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Active Subdivision Surfaces for the Semiautomatic
Segmentation of Biomedical Volumes

Anaïs Badoual , Lucia Romani , and Michael Unser , Fellow, IEEE

Abstract— We present a new family of active surfaces for the
semiautomatic segmentation of volumetric objects in 3D biomed-
ical images. We represent our deformable model by a subdivision
surface encoded by a small set of control points and generated
through a geometric refinement process. The subdivision operator
confers important properties to the surface such as smoothness,
reproduction of desirable shapes and interpolation of the control
points. We deform the subdivision surface through the minimiza-
tion of suitable gradient-based and region-based energy terms
that we have designed for that purpose. In addition, we provide
an easy way to combine these energies with convolutional neural
networks. Our active subdivision surface satisfies the property of
multiresolution, which allows us to adopt a coarse-to-fine opti-
mization strategy. This speeds up the computations and decreases
its dependence on initialization compared to singleresolution
active surfaces. Performance evaluations on both synthetic and
real biomedical data show that our active subdivision surface is
robust in the presence of noise and outperforms current state-
of-the-art methods. In addition, we provide a software that gives
full control over the active subdivision surface via an intuitive
manipulation of the control points.

Index Terms— Multiresolution, triangular mesh, deformable
model.

I. INTRODUCTION

OUR motivation is to develop a generic and versatile
framework for the semiautomatic segmentation of vol-

umetric structures in 3D biomedical data. We want the seg-
mentation to be reasonably fast and robust, and the outcome
to be easily editable by the user if needed.

Active surfaces allow for the extraction of volumetric
structures [1]–[4]. They consist in flexible surfaces that are
deformed from an initial user-provided configuration toward
the boundary of a volume to be segmented. They became
popular because they allow for user interaction, either to
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specify the initial configuration or to perform final manual
adjustments, if needed. The deformation of the flexible surface
is driven by the minimization of suitable energies [5]. Cur-
rently, 3D deformable models are described either implicitly
(e.g., by level sets [6], [7]), or explicitly, by meshes [2],
[8] and parameterizations [3]. Parametric active surfaces have
a continuously defined spatial representation through basis
functions. It is easy to introduce smoothness and shape con-
straints [9], [10]. They require few parameters (i.e., control
points), which results in faster optimization and better robust-
ness [11]. On one head, two well-known drawbacks of para-
metric approaches are (i) the restricted nature of the shapes that
they can generate; and (ii) their inability to deal with topology
changes such as surface merging and splitting. On the other
hand, active meshes can handle topology changes. In addition,
their discrete nature allows for an easy implementation; they
are compatible with open-source libraries for optimization
or visualization. However, they rely on a large number of
parameters (i.e., the vertices of the mesh), which requires
an internal regularization term and makes the optimization
more challenging. In this paper, we propose to represent the
deformable model with a subdivision surface. This geometric
representation combines the advantages of parametric and
mesh-based approaches: the continuously defined surface is
fully driven by an initial coarse mesh whose few control points
are the parameters of the representation.

Subdivision is a powerful scheme to generate surfaces of
arbitrary topology starting from an initial set of points (coarse
mesh) [12]–[17]. A refinement process is recursively applied
to the initial mesh to produce a continuously defined limit
surface. The subdivision surface has the desirable property
of being smooth while its shape is fully controlled by the
initial set of points. Moreover, subdivision leads naturally to
multiresolution, which allows for the surface of a shape to
be represented at varying resolutions. Subdivision has become
one of the basic geometric tools in computer graphics for
representation and modeling [18]–[20]. The use of subdivision
to construct segmentation models was pioneered in 2D by [21]
for the Dyn-Levin-Gregory scheme [22] and by [23] for any
convergent subdivision scheme. The extension to 3D models
is more challenging. From a computational point of view,
the geometry of the surface and the mesh connectivity increase
the complexity of the implementation. Shapes are encoded
with more control points, with three degrees of freedom for
each one, which makes the optimization more complicated and
slower. Moreover, it might be necessary to maintain evenly
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spaced control points to favor a representative sampling of the
surface. In the literature, only few works used subdivision to
segment volumes. The authors of [24] presented the modeling
of left ventricles using Doo-Sabin surfaces [12], while the
segmentation of branch vessel structures was performed in [25]
using Loop’s subdivision scheme [13].

