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Synopsis (100 words): brief summary of the problem, methods, results, and conclusions 

Machine learning challenges serve as a benchmark for determining state-of-the-art results in 

medical imaging. They provide direct comparisons between algorithms, and realistic estimates 

of generalization capability. By participating in the Aneurysm Detection And segMentation 

(ADAM) challenge, we learnt the most effective deep learning design choices to adopt when 

tackling automated brain aneurysm detection on multi-site data. Adjusting patch overlap ratio 

during inference, using a hybrid loss, resampling to uniform voxel spacing, using a 3D neural 

network architecture, and correcting for bias field were the most effective. We show that, when 

adopting these expedients, our model drastically improves detection performances. 

 

Summary of Main Findings (250 char – 35 words): 

Participating in challenges provides valuable insights for medical imaging problems. In our 

case, the expedients learnt from a public challenge helped us improving the sensitivity of our 

model both on our in-house data and on the challenge test data. 

 

1 - Introduction 

The task of brain aneurysm detection in Magnetic Resonance Angiography (MRA) has been 

extensively studied in past years 1-4. Although these novel methods showed encouraging results, 

they were tested on in-house datasets, which makes fair comparison nearly impossible. In 

addition, some of them 2,4 applied their algorithms on Maximum Intensity Projection (MIP) 

images, rather than on MRA. 

At MICCAI 2020, the first public challenge on aneurysm detection in MRA was organized 

(ADAM 5). This represented a turning point since it finally provided an unbiased comparison 

between research groups. To have a realistic idea of how our model generalized to unseen data 

from another hospital, we decided to participate. 



 

 

This work describes the model that we initially submitted to the challenge; then, it illustrates 

the beneficial impact of the winning trends on our network. Lastly, it shows the domain gap in 

performances across different sites. 

 

2 - Materials and Methods 

2.1 Data 

The training data was composed of both ADAM and in-house data. For ADAM, 113 subjects 

presenting a total of 125 aneurysms were provided. The annotations of all challenge data were 

manually drawn slice by slice in the axial plane by two trained radiologists. Instead, the in-

house data consisted of 212 subjects who underwent clinically-indicated MRA in our hospital, 

and presented a total of 110 aneurysms. Patients were scanned using a 3D gradient recalled 

echo sequence with Partial Fourier technique (details in Figure 1). For all our subjects, coarse 

manual masks (spheres enclosing the aneurysms) were drawn around aneurysms by one 

radiologist with 3+ years of experience in neuroimaging. 

To assess the gap in performances across different sites, evaluation was performed both on the 

ADAM test set (141 subjects, unreleased) and on 38 new in-house patients presenting 44 

aneurysms. When evaluating on the ADAM test set, we trained the network with a combination 

of our in-house data and the ADAM training set. Similarly, when evaluating on our in-house 

test set, we trained the model with all ADAM data and our training set. 

 

2.2 First challenge submission 

Here, we describe our first method. Two preprocessing steps were applied: first, we performed 

brain extraction on all volumes with FSL-BET 6; then, we co-registered a probabilistic vessel 

atlas 7 from MNI space to the MRA space of each subject using ANTS 8. Furthermore, one of 

our radiologists pinpointed in MNI space the location of 24 landmark points where aneurysm 

occurrence is most frequent, and we also co-registered these points to individual MRA space 

(Figure 2). 

The training dataset was composed of 3D patches extracted from the skull-stripped MRA 

volumes (patch selection details in Figure 3). To reduce class imbalance, we applied 6 

augmentation techniques on patches containing aneurysms, namely horizontal and vertical 

flipping, rotations, and contrast adjustment. As deep learning model, we implemented a 3D-

UNET 9 in Tensorflow 2.1. This was initialized with the Xavier method 10 and trained for 500 

epochs with adaptive learning rate, Adam 11 optimizer and dice loss 12, on a GeForce RTX 

2080TI with 11GB of SDRAM. 

At inference, patient-wise detection was performed with a sliding-window approach, without 

patch overlapping. Only patches which are both within a minimum distance from the landmark 

points and have an average brightness higher than a specific threshold were retained. The 

rationale behind this choice was to only focus on patches located in the Willis polygon (Figure 

4). The probabilistic segmentation output was binarized with an empirical threshold (0.75). 

Then, only the largest connected component was retained for each patch, and its center-of-mass 

was used as aneurysm center location. 



 

 

2.3 Post-challenge submission 

The model that we later re-submitted was based on the one above, but it was modified with the 

winning trends adopted by the top-performing teams: 

● Sliding-window overlapping: we increased patch overlap during inference to 25%. 

● Loss function: we used a combination of cross-entropy and Dice as in 13 (with 𝛼 =

0.5), instead of plain Dice. 

