between samples is calculated, using the absolute

spatial correlation instead of the more traditional Euclidean defini-

tion to extract spatial patterns that are invariant to polarity. The

clustering process consisted of evaluating independently for each

number of centroids k ranging from 1 to 12, 50 random

initialisations of the modified k-means algorithm. For each number

of centroids k, initialisation with highest GEV was selected and kept

for further processing. Finally, a meta-criterion (Bréchet

et al., 2019) was used to choose the optimal number of centroids

among all possible value of k. At the end of this process, each indi-

vidual recording had for each case (combination of filter

parameters � behavioural condition) a set of 20 optimal clusters

each composed of k centroids.

The second step (Figure S1—Step 2) of the processing consisted

of merging individual optimal clusters within each case to form 10 set

each composed of 4,060 individuals set of k centroids. Each set was

then randomly resampled into 100 random subsets each composed of

5,000 centroids and submitted to the modified k-means algorithm

(50 initialisations, with meta criterion selection), leading to the extrac-

tion of 100 optimal set of centroids per case. Finally, the last step of

the processing consisted of merging these 100 sets and submit them

to the modified k-means clustering algorithm to extract, for each num-

ber of all values of k between 1 and 12, a set of k centroids which best

represent the spatio-temporal variance of frequency-specific EEG

data within each condition.

2.4.2 | Selection of ‘common’ MS maps

Given that we found high spatial correlations between MS maps

across all frequencies and EO/EC conditions, we fitted the broadband

maps directly to all the frequency bands to have a common reference.

This may be considered a heuristic approach for the sake of simplicity.

An alternative approach we explored was to perform subject-level

(i.e., first level) clustering on all data concatenated within-subject

(across frequencies and/or conditions), followed by group-level

(i.e., second-level) clustering. We found this to once again produce

identical maps to the broadband decomposition. This method could

theoretically be used to find the most ‘common’ clusters across differ-
ent datasets, in the case of variable k-means outputs (e.g., visually sim-

ilar MS maps at different k-values). Since it is beyond the scope of this
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article, we leave it to future studies to validate this method more

rigorously.

2.4.3 | Back-fitting of MS maps

The common topographic maps selected above were then assigned to

every time point from all individual recordings using the traditional

MS back-fitting method (Van De Ville, Britz, & Michel, 2010). First,

the spatial correlation was computed between every time point and

map. Using the so-called ‘winner takes all’ algorithm, each time point

was labelled according to the map with which it shared the highest

absolute spatial correlation. Time points were labelled as ‘non-
assigned’ when the absolute spatial correlation was below r < .5

threshold. To ensure temporal continuity of MS segmentation, a

smoothing step (Brunet et al., 2011; Pascual-Marqui et al., 1995) was

applied. Finally, segments with duration shorter than three samples

(30 ms) were assigned to neighbouring segments using the following

rule: the segment was split into two parts, where each part was

assigned to the neighbouring segment with the higher spatial correla-

tion. With back-fitting completed, we extracted three spatio-temporal

parameters for each MS map, namely:

• GEV described as the sum of variances of the original recording

explained by the considered MS map weighted by the GFP at each

moment in time. Units are percentages (%) between 0 and 1.

• MeanDurs defined as the mean temporal duration of segments

assigned to each MS map. Units are in seconds (s).

• TimeCov is the ratio of time frames assigned to each MS map rela-

tive to the total number of time frames from the recording. Units

are percentages (%).

2.5 | Adjusted mutual information score

Scikit-learn (Pedregosa et al., 2011) implementation of the adjusted

mutual information score (AMI) (Vinh, Epps, & Bailey, 2010) was used

to quantify the mutual information (MI) shared between different MS

temporal segmentations, while simultaneously accounting for random

overlap due to chance. This metric, bounded between 0 and 1, is used

to evaluate the statistical (in)dependence of two variables. In our case,

AMI is estimated between the symbolic sequences of two different

MS segmentations (e.g., ABDCADB vs. ABDBDAC). A high score

(approaching 1) indicates that the two segmentations agree on the

temporal order of all labels while a low score (approaching 0) indicates

that the segmentations' labels are not temporally aligned. We selected

the corrected version of this metric to control for the impact of differ-

ences in label distribution due to chance (e.g., differences in overall

TimeCov between labels). Time points assigned as ‘unlabelled’ in at

least one of the two studied segmentations were ignored. Compari-

sons with more than 20% of total unlabelled time points were

excluded from this analysis.

