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Abstract Computational analysis of communication effi-

ciency of brain networks often relies on graph-theoretic

measures based on the shortest paths between network

nodes. Here, we explore a communication scheme that

relaxes the assumption that information travels exclusively

through optimally short paths. The scheme assumes that

communication between a pair of brain regions may take

place through a path ensemble comprising the k-shortest

paths between those regions. To explore this approach, we

map path ensembles in a set of anatomical brain networks

derived from diffusion imaging and tractography. We show

that while considering optimally short paths excludes a

significant fraction of network connections from

participating in communication, considering k-shortest

path ensembles allows all connections in the network to

contribute. Path ensembles enable us to assess the resi-

lience of communication pathways between brain regions,

by measuring the number of alternative, disjoint paths

within the ensemble, and to compare generalized measures

of path length and betweenness centrality to those that

result when considering only the single shortest path

between node pairs. Furthermore, we find a significant

correlation, indicative of a trade-off, between communi-

cation efficiency and resilience of communication path-

ways in structural brain networks. Finally, we use

k-shortest path ensembles to demonstrate hemispherical

lateralization of efficiency and resilience.

Keywords Connectomics � Communication efficiency �
Communication resilience

Introduction

Human connectomics delivers network maps recording the

patterns of structural connections among brain regions and

systems (Sporns et al. 2005). Empirical studies and com-

putational models suggest that the topology of structural

connections constrains the flow of neural signals across the

network (Passingham et al. 2002; Galán 2008; Honey et al.

2009; Park and Friston 2013; Hermundstad et al. 2013;

Goñi et al. 2014; Mišić et al. 2015) and shapes the statis-

tical dependencies among regional time courses of neu-

ronal responses, generally captured in functional brain

networks (Friston 2011). Furthermore, several studies have

pointed out that the structural organization of the connec-

tome optimizes the trade-off between network cost and

competing functional demands, including efficient
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jgonicor@purdue.edu

& Olaf Sporns

osporns@indiana.edu

1 Department of Psychological and Brain Sciences, Indiana

University, Bloomington, IN, USA

2 Department of Psychology, Stanford University, Stanford,

CA, USA

3 Signal Processing Lab., Ecole Polytechnique Federale de

Lausanne, Lausanne, Switzerland

4 Department of Radiology, Centre Hospitalier Universitaire

Vaudois and University of Lausanne, Lausanne, Switzerland

5 School of Industrial Engineering and Weldon School of

Biomedical Engineering, Purdue University, West Lafayette,

IN, USA

6 IU Network Science Institute, Indiana University,

Bloomington, IN, USA

123

Brain Struct Funct (2017) 222:603–618

DOI 10.1007/s00429-016-1238-5

http://dx.doi.org/10.1007/s00429-016-1238-5
http://crossmark.crossref.org/dialog/?doi=10.1007/s00429-016-1238-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00429-016-1238-5&amp;domain=pdf


communication (Bullmore and Sporns 2012; Vértes et al.

2012; Betzel et al. 2016).

Most extant approaches towards characterizing com-

munication in brain networks rely on mapping the shortest

paths between each pair of nodes (Bassett and Bullmore

2006; Achard and Bullmore 2007; van den Heuvel et al.

2009; Rubinov and Sporns 2010; van den Heuvel et al.

2012; Goñi et al. 2014). Measures of (average) shortest

path length and its inverse, the global efficiency (Latora

and Marchiori 2001), have been widely used to charac-

terize differences in structural networks across individuals

or groups (Gong et al. 2009; Yan et al. 2011; Lynall et al.

2010; Betzel et al. 2014). In addition, path-based measures

of centrality have been used to identify nodes and edges

that are thought to be most vital for global communication

(Sporns et al. 2007; Joyce et al. 2010; Zuo et al. 2012).

These measures assume that optimally short paths are

highly privileged and are exclusively selected for signaling

among remote node pairs. However, this presupposes that

neural signals have access to information or ‘‘knowledge’’

about the global network topology (Boguña et al. 2009;

Goñi et al. 2013; Abdelnour et al. 2014) which is unlikely

to be the case. Furthermore, it excludes from consideration

numerous alternative paths that, while not optimally short,

may represent near-optimal alternative routes. Importantly,

such paths could offer additional robustness and redun-

dancy to network communication (Achard et al. 2006;

Kaiser et al. 2007; Wook Yoo et al. 2015).

Indeed, in most real-world complex networks commu-

nication processes do unfold on numerous alternative paths

(da Fontura Costa and Travieso 2007; Estrada and Hatano

2008). Computational analyses suggest that neuronal sig-

nals have the ability to recruit different alternative path-

ways in order to optimize performance, or to compensate

for network impairment in brain damage (Kaiser et al.

2007; Wook Yoo et al. 2015). Various metrics have been

developed with the aim of characterizing aspects of net-

work communication that do not exclusively rely on

shortest paths. Among these are approaches that take into

account all possible paths (or walks) between nodes, for

example the mean first passage time (Grinstead and Snell

2012), various spectral methods that reveal stationary dis-

tributions of stochastic processes (Chung 1997), random-

walk betweenness centrality (Newman 2005), or commu-

nicability (Estrada and Hatano 2008). Each of these mea-

sures implies a specific model for network communication,

and these models can be viewed as forming a continuous

spectrum. On one end of the spectrum is the shortest-path

framework, where the system has full ‘‘knowledge’’ of the

global topology and information travels exclusively

through the shortest possible path. The other end of the

spectrum is represented by communication schemes in

which elements of the system have no information about

the global topology, and hence information travels ran-

domly through the system. The latter case includes com-

munication models that take into account all possible paths

(or walks) between nodes.

In this paper, we explore a communication scheme that

relaxes the assumption that information travels exclusively

through optimally short paths without treating all possible

paths as equally likely. We propose a model of commu-

nication between nodes that utilizes ensembles of paths

composed of the k-shortest paths between nodes, with

k = 1 corresponding to the classic shortest-path model.

Furthermore, while communication through a given path

ensemble generally privileges shorter over longer paths, we

weigh the contributions of different paths within the

ensemble according to the amount of information (in a

local statistical sense) needed to travel such paths. We

propose the extension of two topological measures, namely

the shortest path length and the betweenness centrality, and

re-define them in order to take into account the topology of

k-shortest path ensembles between any given pair of nodes.

Using a set of high-resolution structural connectivity

(SC) networks obtained from a cohort of 40 healthy indi-

viduals, we first study statistical features that characterize

the connections and nodes associated with high values of

edge betweenness centrality. Second, we study topological

properties of subgraphs formed by the nodes and edges

comprising path ensembles, focusing on the trade-offs

between communication efficiency and resilience that

result from considering multiple, non-optimally short paths

as viable communication pathways between nodes. Finally,

we quantify the extent to which path ensembles between

anatomical regions promote integration and/or segregation

of information flow and we examine differences that

emerge between the two cortical hemispheres.