In this paper, we present the generic construction of
active subdivision surfaces in the context of any subdivi-
sion scheme that operates on triangular meshes. The main
contributions of this work are 1) a new 3D geometrical repre-
sentation based on subdivision; 2) the derivation of region-
and gradient-based energy functions that are guaranteed to
have the proper limit proposed in [3]; 3) the presentation
and integration of an algorithmic coarse-to-fine optimization
strategy. We have implemented the method described in this
paper as a user-friendly open-source plugin1 available for the
free open-source image-processing package Icy [26].

In Section II, we introduce the relevant theory related to
subdivision surfaces. We particularize the construction by
making use of Loop’s subdivision scheme. In Section III,
we describe the generic construction of active subdivision
surfaces on triangular meshes. We also describe the proposed
coarse-to-fine optimization strategy. In Section IV, we perform
an extensive validation of active subdivision surfaces on both
synthetic and real biological images. We also introduce a way
to incorporate neural networks into our deformable model.
Finally, conclusions are drawn in Section V.

II. SUBDIVISION SURFACES

A. Notation and Terminology

A closed triangular mesh M(k), at resolution k, is defined
by the set P(k) = {

p(k)[m] ∈ R3, m ∈ {0, . . . , Nk − 1}} of
Nk points. These points are implicitly connected by triangles.
The valence n of the vertex p(k)[m] denotes the number of its
adjacent vertices in the mesh M(k). A vertex is extraordinary
if its valence is different from six, otherwise it is regular.

B. Subdivision Schemes

Given the coarse mesh M(0), we repeatedly apply subdivi-
sion rules k times to obtain a finer mesh M(k), which does not
necessarily contain the coarser mesh M(k−1). The construction
of M(k) amounts to the specification of both its geometry
(i.e., its vertices P(k)) and its topology (i.e., the connectivity
between them). If M(k) is suitably constructed for each k,
then, when k tends to infinity, the sequence of denser and
denser meshes {M(k), k ≥ 0} converges to the continuously
defined surface σ = (σ1, σ2, σ3) with σ1, σ2, σ3 ∈ C0. The
subdivision rule from (k − 1) to k is defined by

P(k) = Sk−1P(k−1), (1)

where Sk is the subdivision operator at the kth iteration of
the subdivision scheme. We say that a subdivision scheme is
stationary if the subdivision rules in Sk are the same at each
iteration; otherwise, it is non-stationary. The vertices of the

1Demos and code of the plugin are available at bigwww.epfl.ch/demo/
subdivision-surfaces/, as of May 2021.

mesh at the kth iteration (k ≥ 1) can be directly obtained
from the initial set of control points P(0) by

P(k) = Sk−1 Sk−2 · · · S0P(0). (2)

Formulation (2) makes it obvious that P(k) depends exclusively
on the N0 vertices of P(0), which we call control points. The
Nk vertices of the mesh M(k) at the kth iteration (k ≥ 1) are
called subdivision points.

C. Properties

In the literature, there is a wide range of subdivision
schemes to produce surfaces. They differ in the properties that
they confer to the limit surface.

1) Reproduction of Specific Shapes: The ability of a
subdivision scheme to reproduce ellipsoids or spheres [17],
[27]–[29].

2) Interpolation: The subdivision points obtained at each
iteration lie on the limit surface [14], [30]–[33].

3) Smoothness: The subdivision rules given in [12] lead
to C1 limit surfaces, while the ones developed in [13], [34]
produce C2 continuous limit surfaces everywhere, except
at extraordinary vertices where they are only C1 continu-
ous. Non-stationary schemes generalizing the Doo-Sabin and
Catmull-Clark schemes were proposed in [35]. Theorems to
analyze the smoothness of a non-stationary scheme in regions
with regular and extraordinary vertices can be found in [36]
and [37], respectively.

4) Affine Invariance: The geometry of the limit surface
changes in synchrony with any affine transformation that
would be applied to the initial mesh. Conditions on the
subdivision operators Sk to ensure this property are given
in [28], [38].

The framework that we present in this paper is valid for
any subdivision scheme for triangular meshes. However, for
consistency and clarity purposes, we now specifically describe
the subdivision scheme that we shall use in the experiments
of Section IV.