2.6 | Frequency profiles of MS time courses

In an effort to further explore MS spectral signatures, the topogra-

phy of each MS map was used as a spatial filter to compute instanta-

neous ‘microstate map time courses’. More specifically, for each MS,

spatially filtered signals were computed by multiplying the multi-

channel EEG time series by the MS map electrode weights using the

dot product, resulting in a one-dimensional time series. Then, the rel-

ative power spectral density (PSD) of each MS time series was com-

puted using Welch's method for frequencies ranging from

1 to 30 Hz.

2.7 | Statistics

Statistical analyses were performed on the three main spatio-temporal

parameters (GEV, MeanDurs and TimeCov). Tests were conducted

using a two-sided permutation test for equality of means on paired

samples (same subject, between condition, either between frequen-

cies) under the H0 hypothesis that both frequencies (i.e., condition)

share the same mean against the alternative H1 that the distributions

come from two different populations. The p-values were estimated by

simulated random sampling with 10,000 replications. As many statisti-

cal tests were carried out without specific pre-planned hypotheses

(Armstrong, 2014), p-values were corrected for multiple comparisons

using the Bonferroni method. Corrected p-values are reported in

Section 4. Effect sizes are reported as the standardised difference of

means using Cohen's d (d).

2.8 | Neurobehavioural prediction models

2.8.1 | Model

Linear support vector classification with ‘l2’ norm penalization and

squared hinge loss function were used to discriminate EO versus EC

states using MS parameters pertaining to broad- and narrowband EEG

activity. Models were trained using 15 frequency-specific features

corresponding to the three spatio-temporal MS metrics (GEV, Mean-

Durs and TimeCov) of each map (A, B, C, D and C0) of a given fre-

quency. Band-specific prediction models were fitted with

standardised features (after removing their respective mean and scal-

ing them to unit variance).

2.8.2 | Evaluation

As suggested by Bouckaer (2003), 10 times repeated 10-folds cross-

validation tests were used to assess classification results. For each of

the 100 runs, ninefold of 20 subject's features each were used to train

the model while onefold of 20 subject's features was used to evaluate

the three diagnostic metrics:
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• Accuracy defined as number of the number of correctly predicted

samples out of all the testing Set.

• The receiver operating characteristic (ROC)which is a plot of true posi-

tive rate as a function of the false positive rate. It is used to illustrate

the classification trade-off for different discrimination thresholds.

• Area under the curve (AUC) defined as the area under the receiver-

operating characteristic (ROC) curve: it is an aggregate measure of

performance for all possible classification thresholds. AUC values

are in the range of 0–1. A model with 100% error in its predictions

has an AUC of 0.0. If all its predictions are correct, its AUC is 1.0.

Ninety-five percentage confidence intervals were evaluated on each

of the three metric distributions with 10 degrees of freedom.

Statistical comparison between models was conducted on both

accuracy and AUC using a two-tailed permutation test for equality of

means on paired samples under the H1 hypothesis that the alpha-

band (8–12 Hz) MS measures had a greater mean classification rate

than the broadband (1–30 Hz) MS measures. The p-values were esti-

mated by simulated random sampling with 10,000 replications.

3 | RESULTS

3.1 | Spatial similarity of MS maps

Figure 1 illustrates the topographic results of MS segmentations in

the different conditions and frequency bands. After visual inspection

of optimal clusters at different cluster numbers (k), we identified that

a value of k = 5 revealed five MS topographies that were similar

across all EEG bands and behavioural conditions, consistent with

recent findings from our laboratory (Bréchet et al., 2019; Bréchet,

Brunet, Perogamvros, Tononi, & Michel, 2020; D'Croz-Baron, Baker,

Michel, & Karp, 2019). MS maps were designated in line with the

canonical prototypes from the literature and their respective symbols,

featuring a left–right orientation (A), a right–left orientation (B), an

anterior–posterior orientation (C), fronto-central maximum (D) and

occipito-central (C0) maximum.

Given the additional frequency dimension, we labelled the MS

maps firstly according to the Greek letters traditionally used for nar-

rowband EEG (i.e., δ, θ, α and β) and then the Latin alphabet for the

canonical map symbols (i.e., A, B, C and D). For example, αA denoted

the left–right diagonal map from the alpha-band (α) segmentation, and

δC the anterior–posterior map from the delta band (δ) segmentation.

The broadband segmentation was designated with the prefix ‘bb’.
As shown in Figure 2, when comparing topographies between

broadband and each narrowband (i.e., the diagonal entries in the cor-

relation matrix), all spatial correlations were r > .98. Consequently, we

fitted the broadband maps directly to all the frequency bands to have

a common reference.

We similarly observed common MS maps when comparing broad-

band topographies between EO and EC conditions (Figure S2), with all

intraclass spatial correlations exceeding r > .98, thus providing justifi-

cation for comparing MS parameters between behavioural conditions

while fitting condition-specific broadband maps.