Materials and methods

Data set. Informed written consent in accordance with the

Institutional guidelines (protocol approved by the Ethics

Committee of Clinical Research of the Faculty of Biology

and Medicine, University of Lausanne, Switzerland) was

obtained for all subjects. Forty healthy subjects (16

females; 25.3 ± 4.9 years old) underwent an MRI session

on a 3T Siemens Trio scanner with a 32-channel head coil.

Magnetization prepared rapid acquisition with gradient

echo (MPRAGE) sequence was 1-mm in-plane resolution

and 1.2-mm slice thickness. DSI sequence included 128

diffusion weighted volumes ? 1 reference b_0 volume,

maximum b value 8000 s/mm2, and 2.2 9 2.2 9 3.0 mm

voxel size. EPI sequence was 3.3-mm in-plane resolution

and 3.3-mm slice thickness with TR 1920 ms. DSI, resting-

state fMRI, and MPRAGE data were processed using the

604 Brain Struct Funct (2017) 222:603–618

123



Connectome Mapping Toolkit (Daducci et al. 2012). Each

participant’s gray and white matter compartments were

segmented from the MPRAGE volume. The grey matter

volume was subdivided into 68 cortical and 15 subcortical

anatomical regions, according to the Desikan-Killiany atlas

(Desikan et al. 2006), defining 83 anatomical regions.

These regions were hierarchically subdivided to obtain five

parcellations, corresponding to five different scales (Cam-

moun et al. 2012). The present study uses a parcellation

comprising 234 regions of interest (ROI); furthermore, we

focus on cortical structures only, discarding all subcortical

regions including the bilateral thalamus, caudate, putamen,

pallidum, nucleus accumbens, hippocampus, and amyg-

dala, as well as the brainstem, resulting in 219 remaining

ROI. Whole brain streamline tractography was performed

on reconstructed DSI data (Wedeen et al. 2008), and con-

nectivity matrices were estimated from the streamlines

connecting each pair of cortical ROI. We quantify the

connection strength between each pair of regions as a fiber

density (Hagmann et al. 2008) instead of fiber count. Thus,

the connection weight between the pair of brain regions

{u,v} captures the average number of connections per unit

surface between u and v, corrected by the length of the

fibers connecting such brain regions. The aim of these

corrections is to control for the variability in cortical region

size and the linear bias toward longer fibers introduced by

the tractography algorithm. Fiber densities were used to

construct subject-wise structural connectivity (SC) matri-

ces. Each SC matrix can be modeled as the adjacency

matrix A ¼ faijg of a graph G : {V,E}, with nodes V ¼
fv1; . . .; vng representing ROI, and weighted, undirected

edges E ¼ fevi;vj ; . . .; evr ;vqg representing anatomical

connections.

Intrinsic connectivity networks. In order to ground some

of our structural connectivity-based findings in the context

of the resting-state literature, we mapped the Desikan-

Killiany anatomical parcels (Desikan et al. 2006) used to

construct our SC networks, onto the seven intrinsic con-

nectivity networks (ICN) defined by Yeo et al. (2011). The

so-called Yeo parcellation was derived by using a clus-

tering algorithm to partition the cerebral cortex of 1000

healthy subjects into networks of functionally coupled

regions. This procedure resulted in the definition of seven

clusters comprising networks previously described in the

literature including the visual (VIS) and somatomotor (SM)

regions, dorsal (DA) and ventral (VA) attention networks,

frontoparietal control (FP), limbic (LIM) and default mode

network (DMN). The mapping between the Desikan-Kil-

liany anatomical parcels and the seven ICNs from the Yeo

parcellation was obtained by extracting the vertices of the

brain surface corresponding to each anatomical region in

the Desikan-Killiany atlas, and then evaluating the mode of

such vertices’ assignment in the Yeo parcellation. Fig-

ure S1 in Online Resource shows the re-labeling of the

Desikan-Killiany regions according to their corresponding

label in the Yeo parcellation; the mapping from the 219

anatomical regions (obtained by randomly subdividing the

Desikan-Killiany atlas) onto the 7-ICN from the Yeo par-

cellation is shown in Fig. S2 in Online Resource.

Finally, Fig. S3 in Online Resource shows an alternative

ICN partition derived from our own data, by running a

community detection algorithm on a group Functional

Connectivity network. Analyses and results derived from

this data-driven approach to extracting ICNs are shown in

the Online Resource.

Wiring cost. The wiring cost of the network attempts

to capture the metabolic cost of creating and maintain-

ing the network connections by assuming that such cost

is proportional to the volume of white matter in the

brain (Bullmore and Sporns 2012). Hence, we express

the cost of a single connection {u,v} as the product

between the number of streamlines and the average

length of the streamlines between u and v. Then, the

cost of a node is defined as the sum over the cost of all

its connections.

k-Shortest paths. To rank a set of communication

pathways between any pair of brain ROIs according to path

length, a topological distance measure must first be defined

over the set of edges in the network. Here, we use the

function lu;v ¼ �logðwu;vÞ to transform connectivity

strengths into connection lengths (as introduced by Goñi

et al. 2014). This transformation ensures that if wu;v [ wp;q

then lu;v\lp;q, that is, strong connection weights get map-

ped onto short distances, while weak connection strengths

get mapped onto long distances and, lu;v ¼ 1 if u and v are

not connected. Then, the topological length dðpu;vÞ of a

path pu;v formed by a sequence of edges feu;q1 ; . . .; eqr ;vg is

defined as the sum of the connection distances of the edge

set forming the path. It is worth mentioning that the

transformation from connection strengths to connection

distances can be defined by different functions; it has been

shown that different functions impose different distortions

of the topology of the network (Simas and Rocha 2015). A

widely used transform for brain networks has been

lu;v ¼ 1=wu;v, however, this transform yields extremely

skewed distributions of the values lu;v, with a few con-

nections having extremely small values of lu;v compared to

all other connections. As a consequence, these connections

are highly prioritized to participate in the overwhelming

majority of shortest paths. Here, we control for this skewed

effect by selecting the transform lu;v ¼ �logðwu;vÞ, which
produces log-normal distributions of the values lu;v and

avoids the extreme prioritization of a handful of

connections.
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Yen’s algorithm (Yen 1971) was implemented to find

the k-shortest (loop-less) paths between pairs of nodes in

the network. This algorithm uses Dijkstra’s algorithm to

compute the first shortest path, and then finds candidates

for the second shortest path by looking for detours around

each edge in the original path. This is continued until the

desired number of paths are found, giving an overall

complexity of O(kN3), where N is the number of nodes in

the network. Given the computational time required to

compute k-shortest paths for a network of size N = 219,

for this study we computed up to k = 100 shortest paths

between every pair of nodes in the SC networks of 40

subjects.

k-Shortest path length. We define a composite measure

to characterize the topological distance between a pair of

ROIs, while taking into account the length dðpks;tÞ of all

k-shortest paths, and the embedding of such paths within

the network. The measure is computed as follows:

Dk s; tð Þ ¼
X

P̂ pks;t

� �
dðpks;tÞ

where P pks;t

� �
¼

P
eu;v2pks;t

wu;vP
j
wu;j

is the probability of fol-

lowing the kth shortest path from a source to a target node

under random-walk dynamics;

P̂ pks;t

� �
¼ P pks;t

� �
=
PK

k¼1 Pðpks;tÞ is the normalized

probability, such that
PK

k¼1 P̂ pks;t

� �
¼ 1. Therefore,

Dkðs; tÞ is a weighted average of the lengths of the k-

shortest paths from s to t, where the weights P̂ pks;t

� �
rep-

resent the ease with which a given path pks;t is traveled,

relative to the other k-1 paths. A path is easy to travel

when there are few potential detours from the path, that is,

when nodes within the path have small degrees. Con-

versely, paths are difficult to travel if intermediate nodes

are hubs because there is a higher probability of deviating

from reaching the target node.