D. Loop’s Scheme

Loop’s scheme is a widely used subdivision scheme for
triangular meshes. It has been developed by Charles Loop
in 1987 [13]. It generates a limit surface that is C2-continuous
everywhere, except at extraordinary vertices where the regu-
larity is C1. This scheme refines each triangle of the current
mesh into four subtriangles (Figure 1 (a) and (b)). The splitting
of each triangular face is achieved by creating the vertices of
the finer mesh via the application of special refinement rules
and by connecting them together. Such refinement rules are
respectively termed vertex-point or edge-point rules, depend-
ing on whether the new vertex is located in correspondence to
a vertex or an edge of the coarser mesh.

1) Vertex-Point Rule: The location of every former vertex
p(k)[m], m ∈ {0, . . . , Nk − 1}, is updated. A new vertex
p(k+1)[q], q ∈ {0, . . . , Nk+1 − 1}, is obtained by the convex
combination

p(k+1)[q] = α p(k)[m] + β
∑

p(k)[u]∈Vm

p(k)[u], (3)
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Fig. 1. Generation of an approximation of the surface of a sphere by Loop’s
scheme, starting from an octahedron.

Fig. 2. Stencils for vertex-point (a) and edge-point (b) rules of Loop’s
scheme.

where Vm is the set of the n adjacent vertices of p(k)[m] in

M(k), α = 3
8 +

(
3
8 + 1

4 cos( 2π
n )

)2

, and β = 1−α
n . The rule is

illustrated in Figure 2 (a).
2) Edge-Point Rule: For every edge in the previous mesh,

a new vertex is inserted. Let us consider the two old adjacent
triangles made of the vertices p(k)[m0], p(k)[m1], p(k)[m2],
and p(k)[m3], with m0, m1, m2, m3 ∈ {0, . . . , Nk − 1}, such
that p(k)[m0]p(k)[m1] is the common edge (Figure 2 (b)). The
subdivision rule yields that

p(k+1)[q] = 3
8

(
p(k)[m0] + p(k)[m1]

)
+ 1

8

(
p(k)[m2] + p(k)[m3]

)
, (4)

where q ∈ {0, . . . , Nk+1 − 1}.
This scheme is stationary, easy to implement, and has the

property to be affine invariant. In Figure 1, we illustrate the
sphere approximated by Loop’s scheme using an octahedron
as initial mesh. Extensions of Loop’s scheme to get additional
properties like exponential polynomial reproduction and opti-
mal shrinkage are considered in [17] and [39], respectively.

III. ACTIVE SUBDIVISION SURFACES

An active surface is composed of a geometric representation
of the surface and an energy term. This energy measures the
deformation and attraction of the surface to the boundary of

an object of interest in an image. In this section, we describe
the construction of an active subdivision surface on triangular
meshes and propose an integrated coarse-to-fine optimization
strategy to minimize the energy term. The flowchart of the
proposed framework is depicted in Figure 3. From now on,
we consider orientable closed surfaces (i.e., compact and
without boundary) since we want our active surface to segment
blob-like objects within 3D images.

A. Geometric Representation

We implicitly represent the surface of the deformable model
by the continuously defined, orientable, closed, limit surface
σ obtained by means of the selected convergent subdivision
scheme, which is informally denoted by

σ = lim
k→∞ M(k), (5)

where M(k) is the triangular mesh at resolution k defined by
connecting the vertices in (2). This implies that the properties
of the model depend on the choice of the subdivision scheme.
A mandatory requirement is affine invariance; it ensures that
the surface is described independently from its location and
orientation. Moreover, the quality of the segmentation can
be influenced as follows: first, the regularity of the surface
defines the smoothness of the segmentation result; second,
the geometric reproduction properties have to match the shape
of interest. The number N0 of control points determines the
number of degrees of freedom of the model. A small N0 leads
to simple and constrained shapes, while an increase in N0
brings additional flexibility to approximate arbitrary surfaces.