3.2 | MI of MS sequences

Briefly, AMI is an index of how similar two separate MS segmenta-

tions are, by estimating the degree of shared information (i.e., the

number of time points assigned with the same MS) between their

symbolic sequences (e.g., ABCD vs. ABDA). The ‘adjusted’ aspect

F IGURE 1 Spatial correlation between microstate (MS) topographies across behavioural conditions. Global cluster centroids of each
frequency band within eyes-open (EO) or eyes-closed (EC) condition. Note that map polarity inversion is ignored in the classical analysis of
spontaneous electroencephalography (EEG)
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ensures that the measure is unbiased for symbolic overlap(s) due to

chance (Vinh et al., 2010). Higher AMI (approaching 1) indicates nearly

identical MS temporal sequences, while lower AMI (approaching 0)

indicates temporally independent sequences (i.e., low overlap).

As shown in Figures 3, the AMI between broadband and narrow-

band segmentations in the EO condition showed a value of s = 0.09

for delta, s = 0.05 for theta, s = 0.07 for alpha and s = 0.02 for beta.

These values are surprisingly low, and we can conclude that the

broadband segmentation is comparatively independent of the narrow-

band one. Similar conclusions of temporal independence can be made

by examining the AMI between the narrowbands themselves, with a

maximum AMI value between theta and alpha bands (EO: s = 0.008,

EC: s = 0.01), and a minimum AMI value of s = 0.002 for non-adjacent

EEG bands (delta-alpha, delta-beta and theta-beta).

As a sanity check, when inspecting the EO versus EC transition,

the shared information with broadband decreased for the delta band

(s = 0.03) but increased for the alpha band (s = 0.15). The latter is in

line with expectations, as alpha oscillations are known to increase

considerably during eye closure, which would amplify their contribu-

tion to the broadband signal and consequently their shared dynamics.

3.3 | Between-frequency comparison of classical
MS measures

Here, we tested for significant differences between broadband and

narrowband filtered EEG in the classical MS measures: GEV, TimeCov

and MeanDurs. This was done by conducting paired t-tests between

broadband (bb) and respective narrowband (delta to beta) MS mea-

sures across all n = 203 subjects. For each MS measure and MS map,

results were visualised using heat-plots as the narrowband absolute

difference from the broadband mean value. Here, a red/blue back-

ground indicated significant positive/negative differences at p < .05,

while a white colour indicated non-significant differences at p > .05.

Exact p-values and effect sizes are reported in Table S2 and Figure S3

of the Supplementary Results.

3.3.1 | Global explained variance

Figure 4 illustrates the percentage differences in GEV between each

narrowband versus broadband, demonstrating the presence of spe-

cific ‘fingerprints’ between frequencies (rows) or MS maps (columns),

MS segmentation of delta band activity showed significantly higher

GEV across most MS maps in both EO (+16%) and EC (+16%) condi-

tions, compared to the broadband segmentation. A similar but less

pronounced effect was found for the theta segmentation, suggesting

that low-frequency EEG fluctuations in the 1–8 Hz (delta-theta) range

may be accounted for more parsimoniously using the five canonical

MS maps than 1–30 Hz (broadband) activity.

The profile of the alpha-band segmentation depended on behav-

ioural condition. During EC, MS C had significantly increased GEV

(+12%) relative to broadband, indicating that distinct MS topogra-

phies have stronger behavioural specificity at narrowband frequencies

F IGURE 2 Spatial correlation between microstate (MS) topographies across frequencies. Spatial correlation of cluster centres of each sub-
frequency bands compared to broadband for eyes-open (EO) and eyes-closed (EC) condition

6 F�ERAT ET AL.



F IGURE 3 Adjusted mutual
information of microstate
(MS) symbolic sequences.
(a) Mean adjusted mutual
information (AMI) is depicted, for
each behavioural condition (EC,
eyes-closed; EO, eyes-open)
across n = 203 subjects. (b) Mean
adjusted mutual information of

MS symbolic sequences between
all broadband and narrowband
combinations. Mean (n = 203
subjects) AMI for all frequency
pairs

F IGURE 4 Microstate (MS) map differences in global explained variance (GEV) between broadband and narrowband filtered
electroencephalography (EEG), for eyes-open (EO) and eyes-closed (EC) conditions. The first row (in grey) represents the mean GEV of the
broadband segmentation. Coloured rows represent the mean GEV difference between the narrowband (δ, ϴ, α and β) and broadband
segmentations, for each MS (A–C0). Significant differences have red/blue backgrounds, while non-significant ones have a white/grey background
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(see section Statistical classification of EO versus EC behavioural states).