As an example, consider the unweighted graph shown in

Fig. 1a. Notice that, because this graph is unweighted,

there is degeneracy in the second shortest path, that is, the

second shortest path is not unique but instead there are two

paths (p2s;t and p3s;t) with equal length. Nonetheless, p2s;t is

easier to travel because all nodes in the path have low

degrees, whereas p3s;t contains two high-degree nodes

(nodes v2 and v3), increasing the difficulty of traveling the

path. As a consequence, if we compute the distance D2ðs; tÞ
using p1s;t and p2s;t as the first and second shortest paths, we

find that the contributions of both paths are comparable,

resulting in D2 s; tð Þ � 2:6. On the other hand, if we use p3s;t
as the second shortest path, we get D2 s; tð Þ � 2:1 because

the contribution of p3s;t is significantly smaller. The inter-

pretation of the degree sequence of a path as an indicator of

how easily paths can be traveled is related to the work by

Rosvall et al. (2005), where a measure called search

information is proposed to quantify the information cost of

traveling a specific path. Search information derived for

weighted networks has been shown to be a significant

predictor of functional connectivity (Goñi et al. 2014).

Finally, it is important to point out that for an undirected

network (ws;t ¼ wt;s), the kth shortest path between a pair

{s,t} is the same as the kth shortest path between {t,s} (that

is, pks;t ¼ pkt;s); however, the degree sequence of pks;t may

Fig. 1 Toy models illustrating subgrahs Gpk s; tð Þ formed by the

k-shortest paths (k = 2 and k = 3) between nodes s and t. a Un-

weighted graph with two equally long second shortest paths: p2s;t
(orange path) and p3s;t (yellow path) have path length 4. Nonetheless,

p2s;t is easier to travel because all nodes in the path have low degrees;

conversely, p3s;t contains two high-degree nodes (nodes v2 and v3) that

increase the difficulty of traveling the path, given that the probability

of a message getting ‘‘lost’’ or ‘‘detouring’’ from the path is higher.

Dashed lines indicate partitions of the graph (left panel) and

subgraphs (right panel) that would result in two disjoint subsets,

cutting the communication between nodes s and t. b Unweighted

graph and a path ensemble with 3-shortest paths between nodes s and

t. None of the three shortest paths have edges in common, therefore,

they are edge-disjoint paths and F3(s,t) = 3. Dashed lines indicate

partitions of the graph (left panel) and the subgraph Gp3 s; tð Þ (right

panel) that would result in two disjoint subsets, cutting the

communication between nodes s and t. Notice that F3(s,t) = Fmax(-

s,t) = 3. c Unweighted graph in which the three shortest paths

between nodes s and t contain the edge {v1, t}, hence, the subgraph

Gp3 s; tð Þ contains a single edge-disjoint path (F3(s,t) = 1), as

indicated by the dashed line intersecting a single edge used by all

three shortest paths. The dashed line crossing three edges in the graph

(left panel) indicates that Fmax(s,t) = 3, and therefore |F3(s,t)| = F3(-

s,t)/Fmax(s,t) = 1/3
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differ from the degree sequence of pkt;s, and then P̂ pks;t

� �

may be different from P̂ pkt;s

� �
. Hence, we symmetrize Dk

as follows: D̂kðs; tÞ ¼ ðDkðs; tÞ þ Dkðt; sÞÞ=2.
Number of edge-disjoint paths. Given a graph G, a set of

edge-disjoint paths between a pair of nodes {s,t} consists of a

set of paths connecting s and t, such that no path shares an

edge with another path in the set (Biggs et al. 1976). Fur-

thermore, the maximum number of edge-disjoint paths

between a pair of nodes {s, t} is equal to the minimum

number of edges that must be removed from the network in

order to disconnect nodes s and t. To calculate Fmax(s,t), the

maximumnumber of edge-disjoint paths between any pair of

nodes {s,t}, we implement the Ford-Fulkerson (Ford and

Fulkerson 1987; Cormen et al. 2001) method on the bina-

rized graph G. For this work, we also use this method to

compute the number of edge-disjoint pathsFk between a pair

of nodes {s,t} with respect to a subgraph Gpkðs; tÞ, which is

obtained from G, by selecting all nodes and edges that par-

ticipate in any one of the k-shortest paths between {s,t}.

Therefore, given a subgraph Gpk s; tð Þ � G the number of

edge-disjoint paths Fk(s,t) depends on k (the number of

k-shortest paths used to construct Gpkðs; tÞ) and is bounded

by the maximum number of edge-disjoint paths between {s,

t} when the entire graph G is considered

(Fk(s,t) B Fmax(s,t)).

The unweighted graph in Fig. 1b shows that there are at

most three edge-disjoint paths between nodes s and t,

therefore at least three edges must be removed in order to

cut the communication between s and t. However, the

subgraph Gp2 s; tð Þ formed by the set of paths fp1; p2g has

only two edge-disjoint paths, whereas the subgraph

Gp3 s; tð Þ formed by the set of paths fp1; p2; p3g has three

edge-disjoint paths. Finally, the graph in Fig. 1c has at

most three edge-disjoint paths between nodes s and t,

nonetheless, both subgraphs, Gp2 s; tð Þ and Gp3 s; tð Þ have

one edge-disjoint path because all three paths fp1; p2; p3g
share the edge {v1,t}, and removing such an edge would

disconnect s and t within any one of the subgraphs.

Directed vs. undirected networks. All of the measures

presented here can be applied for both directed and undi-

rected networks (the measure Dk should not be sym-

metrized for undirected networks). In this study, all

networks are undirected and therefore, all measures are

symmetric: for any given pair of nodes {s,t}, and some

topological measure m, we have m(s,t) = m(t,s). Thus, the

notion of source and target nodes is not meaningful as it is

in the context of directed networks. For the results reported

in this paper, we use the more generic terms {i, j} to refer

to pairs of nodes in the network, with the understanding

that both nodes are the source and target of any commu-

nication pathway between them.