B. Energy Terms

The second important component is the energy functional
that influences the quality of the segmentation. Traditionally,
the energy is divided into an internal energy, which drives
the smoothness of the surface, and an external energy, which
is purely data-driven. In the present case, the smoothness of
the surface is driven by the choice of the subdivision scheme
that produces at least C1 surfaces. Therefore, we reduce the
energy E of the active subdivision surface to the external term

E( f, P(k)) = bEgrad( f, P(k)) + (1 − b)Eregion( f, P(k)), (6)

where Egrad is a surface-based term that uses gradi-
ent information to detect boundaries, and Eregion is a
region-based term that uses statistical information to establish
a homogeneity-based partition of an image. The contribution
of those two energies is balanced by b ∈ [0, 1], whose value
depends on the application. The volumetric image f is the
image to be segmented or a filtered version of it, while
P(k) = P(k)(P(0)) describes the surface. The optimization is
performed in terms of the control points P(0), with

P(0)opt = arg min
P(0)

E
(

f, P(k)(P(0))
)
. (7)

The gradient energy that we propose is expressed as

Egrad( f, P(k)) = − 1

22k

Nk−1∑
m=0

∇ f (p(k)[m]) · n(p(k)[m]), (8)
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Fig. 3. Flowchart of the proposed active subdivision surface. Blue dots: control points; Blue mesh: subdivision surface. (a) Segmentation inputs: the volume f
to segment and a subdivision surface represented by the triangular low-resolution mesh M(k) and encoded by N0 control points (Section II). For the illustration,
we choose k = 2 and N0 = 6. (b) Coarse-to-fine optimization (Section III-C): first, we apply a lowpass filter to f to obtain a volume where the object of
interest contains few details only. We fit the coarse mesh M(2) on this smoothed volume through the minimization of an energy functional that consists of
a combination of gradient-based and region-based terms (Section III-B). Then, we use the outcome of this first optimization as the initialization at the next
resolution level. We refine the mesh and the number of control points, optimizing it on a smoothed version of f where the object of interest has more details
than at the previous step. We continue until we reach the finest resolution level that corresponds to the original volume f . (c) Segmentation outcome.

where ∇ f (p(k)[m]) and n(p(k)[m]) are the gradient of f and
the normal vector, respectively, at the vertex p(k)[m]. The
expression of n(p(k)[m]) is given by

n(p(k)[m]) =
∑

T ∈Om
nt (T )

|| ∑T ∈Om
nt (T )|| , (9)

where Om is the set of all the triangles to which p(k)[m]
belongs and nt (T ) is the normal of the triangle T .

Proposition 1: As k → ∞, the energy given by (8) con-
verges to the standard energy given in [3] as

Egrad( f, P(k)) −→
k→∞ −

‹
S

∇ f (σ ) · dσ , (10)

where S is the surface described by σ and dσ represents the
vector differential area.

The proof of Proposition 1 is given in Appendix B. For
the region energy, we adopt the strategy proposed in [3]
and [40]. We build an enclosing surface σ λ around σ . The
volumes enclosed by σ and σ λ, denoted by V and Vλ,
respectively, are such that V ⊂ Vλ, while V and Vλ \ V have
the same volume. Then, Eregion discriminates an object from
its background by maximizing the signed contrast between the
intensity of the image f averaged within V , and the intensity
of f averaged over the volume of the shell Vλ \ V . For the

expression of Eregion, we choose

Eregion( f, P(k)) = 1∣∣V(P(k))
∣∣ 22k

×
⎛
⎝2

Nk−1∑
m=0

F(p(k)[m])n1(p(k)[m])

−
Nk−1∑
m=0

F(pλ(k)[m])n1(pλ(k)[m])
⎞
⎠ , (11)

where
∣∣V(P(k))

∣∣ is the volume of M(k), n1 is the first
coordinate of the normal vector given by (9), and Pλ(k) is
the set of subdivision points that defines the surface σ λ. The
volume F is the pre-integrated volumetric image along the first
dimension defined by F(p1, p2, p3) = ´ p1

−∞ f (τ, p2, p3)dτ .
Note that the volume F is precomputed and stored in
a lookup table, which speeds up the computation of the
algorithm.

Proposition 2: As k → ∞, the proposed energy (11)
converges to the standard energy given in [3] as

Eregion( f, P(k)) −→
k→∞

1

|V|
(˚

V
f dV −

˚
Vλ\V

f dV

)
,

(12)

where V is the volume of V .
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The proof of Proposition 2 is given in Appendix C.