Conversely, during EO, MSs A (+2%) and B (+4%), expressed signifi-

cantly more GEV compared to broadband.

Conversely, or the beta band, GEV was significantly greater than

broadband for maps A (EO: +2%, EC+3%) and B (EO: +2%, EC: +2%)

while it was significantly reduced for maps D (EO: �2%, EC: �1%) and

C0 (EO: �3%, EC: �3%). MS C explained less variance compared to

broadband, but the comparison was significant only for EC (�2%).

3.3.2 | Time coverage

During MS segmentation, each time point is assigned to only one of

the five canonical MS topographies through a winner-takes-all pro-

cess (i.e., the map with the highest spatial correlation with that time

point wins). TimeCov refers to the average prevalence of each MS

map over the whole EEG recording (Figure 5), expressed as a percent-

age (i.e., number of time points assigned to a particular MS map

divided by the total number of time points).

Comparing the delta band segmentation to broadband, TimeCov

was reduced for maps A (EO: �3%, EC: �0%), B (EO: �2%, EC: ns)

and C (EO: 5%, EC: �6%), while it was increased for maps D (EO:

+5%, EC: +4%) and C0 (EO: +4, EC: +2%).

Small differences were generally observed between theta and

broadband MS distributions, with the notable exception of a signifi-

cant increase in map D (EO: +5%, EC: +7%) and decrease in map C

(EO: �2%, EC: �4%), consistently found across behavioural states.

For the alpha band, TimeCov was particularly greater than broadband

for maps A (EO: +2%, EC: ns) and B (EO: +4%, EC: +1%).

Finally, comparing the beta band to broadband, TimeCov was

increased for maps A (EO: +4%, EC: +5%, p < .05), B (EO: +4%, EC:

+4%, p < .05), while it was reduced for maps D (EO: �4%, EC: �2%,

p < .05) and C0 (EO: �6%, EC: �6%, p < .05).

3.3.3 | Mean duration

While analysing MS MeanDurs (Figure 6) we first observed that MS were

significantly shorter in delta than broadband across all maps: map A (EO:

�14 ms, EC: �13 ms), map B (EO: �14 ms, EC: �14 ms), map C(EO:

�15 ms, EC: �17 ms, map D (EO: �7 ms, EC: �8 ms) and map C0 (EO:

�8 ms, EC: �11 ms).On the contrary theta segments were significantly

longer than broadband ones for map A (EO: +6 ms, EC: +11 ms), map B

(EO: +6 ms, EC: +11 ms) and map D (EO: �7 ms, EC: �8 ms). Similar but

non-significant increases were also observed for maps C and C0.

Notably, all MS maps had significantly increased duration in alpha

band compared to broadband: map A (EO: +57 ms, EC: +70 ms), map

B (EO: +62 ms, EC: +70 ms), map C (EO: +71 ms, EC: +150 ms), map

D (EO: +42 ms, EC: +72 ms) and map C0 (EO: +57 ms, EC: +63 ms).

Less pronounced and less consistent differences were found for

the beta band, which revealed a single significant increase of map A

duration in the EC condition (EO: ns, EC: +9 ms).

3.4 | Within-frequency comparison of classical MS
measures during EO versus EC

Here, we directly compared EO versus EC conditions within each fre-

quency band, and only relevant cases where narrowband measures

were salient compared to the broadband analysis are reported

(Figure 7). Full results are documented in Table S3 and Figure S4 of

the Supplementary Results.

F IGURE 5 Microstate (MS) map differences in time coverage (TimeCov) between broadband and narrowband filtered
electroencephalography (EEG), for eyes-open (EO) and eyes-closed (EC) conditions. The first row (in grey) represents the mean TimeCov of the
broadband segmentation. Coloured rows represent the mean TimeCov difference between the narrowband (δ, ϴ, α and β) and broadband
segmentations, for each MS (A–C0). Significant differences have red/blue backgrounds, while non-significant ones have a white/grey background
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3.4.1 | Global explained variance

Across frequencies, map C0 explained more variance during EC than

during EO for all bands (bb: d = 0.59, p < .05; δ: d = 0.43, p < .05; θ:

d = 0.35, p < .05; α: d = 0.35, p < .05; β: d = 0.67, ns) while map D

expressed less variance(bb: d = �0.14, ns; δ: d = �0.07, ns; θ:

d = �0.29, p < .05; α: d = �0.42, p < .05; β d = �0.73, p < .05). In

contrast, the other MS maps had band-specific modulations: during

EC map C explained relatively less variance in alpha (d = �1.0,

p < .05) and broadband (d = �0.7, p < .5), but expressed more vari-

ance in delta (d = 0.20, p < .05) and beta (d = 0.21, p < .05). In addi-

tion, statistically significant effects were detected in the narrowbands

which were not evident in the broadband. For example, the GEV of

map B decreased from EC to EO (d = �0.31, p < .05) in the beta band

while no significant effect was found in broadband for this map.