Results

Path ensembles widen the participation of edges

in communication processes

We study white matter communication pathways between

pairs of cortical regions of interest (ROI) of human structural

connectivity (SC) networks obtained from a cohort of 40

healthy subjects (see ‘‘Materials and methods’’). For each

subject’s SC network we use Yen’s algorithm (Yen 1971) to

compute the k-shortest paths between all ROI pairs, where

k = 1 corresponds to the shortest path and as k increases,

paths get progressively longer. For each ROI pair {i, j} we

define ensembles KSP i; j; kð Þ ¼ fp1i;j; p2i;j; . . .; pki;jgwhere pki;j
is the kth shortest path between i and j, and therefore, it is the

longest path in the ensemble. For all results presented in this

paper, we use k = 100 as the maximum ensemble size.

Given a pair of ROI {i, j}, and the corresponding KSP i; j; kð Þ
ensemble, we define the subgraphGpkði; jÞ by selecting, from
the SC network, the set of nodes and connections that par-

ticipate in at least one path contained in the ensemble of size

k. Notice that nodes and edges in the subgraph Gpkði; jÞ may

participate in more than one path.

It is important to note that under an optimal communi-

cation framework where information transmission between

nodes takes place through shortest paths only, there is a

significant fraction of structural edges that do not partici-

pate in any communication pathway. Figure 2 shows the

Fig. 2 Percentage of the connectome edges appearing in any

ensemble (blue lines) as a function of the number of k-shortest paths

contained in the path ensembles between all node pairs. The two blue

lines correspond to two different functions mapping connection

strengths to connection lengths: lu;v ¼ �logðwu;vÞ and lu;v ¼ 1=wu;v,

where wu;v are the connection strengths quantified as fiber densities.

Orange lines show minimum and median values of k-shortest path

edge betweenness centrality as a function of k. All values correspond

to averages across all subjects
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percentage of the connectome edges used for communi-

cation (blue lines) as a function of the number of k-shortest

paths contained in the KSP i; j; kð Þ ensembles (these results

show the average across all subjects). The two blue lines

correspond to two different definitions of connection

lengths: lu;v ¼ �logðwu;vÞ and lu;v ¼ 1=wu;v, where wu;v are

the connection weights (see ‘‘Materials and methods’’).

Notice how the -Log line rapidly converges to 100 % of

edges used, whereas the Inv line seems to asymptote

towards a value between 20 and 30 % of edges used. Most

important is the counterintuitive fact that the set of edges

that do not participate in at least one k-shortest path (22

and 82 % of the edges for the -Log and Inv functions,

respectively, both for a value of k = 1) can be removed

from the network without affecting classic graph measures

such as the characteristic path length, global efficiency,

and the node and edge betweenness centrality. In contrast,

when considering path ensembles at increasing values of k,

not only do all edges participate in at least one commu-

nication pathway, but the median number of times that

edges get used in a path grows exponentially, while the

total number of k-shortest paths increases linearly, as

kN(N-1)/2. Hence, path ensembles ensure that communi-

cation load is more evenly distributed across the entire

structural network and that individual edges participate in

communication processes among multiple node pairs.

While communication pathways are invariably widened

as the number of k-shortest paths increases, the structural

patterns of the KSP ensembles vary across ROI pairs.

Figure 3 shows some examples of subgraphs Gpk that are

obtained from four KSP ensembles corresponding to four

different ROI pairs within the SC network of a single

subject. A subgraph Gpk only includes the nodes and edges

that are contained in the corresponding KSP ensemble;

nonetheless, to provide a more comprehensive picture of

how subgraphs are embedded in the network, we show

spatially embedded (Fig. 3, upper row) and circular (Fig. 3,

lower row) layouts that display all the nodes of the net-

work. The spatially embedded layouts illustrate the extent

to which subgraphs may span extended portions of the

network. Furthermore, by arranging nodes according to

ICN membership, the circular layouts highlight how con-

nections are distributed within and between ICNs.

The emergence of alternative high-centrality nodes

and edges

Figure 2 suggests that the level of centrality of an edge or

node may vary as a function of the number of k-shortest

paths considered between every pair of ROI. Thus, we

extend the definitions of edge and node betweenness cen-

trality (from now on, referred to as edge centrality and

node centrality, respectively) to quantify the number of

k-shortest paths that traverse each edge and each node of

the network, taking into account all k-shortest paths from

any node to all others in the network. We normalize cen-

trality values by computing the number of times an edge

(node) is traversed by a k-shortest path, and dividing by

kN(N-1)/2, where N is the number of nodes in the network

and k is the number of k-shortest paths between any pair of

Fig. 3 Examples of subgraphs Gpk obtained from four different KSP

ensembles (k = 100) corresponding to pairs of nodes located within

the following ICNs: visual–visual (a); visual–somatomotor (b);
somatomotor–ventral attention (c); frontoparietal–default mode net-

work (d). Figures in upper row display spatially embedded layouts of

the subgraphs, illustrating the extent to which subgraphs may span

extended portions of the network. Nodes are colored according to

ICN membership. Figures in the lower row display a circular layout

where nodes are arranging according to ICN membership, highlight-

ing how connections within path ensembles are distributed within and

between ICNs
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nodes. In addition, we assess the average centrality of

anatomical regions by averaging across the centrality of all

nodes belonging to a given anatomical region.

Figure 4 shows scatter plots of the normalized shortest-

path centrality (k = 1) versus the normalized k-shortest

path centrality (for k = 5 and 100) of 68 anatomical

regions, covering the entire cortical surface (equivalent

scatter plots at the individual node level are shown in

Fig. S4 in Online Resource). While normalized centrality

values are highly correlated with classic (k = 1) centrality

(Pearson correlation coefficients are r = 0.991 for k = 5;

r = 0.972 for k = 100; both p\ 0.01; r values correspond

to averages across all subjects), there are anatomical

regions whose centrality rank changes as k increases. We

find that the top five central regions for all values of k are

right and left hemisphere isthmus of the cingulate cortex,

left hemisphere pericalcarine cortex, right hemisphere

caudal anterior cingulate cortex, and left hemisphere

insula. While these are the most central regions across all

values of k, their ranking within the top five does vary as a

function of k. In addition, we identify other cortical regions

that are among the ten lower ranked central regions when

k = 1, and gain up to 16 positions within the ranking as

k increases; the cuneus and paracentral lobule regions of

both hemispheres are examples of regions that become

significantly more central at higher values of k. A

table with the ranking of all anatomical regions for dif-

ferent values of k is shown in Online Resource.

Changes in centrality ranking as a function of k are also

shown in Fig. 5, which depicts the top 10 % central edges

(Fig. 5a) and top 10 % central nodes (Fig. 5c) of a single

subject for different values of k. Purple colored edges

(nodes) (b1\bk) indicate the set of edges (nodes) that are

highly central according to both measures, the shortest-path

(k = 1) centrality and the k-shortest path centrality; tur-

quoise colored edges (nodes) (b1–bk) indicate the set of

edges (nodes) that are highly central only for the shortest-

path centrality; orange colored edges (nodes) (bk–b1)

indicate the set of edges (nodes) that are highly central only

for the k-shortest path centrality (k[ 1). As k increases,

centrality ranks of edges and nodes continue to deviate

from their ranks at k = 1, resulting in progressively fewer

edges in the intersection (b1\bk).
In order to determine whether there are characteristic

differences between edges and nodes belonging to the

different sets (b1\bk, b1–bk, bk–b1) we compare the wiring

cost of nodes and edges, and the average degrees of the

participating nodes. The degree associated with an edge {i,

j} is computed as the sum of the degrees of the two con-

nected nodes i and j. Both, cost and degree are then aver-

aged across all edges (nodes) within each set.