● Resampling: since both our dataset and the challenge dataset contain images acquired 

with different parameters (see Figure 1), resampling to a uniform voxel spacing 

mitigates site differences. 

● Bias-field correction: removing smooth low-frequency noise alleviates part of the inter-

site and inter-subject intensity variabilities. 

By running empirical trials, we noticed that increasing the sliding-window overlapping was 

undoubtedly the most effective trend, though we did not compare the impact of each expedient 

one by one. 

 

3-Results: 

Figure 5 illustrates all detection results both for the two challenge submissions and for our in-

house test set. With the modified network, we improved our detection ranking from 9th to 6th. 

Moreover, there was a drastic sensitivity increase (+39% on ADAM, +53% on in-house), as 

well as a slight reduction in average false positive count on both datasets. Lastly, we noticed a 

substantial drop in performances across sites (in-house sensitivity=86% vs. challenge 

sensitivity=59%).  

 

4-Discussion:  

We believe the challenge brought two main contributions: on one hand, it provided the first 

unbiased comparison of detection models for MRA data; on the other hand, it outlined the most 

efficient experimental choices for achieving state-of-the-art results. Overall, domain gaps due 

to site differences still represent an obstacle for effectively applying machine learning 

techniques on clinical data. However, challenges offer a precious feedback mechanism to push 

the field forward. 
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Figures: 

# Scans Vendor Model Field Strength 

[T] 
Voxel Spacing 

[mm] 
TR 

[ms] 

TE 

[ms] 

72 Philips Intera 3.0 0.39 x 0.39 x 0.55 18.3 3.4 
9 Siemens Aera 1.5 0.35 x 0.35 x 0.5 24.0 7.0 
21 Siemens Skyra 3.0 0.27 x 0.27 x 0.5 21.0 3.43 
35 Siemens Symphony 1.5 0.39 x 0.39 x 1 39.0 5.02 
28 Siemens TrioTim 3.0 0.46 x 0.46 x 0.69 23.0 4.18 
61 Siemens Verio 3.0 0.46 x 0.46 x 0.7 22.0 3.95 

 

Dataset Median Volume Shape Median Voxel Spacing [mm] 

ADAM (512, 512, 140) 0.39 x 0.39 x 0.50 

In-house (384, 512, 100) 0.46 x 0.46 x 0.69 

 

Figure 1: Upper table: MR acquisition parameters for the study population of our university 

hospital. Acquisition parameters of the challenge data are not released yet. Lower table: 

differences in volume shape and spatial resolution between the challenge ADAM data and our 

in-house data. 

 

 

 

 

Figure 2. (left): 24 landmark points (in pink) located in specific positions of the Willis polygon 

(white segmentation) in MNI space. (right): same landmark points co-registered to the MRA 

space of one subject. 

 



 

 

 

Figure 3. For each patient, we selected 30 negative patches (green) and 5 positive patches (red). 

Out of 30, 24 negative patches were located in correspondence of the landmark points (pink) 

and 6 in correspondence of other random vessels in the brain. Instead, positive patches were 

randomly shifted around the aneurysms. For controls, we only extracted negative patches. 

 

 

 

 

 



 

 

 

 

Figure 4. MRA orthogonal views of a 31-year-old female subject: blue patches are the ones 

which are retained in the anatomically-informed sliding-window approach. (top-right): 3D 

schematic representation of sliding-window approach; out of all the patches in the volume 

(white patches), we only retain those located in the proximity of the Willis polygon (blue ones). 

 

 

 

 

 

 

 

 



 

 

Team Challenge 

Ranking 

Sensitivity Average False 

 Positive Count 

mibaumgartner 1st 66% 0.14 

joker 2nd 63% 0.16 

junma 3rd 61% 0.18 

kubiac 4th 60% 0.36 

xlim 5th  70% 4.03 

unil_chuv_post 6th  59% 1.18 

… 
 

      unil_chuv_pre 9th 20% 1.45 

… 
 

 
  

Model Test 

Dataset 

Sensitivity Average False 

Positive Count 

unil_chuv_post 
  

In-house 
86% 1.0 

unil_chuv_pre 33% 1.80 

 

Figure 5. Sensitivity and average false positive count were chosen as detection metrics in the 

challenge. Upper table: detection results of the top teams, plus those of our two submissions 

(pre and post modifications) on the challenge test set. Further details regarding the metrics 

definition, the updated leaderboard and the ranking criteria can be found at 

http://adam.isi.uu.nl/results/results-miccai-2020/. Lower table: same detection metrics 

computed on our in-house test set with the initial model (pre) and the modified one (post). 
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