3.4.2 | Time coverage

Map C was relatively more prevalent in EC versus EO in alpha

(d = �0.71, p < .05) and broadband (d = �0.48, p < .05), but the

effect size was significantly stronger in the alpha band. In contrast,

the opposite effect was observed in delta (d = 0.22, p < .05) and beta

(d = 0.42, p < .05) bands, which showed increased coverage of map C

during EO compared to EC. Diverging effects of TimeCov in narrow

bands compared to broadband appeared across a number of MS maps

and frequency bands, during the EO versus EC transition: βA—where

TimeCov decreased prevalence (d = �0.20, p < .05), bbA and βC—

TimeCov increased, respectively (d = 0.23, p < .05) and (d = 0.21,

p < .05), while bbC TimeCov decreased (d = �0.71, p < .05). While

non-significant differences between EO and EC conditions were

found for bbB coverage, βB (d = �0.17, p < .05) and ϴB (d = �0.35,

p < .05) were significantly increased in the EC condition while αB

(d = 0.57, p < .05) was decreased.

Overall, the EO versus EC comparison revealed significant differ-

ences between the broadband and narrowband segmentations, which

were frequently map- and/or band-specific.

3.5 | Power spectral density (PSD) of MS time
courses

Here, we first obtained MS-specific time courses by spatial filtering

(see Section 2). Then, the relative power spectral density (PSD) of

each MS time course was calculated to compare the distribution of

(percent) power of each MS across different frequency bands. As

shown in Figure 8, we observed varying spectral signatures across MS

time courses. Of note, under the EO condition, MS D exhibited

greater relative power in the theta band than the other maps (A:

d = 0.6; B: d = 0.7; C: d = 0.6; C0: d = 0.9, all p < .05). This is compati-

ble with its relatively increased GEV or TimeCov in the theta band

compared to broadband (see Figures 4 and 5).

3.6 | Statistical classification of EO versus EC
behavioural states

As a proof of concept, we tested the applicability of band-specific

MSs in the context of behavioural prediction, that is, the binary dis-

crimination of EO versus EC states using machine learning. Leveraging

the well-known effect of alpha-band modulation during eye opening/

closure (Barry, Clarke, Johnstone, Magee, & Rushby, 2007) we

F IGURE 6 Microstate (MS) map differences in mean duration (MeanDurs) between broadband and narrowband filtered
electroencephalography (EEG), for eyes-open (EO) and eyes-closed (EC) conditions. The first row (in grey) represents the mean MeanDurs of the
broadband segmentation. Coloured rows represent the mean MeanDurs difference between the narrowband (δ, ϴ, α and β) and broadband
segmentations, for each MS (A–C0). Significant differences have red/blue backgrounds, while non-significant ones have a white/grey background
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hypothesised that alpha-band-specific MS parameters would be stron-

ger and more specific predictors of the EO/EC transition than those

derived from the broadband segmentation. As we did not have any

MS map-specific hypotheses, we selected as features the basic set of

classical MS measures from our study: 5 maps (A, B, C, D and C0) � 3

variables (GEV, TimeCov and MeanDurs). Then, using these 15 fea-

tures, we applied a linear support vector machine (SVM) to classify EO

versus EC recordings across all 203 subjects, separately for alpha-

band and broadband models.

Following 10-fold cross-validation, we observed higher accuracy

(i.e., sensitivity) for the SVM model tested with alpha-band MS param-

eters (80 ± 5%) than the one tested with broadband MS parameters

(73 ± 6%). The superiority of the alpha-band model was reinforced by

a separate analysis of the AUC of the ROC, which also incorporates

the false positive rate (i.e., specificity) (Figure 9). Here, alpha-band

(AUC: 87 ± 5%) outperformed broadband (77 ± 7%) by a full 10%.

Finally, these differences were statistically significant for both accu-

racy (Cohen's d = 1.75, p < .001) and AUC (Cohen's d = 1.28,

F IGURE 7 EO versus EC comparison using frequency-specific microstate (MS) parameters. (a) Mean global explained variance (GEV, %), and
(b) mean time coverage (time coverage, %) for each MS (A–C0) within each frequency band (broadband, delta, theta, alpha and beta) for both eyes-
closed condition (EC, blue) and eyes-open condition (EO, red). Significance values are indicated from paired permutation test on mean between

conditions: no asterisk: .05 > p, *p < .05, *colour indicates the condition with highest value
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p < .001) demonstrating that a narrowband MS segmentation may

provide higher sensitivity/specificity in differentiating behavioural

state relative to a broadband one.