Figure 5b and 5d show distributions of average cost and

average degree across all subjects, expressed as z scores

relative to null distributions obtained for each subject, by

randomly sampling sets of Mk edges (nodes), where Mk is

equal to the number of edges (nodes) in the corresponding

set. For all values of k, edges and nodes belonging to the set

b1\bk have average cost and average degree that are sig-

nificantly higher than chance, with a tendency for cost to

increase for higher values of k. It is noteworthy that there is

a significant difference between the wiring cost and degree

distributions corresponding to the sets b1–bk and bk–b1

Fig. 4 Normalized shortest-

path centrality (k = 1) versus

the normalized k-shortest path

centrality (k = 5 and k = 100)

of 68 anatomical regions,

covering the entire cortical

surface. Diamond-shaped

markers indicate right

hemisphere anatomical regions,

and squared-shaped markers

indicate left hemispheric

anatomical regions. All data

points represent averages across

all subjects; vertical and

horizontal lines at each point

indicate the standard deviation

over all subjects
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(p\ 0.01, Kolmogorov–Smirnov test), for both edges and

nodes, and across all values of k. These differences suggest

that, when we consider alternative paths for communica-

tion between nodes by increasing k, we uncover additional

high-cost edges and high-degree nodes, which do not

appear as central if only shortest paths are considered.

We study additional properties of the top 10 % central

edges and nodes by computing the composite k-shortest

path length measure, D̂k (see ‘‘Materials and methods’’),

and the number of edge-disjoint paths, Fk (see ‘‘Materials

and methods’’), corresponding to the KSP(i,j:k) ensembles

of all edges{i, j} in the SC networks of all subjects. The

bottom two rows of Fig. 5b show the distributions of D̂k

and Fk of the KSP i; j; kð Þ ensembles where i and j corre-

spond to all node pairs directly connected by the edges

contained in the sets b1\bk, b1–bk, bk–b1, respectively. D̂k

and Fk are expressed as z scores relative to null distribu-

tions obtained for each subject, by randomly sampling sets

of edges from the networks (analogously to the null dis-

tributions built for cost and degree). The negative values in

the distributions of D̂k indicate that the KSP ensembles

associated to highly central edges have significantly shorter

k-shortest path lengths than expected by chance. The dis-

tributions of Fk corresponding to the set b1\bk and bk–b1 in

Fig. 5b demonstrate that for k C 5, path ensembles have

more edge-disjoint paths than expected by chance. These

results indicate that nodes that are directly connected by

highly central edges also have significantly more alterna-

tive (edge-disjoint) pathways to communicate, which we

interpret as higher resilience. Interestingly, path ensembles

Fig. 5 Top 10 % central nodes (right) and edges (left) differ as a

function of k. Edges can belong to one of the following three sets:

b1\bk (purple), b1–bk (turquoise), bk–b1 (orange) where b1 is the set

of top 10 % central edges (nodes) only for k = 1, and bk is the set of

top 10 % central edges (nodes) for k[ 1. a Top 10 % central edges

for k = 1, 50 and 100. b Distributions of cost, degree, D̂k and Fk

expressed as z scores relative to null distributions obtained from

randomly sampling edges from the empirical networks. c Top 10 %

central nodes for k = 1, 50 and 100. b Distributions of cost, degree,

D̂k and Fk expressed as z scores relative to null distributions obtained

from randomly sampling nodes from the empirical networks
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associated with edges that are highly central only at k = 1

have significantly fewer edge-disjoint paths, suggesting

that the communication between the corresponding node

pairs is less resilient.

A similar analysis is performed at the level of nodes

(Fig. 5d). We define the k-shortest path closeness of a node

i as D̂k ið Þ ¼ 1
N

PN
j¼1 D̂kði; jÞ, and similarly, we can define the

average number of edge-disjoint paths between a node i and

all other nodes in the network asFk ið Þ ¼ 1
N

PN
j¼1 Fkði; jÞ. The

distributions of D̂k at the node level demonstrate that highly

central nodes have significantly greater k-shortest path

closeness than expected by chance. Furthermore, central

nodes belonging to the set b1\bk also exhibit significantly

higher resilience compared to other nodes.

A trade-off between efficiency and resiliency in path

ensembles

We study additional topological properties of path ensem-

bles that can give us some insight about the degree of

communication efficiency between distinct ROI, given the

admissibility of sub-optimal paths. To this end, for every

pair of ROI in the network, we first examine how the lengths

dðpkÞ of the kth shortest path in a KSP ensemble increase as

a function of k; then, we compute D̂k and Fk for all possible

node pairs in a network; finally, we derive normalized ver-

sions of these measures as follows: |D̂k| is defined as the ratio

of D̂k at values k[ 1 with respect to the shortest-path length

(k = 1); |Fk| is defined as the ratio of Fk with respect to

Fmax, where Fmax is the maximum number of edge-disjoint

paths between a pair of nodes, when the entire network is

considered (see ‘‘Materials and methods’’).

Figure 6a shows distributions of the ratio of the kth

shortest-path lengths and the (k = 1) shortest-path length

(left panel). These distributions reveal two salient features.

First, the median (averaged across all subjects, indicated by

red points) rises gradually with increasing k to a value of

1.46 for k = 100. Second, while there are kth shortest paths

whose lengths have increased significantly (in some cases

the increase is a tenfold increase with respect to the optimal

path length), we find that the composite distance measure

D̂k is not strongly affected by the inclusion of such long

paths, given that the maximum value of the ratio between

D̂k and the shortest path length is 1.67 (average across all

subjects) when k = 100 (for a single subject, and k = 250,

the maximum value of the ratio between D̂k and the

shortest path length is 1.84). In other words, D̂k deviates at

most from the optimal path length by 67 %. This confirms

the intuition that longer paths will make smaller contri-

butions towards the composite distance measure D̂k, given

that long paths tend to be more difficult to travel.

The number of edge-disjoint paths within a subgraph

Gpkði; jÞ is a non-decreasing function of k, however, this

measure is also bounded by the minimum between the

degrees of node i and node j. Interestingly, for many node

pairs, including high-degree node pairs, the majority of

their edge-disjoint paths are not ranked among the 100

shortest paths. The maximum value of Fk achieved at

k = 100, is 34 (see Fig. 6a, right panel), whereas the total

number of edge-disjoint paths available when the entire

network is considered (Fmax), has a maximum value of 56.

The fact that a large fraction of edge-disjoint paths have

longer lengths that rank them below k = 100 is confirmed

by the quartile values of |Fk| evaluated over all node pairs:

q1 = 0.50, q2 = 0.56, q3 = 0.65, q4 = 0.98 (for k = 100,

average across all subjects).