C. A Coarse-to-Fine Optimization Strategy

The advantage of a multiresolution strategy has been shown
in [23], for 2D subdivision models, to accelerate the seg-
mentation and to make it more robust to the initialization.
The use of such algorithms is even more relevant in 3D as
the optimization is more difficult. There, we propose an inte-
grated coarse-to-fine-optimization strategy that combines the
refinement of 1) the mesh resolution, to make the computation
faster and less sensitive to the initialization; 2) the number of
control points, to maintain a favorable sampling of the mesh
throughout the process.

1) Coarse-to-Fine Mesh Resolution: The energy terms (8)
and (11) depend on the subdivision points P(k), which is the
source of the main computational bottleneck. The accuracy
of the energy and, therefore, of the segmentation, increases
with the resolution of the mesh. However, the choice of a
large k also considerably slows down the computation. More-
over, active surfaces tend to be sensitive to the initialization,
especially when using surface-based energy. To address those
issues, we optimize the active surface in a coarse-to-fine
fashion that is inherent to the iterative process of subdivision.
Our algorithm exploits the following properties: 1) a smoothed
volume contains fewer details and less noise than the original
one; 2) the resolution of the mesh (i.e., the number of
subdivision points) can be adapted to the resolution of the
object to be segmented (i.e., the level of details in the volume).

Algorithm: We apply K successive lowpass filters Gk to
the original volume f to obtain K smoothed volumes fk ,
with the width of Gk being higher than that of Gk+1. The
active subdivision surface is first optimized on the coarsest
volume f1, where the object of interest only contains few
details. The initial mesh on f1 can be coarse as well since
the shape of the underlying object tends to get simplified.
The optimization on f1 is fast and the outcome is then used
as initialization at the next resolution level on f2. We refine
the mesh and optimize it on f2. The process continues
until the optimization reaches the finest resolution level that
corresponds to the original volume f .

2) Coarse-to-Fine Density of the Control Points: The seg-
mentation of intricate shapes requires a large number of
control points in order to catch all the details. However,
the segmentation becomes less robust when N0 increases since
the optimization iterative process is more likely to be stuck
in local minima. Moreover, the deformation of the surface
can lead to an undesirable distribution of the control points
along the surface, which results in an unfavorable sampling
of the mesh. We want to avoid it during the optimization.
Popular methods for keeping the vertices well distributed (e.g.,
Laplacian smoothing) have a high computational cost [8], [41].
Instead, we propose the following strategy: We start with
few control points and then progressively increase N0. This
is made possible by the fact that the mesh M(k) is entirely
defined by any coarser mesh M(q), 0 ≤ q ≤ (k − 1). In this
way, our initial segmentation is coarse at first, with a poor
flexibility of the active subdivision surface. The upside is
a good distribution of the control points and, thus, of the
subdivision points over the surface. We then progressively

Algorithm 1 Coarse-to-Fine Optimization Strategy

refine local details by increasing N0. The final number of
control points depends on the intricacy of the shape to be
segmented.

The pseudocode in Algorithm 1 describes the entire coarse-
to-fine optimization strategy. It combines the refinement of
the resolution of the mesh with that of the density of the
control points. In this code, the set C contains the control
points. Note that they change after each round of optimization.
We thus denote by Copt,k the set of the optimized control
points at iteration k. The volumes fk and their pre-integrated
versions are precomputed, which accelerates the segmentation
process.

IV. EXPERIMENTS AND VALIDATION

We proceed in four steps to evaluate the performance
of the proposed active subdivision surface. We first test its
robustness to noise and, in a second step, its sensitivity to
the initialization. Then, we investigate its accuracy in the
context of the segmentation of an intricate shape, when a
lot of flexibility is required from the active surface. Finally,
we illustrate applications on real biomedical data where the
ground truth is not available.

For each experiment, we use Loop’s scheme to represent our
active subdivision surface and we carry out its optimization by
a Powell-like line-search method [42]. The experiments are
performed on a 1.7 GHZ processor with 8 GB RAM.