4 | DISCUSSION

Historically, the first MS analysis was applied by Lehmann and col-

leagues to narrowband alpha oscillations (Lehmann, 1971), yet this

‘frequency-specific’ approach appears to have been overlooked

during the last decades of MS research in favour of decomposing

broadband EEG signals (e.g., 2–40 Hz) (Michel & Koenig, 2018;

Pascual-Marqui et al., 1995). Hence, the present study specifically

explored the MS characteristics of narrowband EEG signals, their

quantitative interrelationship, and whether they provide any novel

information compared to their aggregate (i.e., broadband dynamics).

This was done by simply filtering the broadband EEG signal into

separate narrowband frequencies (delta, theta, alpha and beta),

with the goal of comparing MS maps, symbolic sequences and clas-

sical measures (explained variance, MeanDurs and TimeCov)

between each other, as well as across different behavioural condi-

tions (EO vs. EC).

4.1 | The spatial dimension: MS topographies

We first investigated whether analogous MS scalp topographies

would be produced by segmenting broadband versus narrowband

EEG signals [including the alpha band (Milz, Pascual-Marqui,

Achermann, Kochi, & Faber, 2017)]. Interestingly, we observed highly

similar MS topographies (with minimum spatial correlations of r > .98)

across all investigated broad- and narrowband frequencies (broad-

band, delta to beta), as well as between EO/EC conditions. This is

compatible with studies of dipolar EEG generators, identified using

ICA (Delorme, Palmer, Onton, Oostenveld, & Makeig, 2012), which

are spatially fixed and known to simultaneously produce a spectrum

of frequencies (e.g., the posterior cortex is known to generate both

alpha and beta rhythms). These same generators would contain a mix-

ture of oscillatory activities (rhythmic frequency ‘peaks’) as well as a

background of 1/f distributed broadband aperiodic (Donoghue

F IGURE 8 (a) Electroencephalography (EEG) relative power spectral densities of microstate (MS) time courses in EO and EC conditions. Solid
lines represent mean value across subjects (n = 203); shaded areas represent 95% confidence intervals. Traditional frequency bands: delta
(orange, 1–4 Hz), theta (green, 4–8 Hz), alpha (blue, 8–12 Hz) and beta (red, 15–30 Hz) are highlighted on the x-axis. (b) Differences of effect size
(Cohen's d) between the relative spectral powers of each spatially filtered MS time course, within each frequency band. Positive/negative
differences represent the column–row variable subtraction. Bonferroni-corrected significant differences have red/blue backgrounds, while non-
significant ones have a white/grey background
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et al., 2020), which could explain the generation of a range of differ-

ence frequencies by the same anatomical region(s) (i.e., MS maps).

This is supported by recent work from Brechet and colleagues

(Bréchet et al., 2020), who observed that states of sleep and wake

exhibited significantly different spectral content (e.g., delta vs. beta

power) but very similar MS maps. Secondly, maps derived in our ana-

lyses corresponded closely to the canonical (broadband) topographies

previously described in the literature (Custo et al., 2017; Michel &

Koenig, 2018). It may be therefore tempting to conclude that identical

neuronal sources are involved in generating the same topographies

across frequencies. However, technically speaking, although different

maps imply different generators (forward problem), same topogra-

phies do not necessarily imply identical generators (inverse problem).

Due to the ill-posed nature of EEG signals (constructive and destruc-

tive electromagnetic fields), similar scalp potentials can still be gener-

ated by different underlying brain mechanisms (von Helmholtz, 1853).

Hence, although we cannot unequivocally conclude that MS maps

across the EEG spectrum are generated by the same anatomical

sources, this would be the most probable and parsimonious interpre-

tation. Moreover, we must juxtapose our findings with work from

other groups (Musaeus et al., 2020) which applied a similar approach

but did not necessarily find the same topographies across the EEG

spectrum. Nevertheless, it should be kept in mind that narrowband

MS analyses do not necessarily require similar topographies between

frequencies. In this case, although cross frequency comparisons would

not be possible due to dissimilar maps, it would remain valid to study

and quantify spatio-temporal MS parameters within each frequency

band separately; for example, in the service of clinical biomarker dis-

covery (Merrin et al., 1990). Reassuringly, the MS maps of our study

replicate the ones derived from independent work utilising the same

EEG dataset (Zanesco et al., 2020), further supporting the reproduc-

ibility of MS analysis despite methodological variations between stud-

ies (e.g., absence of resampling).