Next, we investigate the relationship between the num-

ber of edge-disjoint paths, Fk, and the extent to which the

composite distance measure D̂k deviates from the optimal

path length, as measured by |D̂k|. The scatter plots in

Fig. 6b show both of these measures evaluated over all

node pairs, averaged across all subjects. Interestingly, we

find that both measures are significantly correlated (Pear-

son correlation coefficients are r = 0.154, 0.499, 0.506,

and 0.470, for k = 2, 10, 50 and 100, respectively;

p\ 0.01). Minimizing the distance of a communication

pathway is desirable because it allows faster and less noisy

communication while favoring low wiring cost. However,

if distance minimization constrains multiple pathways to

traverse the same set of short structural edges, then the path

ensemble becomes vulnerable to edge failure or damage.

Hence, path ensembles that ‘‘branch-out’’ gain robustness

and resilience but at the expense of becoming less efficient.

The relationship between these two measures may thus be

interpreted as a trade-off. Finally, it is worth noting that for

values of k\ 3, path ensembles can only have a maximum

of 2 edge-disjoint paths; this constraint over the values of

Fk yields a smaller correlation between Fk and |D̂k|.

We now turn to study these topological measures of the

KSP ensembles at the ICN level by computing, for each

measure, the median across all node pairs between and

within the seven ICNs defined in Yeo et al. (2011). The

scatter plot in Fig. 6c shows Fk and |D̂k| median values for

k = 100, averaged across all subjects. Once again, we find

that the two measures are highly correlated (average

Pearson correlation coefficients across subjects are

r = 0.535, 0.637, 0.697, and 0.651, for k = 2, 10, 50 and

100, respectively; p\ 0.01). Furthermore, we find that data

points corresponding to pathways within the visual (VIS),

frontoparietal (FP) and dorsal attention (DA) networks

have higher values of Fk and/or |D̂k|, compared to other

ICNs. This finding suggests topological differences among

the communication pathways within these functional
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communities (analysis from data-driven ICN parcellation is

shown in Fig. S5 in the Online Resource).

It is well known that in spatially embedded networks,

the spatial distribution of nodes has significant effects on

the topology of the network (Barthélemy 2011) and as a

consequence, it is often the case that a significant portion of

the variability of topological measures across node pairs

may be accounted for by the physical and/or topological

distance between nodes. In order to determine whether the

relationship between Fk and |D̂k| is driven by the spatial

distance between nodes pairs, we performed a regression

analysis for each measure with a log-normal model (aver-

age R2 = 0.189 for |D̂k|, and R2 = 0.113 for Fk; p\ 0.01).

After regressing out the effects of Euclidean distance, the

measures remain strongly and significantly correlated for

values of k[ 2 (r = 0.01, 0.395, 0.455, and 0.437, for

k = 2, 10, 50 and 100, respectively; p\ 0.01). These

findings suggest that the relationship between these topo-

logical measures, evaluated on the SC networks, cannot be

fully accounted for by the spatial separation of the nodes.

Regarding the median values of the measures at the ICN

level, we examine whether the spatial locations of the

nodes within each functional community can explain the

segregation of the three ICNs that exhibit higher mean

values of Fk and/or |D̂k| (see Fig. 6c). To do so, we perform

permutation tests (1000 repetitions) in which ICN assign-

ments are randomly permuted within each hemisphere. In

addition, we constraint the permuted node assignments to

ensure that the average intra-hemispheric Euclidean dis-

tance between nodes assigned to each ICN is preserved to

be equal (within a 5 % error) to the average intra-hemi-

spheric Euclidean distance measured over the empirical

ICNs. On average, while high correlations between both

topological measures persist across permutations, we find

Fig. 6 Scatter plots of k-shortest path length and number of edge-

disjoint paths at different spatial scales. a Distributions of the ratio of

the kth shortest-path lengths and the (k = 1) shortest-path length (left

panel), and distribution of the number of edge-disjoint paths (right

panel). Red points indicate the average median across all subjects.

b Scatter plot of |D̂k| and Fk for all node pairs, for k = 2, 10, 50, and

100; points represent averages across all subjects. c Scatter plot of |D̂k|

and Fk corresponding to path ensembles within (color-filled points)

and between (white points) functional communities, for k = 100.

Vertical and horizontal lines in each point represent standard

deviations over all subjects. d Scatter plot of |D̂k| and Fk correspond-

ing to 34 anatomical regions within the right hemisphere (left panel)

and 34 anatomical regions within the left hemisphere (right panel),

both for k = 100. Vertical and horizontal lines in each point represent

standard deviations over all subjects
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that the mean values of Fk and |D̂k| corresponding to path

ensembles between and within permuted ICNs are restric-

ted to significantly smaller intervals ([1.204,1.268] and

[9.61,12.482] for Fk and |D̂k|, respectively), compared to

the values exhibited by empirical ICNs (Fig. S6 and Fig. S7

in Online Resource show scatter plots with average Fk and

|D̂k| values corresponding to permuted ICNs). Finally, rel-

ative to the permutation tests, all empirically observed

values of Fk and |D̂k| corresponding to within ICN path

ensembles differed significantly (p\ 0.01), confirming

that the path ensembles among nodes belonging to the

different functional communities exhibit structural orga-

nization patterns that are not solely driven by patterns of

spatial location.

We also study the relationship between Fk and |D̂k| at the

level of 68 cortical anatomical regions. For every

anatomical region ari we compute Fk (ari) and |D̂k(ari)|,

first computing the measures corresponding to every node

(by averaging values across all edges adjacent to each

node); then averaging across all nodes belonging to each

anatomical region ari. The scatter plot in Fig. 6d shows Fk

and |D̂k| of 34 right and 34 left hemispheric cortical

anatomical regions, for k = 100; values are averages

across all subjects. Once again, we find that the measures

are highly correlated (r = 0.97 and 0.98 for right and left

hemisphere, respectively; p\ 0.01). These results show

that some anatomical regions that are classified as being

highly central are also regions with a large number of edge-

disjoint paths, and a k-shortest path length that deviates the

most from the optimal path length. Among these regions

we find the pericalcarine, the isthmus of the cingulate, and

the insula (all bilateral), as well as the right caudal anterior

cingulate gyrus, right superior frontal gyrus, right posterior

cingulate cortex and left caudal middle frontal gyrus.

Likewise, some of the regions that were identified as the

least central appear to be regions with a small number of

edge-disjoint paths and a smaller deviation from the opti-

mal path length. Among these low-centrality, low resi-

lience regions we find right and left hemispheric entorhinal

cortex, and right and left hemispheric frontal pole.