We use the Jaccard index J to measure the overlap
between a segmentation result V and the corresponding ground
truth VGT. It is defined as

0 ≤ J = |V ∩ VGT|
|V ∪ VGT| ≤ 1. (13)

A. Robustness to Noise

We investigate the robustness to noise of the active sub-
division surface as a function of the number N0 of control
points. The test images consist in a binary sphere of radius
40 voxel units on a 3D array of size (256 × 256 × 256)
voxels. We corrupted the test image by six levels of additive
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TABLE I

JACCARD INDICES FOR THE SEGMENTATION OF NOISY 3D DATA

Fig. 4. Initialization on the volumetric image, J = 0.39.

white Gaussian noise (50 realizations per level of noise).
Slices of the resulting 3D volumes are illustrated in Table I.
We initialized the active subdivision surface with the roughly
spherical surface described by the high-resolution mesh M(4)

given in Figure 1 (e). Its overlap with the ground truth
corresponds to J = 0.39 (Figure 4). We ran the optimization
process for 3,500 iterations using only the region-based energy
and the strategy described in Section III-C. The signal-to-noise
ratio (SNR) corresponding to a given noise level and the
median Jaccard index were computed. The SNR that we use
is the ratio of the mean value of the signal and the standard
deviation of the noise. The results are summarized in Table I,
where N0 is the final number of control points. We observe
that the active subdivision surface is robust to noise since it
is able to segment satisfactorily, even for low SNRs. This can
be explained by the fact that the region energy (11) estimates
the mean intensity over regions, while the Gaussian noise has
zero mean.

B. Robustness to the Initialization

To study the sensitivity of the active subdivision surface to
its initialization, we compared our model in terms of accuracy
and speed against other segmentation methods such as the
active parametric surface described in [3] and the 3D active
mesh of [2]. Note that these two methods are also robust
to noise. As far as we know, there are no other available
software for 3D data where the segmentation is editable.
The implementation of the two methods was taken from the
package Icy [26].

The test image is the binary sphere of Section IV-A. For
each method, the initialization is (essentially) a sphere of
radius r voxel units centered in the image. The goal is

TABLE II

PARAMETERS OF THE COARSE-TO-FINE OPTIMIZATION

STRATEGY (SECTION IV-B)

to segment the binary sphere from several initializations by
varying the value of r .

We initialized our active subdivision surface with the
low-resolution mesh M(2) illustrated in Figure 1 (c), the con-
trol points being the 6 vertices that make up the octahedron
(Figure 1 (a)). We optimized the model using the surface-based
energy and the coarse-to-fine strategy with the parameters
given in Table II. In this table, γ denotes the standard deviation
of a Gaussian filter. For the active mesh, we set the mesh
resolution to 12, the time-evolution step to 0.1, the window
size to 100, the contour smoothness to 0.04, and we evolved
the mesh using the gradient energy with weight (−0.1). For
the active parametric surface, we set the number of control
points to 12 as it favors ellipsoid-like shapes during the
segmentation process. We deformed the parametric surface
using a surface-based energy. For this method only, we ran the
optimization on both the original image and on a smoothed
version of the image filtered with a Gaussian kernel with
γ = 7. We computed the Jaccard index of the segmentation
outcome over all initializations and methods. The results as
well as the segmentation time (without preprocessing) are
given in Table III. In this table, “failed” means that the active
mesh did not detect the sphere and vanished, or that the
parametric surface self-intersected. Active subdivision surfaces
and active parametric surfaces have a similar performance in
terms of accuracy and speed as soon as the initialization is
close enough to the object to segment. Otherwise, the basin
of attraction of the active parametric surface is too narrow
for the surface-based energy. We observe that the standard
deviation γ = 7 is large enough to attract the active parametric
surface for almost every initial configuration. However, in each
case the segmentation is less accurate as the boundary of the
sphere to segment is smoothed. The active mesh performs well,
provided that the initialization includes the sphere to segment.
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TABLE III

ACCURACY AND EFFICIENCY WITH RESPECT TO THE INITIALIZATION

TABLE IV

PARAMETERS OF THE COARSE-TO-FINE OPTIMIZATION

STRATEGY (SECTION IV-C)

Otherwise, it systematically fails. The active subdivision sur-
face led to accurate segmentation even for initializations far
from the object to segment. This result is explained by the use
of the coarse-to-fine optimization strategy since the model is
initialized on the coarsest image with reduced details and a
large basin of attraction. In addition, the proposed method is
also the fastest.

C. Segmentation Accuracy

In this section, we generated a synthetic blebbing cell [43]
located at the center of a volumetric image of size (256 ×
256 × 256) voxels (Figure 5 (a)). The presence of blebs on
the surface of the cell makes the segmentation challenging
and requires a lot of flexibility from the segmentation model.
We then compared our proposed method in terms of accuracy
to the two segmentation methods mentioned in Section IV-B.