4.2 | The temporal dimension: MI of MS
sequences

Milz and colleagues (Milz et al., 2017) recently proposed that alpha

oscillations were the major component driving MS dynamics. In general,

AMI analyses reported in our work reveal low values (near or below

0.1) of information shared between the narrowband segmentations,

including alpha, and that of the broadband decomposition. However,

consistent with the work of Milz and colleagues (Milz et al., 2017), the

alpha-band during EC did indeed have the highest shared information

with broadband (around 0.125). Importantly, however, this relationship

did not necessarily hold during EO (delta being highest). This indicates

specific narrowband contribution(s) to broadband dynamics heavily

depend on behavioural state. Moreover, if narrowband(s) topographies

were directly responsible for the origin of the spatial distribution of the

broadband signal, one would expect much higher AMI values (at least

0.5) than those, we observed. In view of the results presented, it would

be inaccurate to claim that alpha band or any other narrowband as the

dominant source of broadband topographies.

In contrast, our results appear to support the ideas of Croce and

colleagues (Croce, Quercia, Costa, & Zappasodi, 2020), who suggested

that broadband MS dynamics could not be extrapolated from one or a

subset of EEG frequency bands. It remains unclear how the interac-

tion of several narrowband-components leads to a substantially differ-

ent broadband MS decomposition. We speculate that this might stem

from the fact that (a) different narrow band signals could cancel each

other at specific time points and (b) MS assignment is non-linear given

the winner-takes all approach.

Lastly and most intriguingly, no significant informational interrela-

tions were found between the narrowband topographical dynamics

themselves (e.g., delta vs. beta, theta vs. alpha), indicating that each

EEG band appears to have has its own independent dynamics. This

may not be surprising, considering that spontaneous EEG oscillations

have been reported to dynamically switch from a resting signature

(e.g., alpha) to task-specific active mode(s) dominated by theta (Ribary

et al., 2017), beta (Fernández et al., 1995) or gamma activities (Hipp

et al., 2011)). In this context, our observations of spatio-temporal

independence between narrowband EEG components support the

operation of ‘oscillatory multiplexing’ (Akam & Kullmann, 2014)

mechanisms in the cortex, whereby brain regions could combine dif-

ferent frequencies for integrating/segregating information across

large-scale networks (Le Van Quyen, 2011).

F IGURE 9 Classifying eyes-open (EO) versus eyes-closed
(EC) states using classical microstate (MS) measures. Binary

classification performance, computed as the area under the curve
(AUC) of the receiver-operating characteristic (ROC), for two support
vector machine models. Input features of the first model (red) were
broadband MS parameters (see text) while the second model (blue)
was evaluated on alpha-band MS parameters. Shaded areas represent
95% CI. Mean AUC ± SD is reported in the legend
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4.3 | Classical MS measures: Explained variance,
time coverage and mean duration

4.3.1 | Global explained variance

Overall, MS segmentations of low-frequency bands (delta and theta)

explained more of the global topographical variance compared to the

classical broadband segmentation. Since GEV is normalised by and

therefore independent of GFP, this suggests that the goodness-of-fit

(i.e., GEV) of the five-map MS model is clearly greater in the delta/

theta bands than broadband EEG. In higher frequencies, effects are

more map-specific, as for example we observed an increase in GEV

for the diagonal maps (A and B) and a decrease for midline (D and

C0) ones.

4.3.2 | Time coverage

Different patterns of MS temporal coverage were observed according

to frequency. The delta and theta bands seem to exhibit greater prev-

alence of map D and decreased incidence of maps A, B and C. This is

remarkable insofar map D shares an intriguing overlap with the topog-

raphy of the well-known frontal-midline theta-rhythm (fm-theta)

(Scheeringa et al., 2008; Töllner et al., 2017). Conversely, beta band

dynamics seem to favour the more frequent appearance of maps A

and B in lieu of maps D and C0. The appearance of alpha-band MS

maps, on the other hand, appear to be more state-dependent, as

might be expected given the well-known expression of the posterior

alpha rhythm during EC. Accordingly, there was a strong behavioural

dissociation particularly for map C, which displayed a relatively greater

temporal prevalence during EC than EO.

The presence of such ‘spectral fingerprints’ suggests the exis-

tence of an 'affinity' between distinct MS topographies and EEG

bands suggests that different cortical generators (i.e., topographies)

may be activated preferentially in certain frequencies (Groppe

et al., 2013; Keitel & Gross, 2016; Mellem et al., 2017).