Lateralization of efficiency and resiliency

The spread of right and left hemispheric data points in

Fig. 6d suggests that there are structural differences in the

connectivity patterns of homotopic cortical regions. We

examine hemispheric lateralization by comparing nodal Fk

and D̂k of homotopic anatomical regions in the left and

right hemispheres, assessing what regions have an under-

lying structural connectivity that enables them to commu-

nicate more efficiently and/or more resiliently with all

other ipsilateral or contralateral anatomical regions. Fur-

thermore, for this analysis we use the normalized version of

the number of edge-disjoint paths, |Fk|, to remove possible

effects of nodal degree and connection density differences

across hemispheres.

We quantify lateralization using the measures of inte-

gration and segregation suggested in (Gotts et al. 2013),

but we use structural-based measures (|Fk| and D̂k) instead

of functional-based measures. For each anatomical region,

we compute its average |Fk| and Dk with respect to all other

anatomical regions within the ipsilateral and the con-

tralateral hemisphere. The level of integration (with respect

to |Fk| or D̂k) associated with an anatomical region is

computed as the sum of ipsilateral and contralateral

structural-based measures; the level of segregation of an

anatomical region is computed as the difference between

ipsilateral and contralateral structural-based measures.

We perform separate Wilcoxon signed-rank test for the

integration and segregation measures, evaluated over |Fk|

and D̂k across all participants (p\ 0.005, corrected for

false discovery rate (FDR) to q\ 0.01 for all measures).

Figure 7 shows left and right lateralized brain regions

across all values of k. These results demonstrate that there

are broad ranges of k that exhibit significant left-lateral-

ization for the segregation measures, with a stronger effect

for the segregation measure evaluated by |Fk|. We also find

significant left-lateralization for the integration measure,

with more regions being significant for the segregation

measure evaluated by D̂k.

Among the left hemispheric anatomical regions that

exhibit significantly higher segregation measures with

respect to D̂k and |Fk| are motor-related areas such as pre-

central and paracentral cortex, language areas such as pars

triangularis, pars opercularis, and temporal cortex regions.

Among the left hemisphere anatomical regions that exhibit

significantly higher integration measures with respect to D̂k

and |Fk| across different values of k are frontal cortex

regions, cuneus, temporal cortex regions, and insula for the

D̂k integration measure only.

Discussion

In this study, we introduce the path ensembles comprising a

set of k-shortest paths between network nodes and we

apply this concept in an analysis of structural paths and

communication patterns in human brain networks. In doing

so, we build on three interwoven conceptual ideas that

underpin our analysis and a set of findings regarding the

topology of the human connectome.

The first conceptual idea involves relaxing the

assumption that communication takes place only through

minimally short paths. While shortest paths represent an

optimally short and direct solution for communication

between distinct brain regions, relying on them exclusively
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does not allow for the possibility that communication may

also take place through alternative or multiple paths;

moreover, the shortest paths do not provide any informa-

tion about the resilience of communication pathways

between brain regions. The existence of a short path

between a pair of brain regions does not imply that infor-

mation will uniquely and deterministically flow along that

path. The shortest path may be ‘‘hidden’’ and difficult to

travel if there are many possible detours from the path; the

shortest path also may be a bottleneck. Conversely, there

may be many paths that are identical in length (in the case

of un-weighted networks), or nearly identical in length to

the shortest path (especially in the case of weighted net-

works). Furthermore, k-shortest path-based measures may

be less susceptible to potential noise and artifacts that limit

the accuracy of estimating the edges in the data. While the

technologies for acquisition and processing of diffusion

imaging data are continually improving, the relationship

between connection strengths derived from diffusion

imaging data (such as fractional anisotropy, streamline

Fig. 7 Right and left hemispheric lateralization of integration and

segregation with respect to |Fk| and D̂k. |Fk| and D̂k segregation and

integration measures were compared across all subjects at homotopic

anatomical regions in the left and right hemispheres (LH and RH,

respectively). Anatomical regions in the left hemisphere found to

perform better at the integration measures (I(LH)[ I(RH)) are

colored with yellow, whereas anatomical regions in the right

hemisphere found to perform better at the integration measures

(I(RH)[ I(LH)) are colored with purple (top and bottom left panels).

Anatomical regions in the left hemisphere found to perform better at

the segregation measures (S(LH)[S(RH)) are colored with pink;

anatomical regions in the right hemisphere found to perform better at

the integration measures (S(RH)[S(LH)) are colored with cyan (top

and bottom right panels)
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count, or fiber density) and the physiological or anatomical

traits determining information flow across white matter

pathways remains unclear (Jones et al. 2013). Hence, there

is no principled rationale to prioritize optimally short paths

in weighted brain networks.

Second, building on elemental concepts of network

science, we extend two basic graph-theoretic measures,

specifically, the shortest path betweenness centrality of

nodes and edges, and the path length between node pairs.

As previously noted in (Borgatti 2005), the dynamics of

information flow within a network affects the appropri-

ateness of centrality measures. Here we claim that the same

is true for measures of communication efficiency and

resilience. Basic assumptions about the manner in which

information flow takes place through the network define

which communication paths are considered and how they

contribute to the overall topological measures. The most

widely used centrality and distance measures only consider

optimal information transmission, with the implicit

assumption that the system has full knowledge of the net-

work’s topology. On the other hand, measures such as

mean first passage times (Grinstead and Snell 2012), dif-

fusion efficiency (Goñi et al. 2013), communicability

(Estrada and Hatano 2008), and random-walk betweenness

(Newman 2005) take into account all paths (or walks)

between node pairs, making no assumptions about opti-

mality or a need for ‘‘knowing’’ about the system’s

topology. In this paper, we consider a scenario that lies

between these two extreme communication schemes.

Third, our approach allows us to explore additional

aspects of communication efficiency and resilience of

human brain SC networks. There is mounting evidence

showing that minimizing wiring cost and the length of

communication pathways simultaneously is an important

driver for the organization of spatially embedded networks

(Barthélemy 2011) such as brain networks (Kaiser and

Hilgetag 2006; Bassett et al. 2010; Vertes et al. 2012;

Betzel et al. 2016). Nonetheless, empirical and computa-

tional studies have also shown that there are additional

aspects of communication efficiency that are fundamental

for brain function, for example: limiting the occurrence of

bottlenecks that cause delays of information loss (Tombu

et al. 2011; Mišić et al. 2014); minimizing the number of

intermediate steps between a signaling source and its target

(Kaiser and Hilgetag 2006); recruiting different pathways

to optimize performance, robustness and resilience (Kaiser

et al. 2007; Masel and Trotter 2010; Stern et al. 2005;

Wook Yoo et al. 2015); and promoting the capacity to

integrate and segregate information processing at various

spatial–temporal scales (Tononi et al. 1994; Gallos et al.

2012; Sporns 2013). In this study, we address some of these

aspects, and furthermore, we uncover a competitive inter-

action, or trade-off, between communication efficiency and

resilience, which, to our knowledge, has not been explored

in the context of SC brain networks.