4.3.3 | Mean duration

MSs are defined as short periods of time during which the scalp elec-

tric field remains quasi-stable. Traditional MS analysis does not sug-

gest specific frequency filtering, thus resulting in various broadband

filter settings across studies (Michel & Koenig, 2018). Our findings

demonstrate that temporally stable states (around 80 ms or longer)

are present within all classical EEG narrowbands (i.e., delta to beta). It

is established that such spatio-temporal structures do not appear for

randomly shuffled EEG (Wackermann, Lehmann, Michel, &

Strik, 1993). For most EEG narrowbands, mean MS durations were

usually in the same range as the typically reported 70–120 ms, but

often longer. For example, the average MS duration in the EO state

was around 150 ms for the alpha-band, compared to 90 ms for broad-

band. It will be therefore interesting for future studies to examine the

mechanistic links between the aggregated dynamics of the broadband

MSs and those of frequency-specific modes.

4.4 | Discriminating between behavioural states:
EO versus EC

Within each EEG narrowband, between 8 Hz (for theta) and 14 Hz

(for alpha) of the classical MS measures were found to be statistically

significant. In comparison, classical MS measures derived from broad-

band EEG had a higher effect size for only one parameter (broadband

MS B MeanDurs). For all other 14 parameters, at least one narrow-

band component showed a relatively stronger effect size.

Hence, the addition of the frequency dimension has the primary

benefit of increasing both the number and the specificity of potential

neural markers that could aid clinical prognosis or provide insight into

brain mechanisms. We therefore conclude that the extra frequency

dimension leads to a more fine-grained decomposition of multichannel

and multiplex EEG signals than the standard broadband analysis. Inter-

estingly, we found that in a few cases the narrowband effects were

opposite in directionality to the broadband results. Thus, limiting the

analysis to only the latter could lead to incomplete (or even incorrect)

interpretations of underlying brain dynamics.

A complementary analysis based on spatially filtered MS time

courses, we illustrated different frequency profiles of relative power

between MS topographies. These observations reinforce our main

hypothesis that MS may be expressed to varying degrees across the

frequency spectrum. Hence, although we found similar MS topogra-

phies to be shared across EEG frequencies, their temporal sequences

will be influenced by the frequency band under investigation.

The value of narrowband MS decomposition is directly supported

by our behavioural classification results, where we utilised alpha-band

versus broadband MS parameters to predict EO versus EC states

using the recordings of all 203 subjects. The significant increase in

overall accuracy (alpha-band: 80% vs. broadband: 73%) and area

under the ROC curve nicely demonstrate that frequency-specific MS

measures may provide higher behavioural predictive power than those

derived from the broadband analysis. Although beyond the scope of

this article, we expect that this approach to provide advantages in

other contexts, such as event-related potential analyses or for dis-

criminating between different clinical populations.

Interestingly, we found that in a few cases the narrowband

effects were opposite in directionality to the broadband results. Thus,

limiting the analysis to only the latter could lead to incomplete

(or even incorrect) interpretations of underlying brain dynamics.

5 | POTENTIAL LIMITATIONS AND
FUTURE WORK

The current study may technically be considered exploratory, given

the large number of tests that were carried out and in the absence of

well-defined hypotheses; however, we carried out Bonferroni
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correction for all tests which may be considered the most conserva-

tive method for controlling for multiple comparisons. Several studies

have thus far proposed explanations for the origins of broadband MS

topographies (Britz et al., 2010). We feel it is still too early to make

analogies or speculations between these results and those of the nar-

rowband dynamics. However, we believe that the application of the

methodology proposed here may lead to valuable insights to more

fully understand the underlying spectral tapestry of EEG MSs.

6 | CONCLUSION

Ultimately, we report several important and novel findings between

the classical broadband MS analysis, generally performed in the EEG

field, and its application to more narrow frequency bands relevant to

cortical oscillatory activities. In a nutshell, it appears that each canoni-

cal EEG frequency band possesses its own independent spatio-

temporal dynamics, while the relative prevalence of MS topographies

themselves differ across frequencies. Analysis of narrowband MS

parameters revealed spatial and temporal characteristics that both

converged and diverged from broadband MS findings. In other words,

it seems that broadband MS sequences may not be a simple aggregate

of individual narrowband MS sequences, either.

Analysis of narrowband MS parameters revealed that both spatial

and temporal characteristics converged and diverged from broadband

MS findings. Our results therefore indicate that both narrowband and

broadband MS analyses are justified and complementary to each

other. A narrowband decomposition into frequencies more specific

for cortical oscillatory activity could not only advance and consolidate

findings in clinical disorders (e.g., Merrin et al., 1990) (Musaeus

et al., 2020) but also enable a better understanding of the organisation

and functioning of large-scale brain systems.
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