Building on these ideas, our first main finding is that

k-shortest path ensembles broaden the participation of all

connections in communication processes, including faint

but direct connections often spanning long physical dis-

tances. As a result of broadening the participation of con-

nections, path ensembles linking many pairs of nodes are

diffusely laid out, in some cases crossing multiple different

ICN and anatomical boundaries. Interestingly, the partici-

pation of connections in communication pathways as a

function of k is also dependent on the function used to

transform connection strengths into connection lengths. For

the results presented in this work, we use a Log transform

that yields a log-normal distribution of the resulting con-

nection lengths. There are two main arguments supporting

this choice: First, this distribution is consistent with evi-

dence pointing towards log-normal distributions of synap-

tic strengths between cortical cells (Buzsáki and Mizuseki

2014) as well as strengths of cortico-cortical projections

(Markov et al. 2012). Second, the Log transform (unlike the

often used inverse transform) results in edge lengths that

allow all edges to contribute in efficient communication

paths (see Fig. 2). We note that other transforms resulting

in heavy-tailed distributions of edge lengths may also be

compatible with empirical data and recruit all edges for

communication processes and should be explored in future

work.

Our next result shows that the centrality ranking of

nodes and edges varies as a function of k, the number of

k-shortest paths contained in the path ensembles. We also

find that, as the value of k increases, there is an increase in

the average degree and wiring cost of the top 10 % central

nodes and edges. While the relationship between high

shortest-path centrality, high degree (hubs) and high net-

work cost has been elucidated before as a characteristic of

the rich club (van den Heuvel et al. 2011; Collin et al.

2014), our findings suggest that these rich club properties

might be accentuated when we consider k-shortest path

ensembles. An additional interesting finding regarding the

properties of highly central nodes and edges is that they are

significantly more resilient. However, these features are

only found in edges that are highly central for values of

k[ 1 (Fig. 5b). Because we measure resilience in terms of

the number of edge-disjoint paths, this result suggests that

the removal of a high (k[ 1)-centrality edge may not

compromise the communication between the pair of brain

regions connected by such edge. Moreover, the larger

values of Fk exhibited by high-centrality edges suggest that

they are less prone to becoming bottlenecks for

communication.

A main component of our work is the finding of a com-

petitive relationship between communication efficiency, and
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resilience. Such a relationship is present at multiple spatial

scales, from the level of ROI pairs, to anatomically based

regions, and functional communities. It suggests that the

k-shortest paths comprising path ensembles between brain

regions cannot be both optimally short (as short as the

shortest path) and maximally resilient. As a result, we

observe a strong positive linear relationship between Fk and

|D̂k|, a characteristic feature of traits that engage in mutual

competition, or a trade-off (Shoval et al. 2012); hence, some

path ensembles are organized to favor short communication

pathways, while other path ensembles ‘‘branch out’’ and thus

favor more resilient communication. An important question

to consider is whether the relationship between Fk and |D̂k| is

the product of geometrical or mathematical constraints, or

conversely, it is the result (or byproduct) of selective pres-

sures that work towards optimizing the functionality of the

system. In other words, are path ensembles with high values

of Fk and low values of |D̂k| geometrically impossible to

create, or are they non-functional, and thus, they are not

observed in neuronal systems (McGhee 2006)? The work

presented here does not allow us to answer this question. To

address the question of whetherFk and |D̂k| are geometrically

or functionally constrained, a multi-objective evolutionary

approach could be adopted, such as the one carried out in

(Goñi et al. 2013; Avena-Koenigsberger et al. 2014). This

approach would allow us to determine whether or not it is

possible to generate brain-like topologies that break the

linear relationship between Fk and |D̂k|.

Our final result demonstrates a hemispheric lateraliza-

tion of integration and segregation, which we evaluate by

comparing D̂k and |Fk| of homotopic anatomical regions.

While hemispheric lateralization has been previously

demonstrated in neuroimaging studies, it has been mostly

studied from a functional perspective, quantified by

examining differences in the overall magnitude of brain

activity (van Essen et al. 2012; Seghier et al. 2011), or

differences in the magnitude of BOLD time-series corre-

lations (Powell et al. 2012; Liu et al. 2009). More recently,

Gotts et al. (2013) presented two functionally based mea-

sures that aim to quantify distinct forms of hemispheric

lateralization, specifically, integration and segregation.

Despite that the findings in (Gotts et al. 2013) have

advanced the understanding of how the two hemispheres

interact, the underlying structural substrates of the

observed dynamical differences are still unknown. The

work by Iturria-Media et al. (2011) takes a first step using

shortest path-based measures to detect differences in the

connectivity patterns of the right and left hemispheres.

Moving forward, our work uses path ensembles to

demonstrate differences in the patterns of structural con-

nectivity that yield hemispheric lateralization of integration

and segregation. Importantly, our results are in line with

the findings presented in (Iturria-Medina et al. 2011), and

several of the regions we find to exhibit high integration/

segregation measures match with regions found in (Gotts

et al. 2013), particularly for the case of left-lateralization of

the functional-based and |Fk|-based segregation measures.

There are a number of methodological aspects of the

present work that require further considerations. First,

computational limitations precluded us from computing

k-shortest path ensembles for k[ 100, for all 40 subjects.

A limited exploration in which we computed 250 paths for

a single subject shows that the median of the distributions

of D̂k and Fk continue to increase gradually, but we are

unable to identify an asymptotic value. Moreover, we are

unable to perform the hemispheric lateralization analysis

within single subjects, so we cannot determine whether our

results would vary greatly when k[ 100.

Second, while all the networks used for this work were

derived through the same processing pipeline, individual

differences did not allow us to identify sets of nodes and

edges with consistent properties across all subjects. For

example, the top 10 % central edges differed for all sub-

jects. This also raises the questions of whether our results

are qualitatively consistent across different data sets, pro-

cessed with different pipelines and different parcellations.

Moreover, as higher quality data becomes more available,

it may become more common to use fine-grained parcel-

lations that include subcortical regions. This kind of model

would certainly require an analysis with larger values of k,

which call for much larger computational resources. It is

worth noting that, despite the increasing quality of diffu-

sion imaging data and data-processing algorithms, these

techniques are still prone to false positives and negatives

(Thomas et al. 2014) that may affect our results. One of the

most important shortcomings of diffusion imaging is the

lack of information about the directionality of anatomical

connections in human networks. The findings presented in

this study could differ significantly if we were able to

perform our analysis on directed anatomical networks.

Tangentially related is the definition of ICNs based on

Pearson correlations, which in the future should be sup-

plemented by definitions that draw on more sophisticated

measures of effective connectivity. We note that all the

concepts and measures presented in this study apply for

both undirected and directed networks.

Finally, a number of aspects of this work will benefit

from future extensions. These include studying the effects

resulting from perturbations over anatomical connections,

more specifically, the directed removal of highly central

edges, where centrality is assessed according to k-shortest

paths, and studying the effects of setting limits on the

length of viable alternative paths by defining the value of k

as a local property of a node pair, instead of defining k as a

global variable. More generally, a number of network-

based measures that have been used to characterize the
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organization of brain networks can be extended to consider

path ensembles. These generalizations are not limited to

study and characterization of structural connectivity, but

may provide a fuller understanding of the relationship

between brain structure and function.
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