For each method, the initialization is (essentially) a cen-
tered sphere of radius 50 voxel units. Its overlap with the
blebbing cell corresponds to J = 0.56. We initialized the
active subdivision surface with the low-resolution mesh M(2)

illustrated in Figure 1 (c), encoded by the 6 control points
that form the octahedron of Figure 1 (a). For the energy (6),
we set the tradeoff parameter to b = 0.8. We evolved the
active subdivision surface using the coarse-to-fine optimization
strategy with the parameters given in Table IV. For the active
mesh, we set the mesh resolution to 5, the time-evolution step
to 0.1, the window size to 100, the contour smoothness to
0.05, and we optimized the mesh using the region energy with
weight 1. For the active parametric surface, we also used a mix
of surface-based and region-based energies with b = 0.8.

For this last segmentation method, we repeated the experi-
ment for different numbers of control points. They are listed
in Table V, where we also show a comparison of the final

Fig. 5. 3D views of the segmentation outcomes.

Jaccard index.2 3D views as well as 2D orthogonal views of
the segmentation outcomes are illustrated in Figures 5 and 6,
respectively. We observe that both our proposed method and

2The ideal segmentation of just the main sphere of the blebbing cell would
correspond to J = 0.88.
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TABLE V

JACCARD INDICES FOR THE SEGMENTATION OF A BLEBBING CELL

Fig. 6. 2D orthogonal views of the segmentation outcomes.

the active mesh accurately segment the blebbing cell and give
smooth meshes (Figure 5 (b) and (c)). The active mesh tends
to extend outside of the boundary of the object compared to
the active subdivision surface (Figure 6, YZ plane). However,
it segments better two close blebs (Figure 6, XZ plane).
Clearly, the active parametric surface has the worst perfor-
mance. The segmentation with 12 control points leads to
a very smooth surface. However, only the main sphere of
the blebbing sphere is segmented, as the flexibility afforded
by 12 control points is low. With the additional flexibility
afforded by 36 control points it is able to segment some blebs.
However, irregularities in the surface start to appear. When we
further increase the flexibility of the active parametric surface,
the distribution of the control points misbehaves; moreover,
irregularities and twists of the surface grow too large.

D. Combination With Convolutional Neural Networks

Structures cannot always be fully characterized from their
internal distribution of pixel values. Our energy terms (8)
and (11), based on intensity information only, thus have their
limitations when applied on the original image. Sometimes,
it is best to exploit the power of deep learning to automatically
learn and detect the features of the object of interest [44], [45].
In this context, we present an easy way to combine our method
with convolutional neural networks (CNN) such as UNet [46].
UNet is the workhorse of deep segmentation methods and
achieves state-of-the-art results in many image-segmentation

Fig. 7. UNet architecture.

Fig. 8. Probability map of 3D HL60 cell nuclei in low SNR.

applications. Let f in (6) be the probability map of a
pre-trained UNet. The idea then is to optimize our active
subdivision surface on f using our energy terms (8) and (11).

The image set BBBC024vl [47] from the Broad Bioim-
age Benchmark Collection3 contains 60 labeled volumes
(807 × 565 × 129) of 3D HL60 cell nuclei in low SNR.
We trained a 2D UNet on 1, 548 2D images corresponding
to the slices of 12 volumes of this database (6 for the training
set and 6 for the test set). The UNet architecture is given
in Figure 7. We applied the trained UNet on each slice of a
new volume of the BBBC024vl data set (see Figure 8 (a)) and
we combined the obtained 2D probability maps to construct
the final volume f . The resulting 3D probability map f is
given in Figure 8 (b). We then applied our active subdivision
surface on f to segment twelve nuclei. They are numbered in
Figure 8 (b). We used a mix of surface-based and region-based
energies with b = 0.5. We compared this method in terms of
accuracy against our active subdivision surface optimized on
the original volume and UNet with 0.5 as threshold value to
decide whether to classify a pixel as 0 or 1. The results are
given in Table VI and illustrated in Figure 9. We observe that,
for this application, the incorporation of deep learning into
our deformable model slightly improves the results. The good

3The image set was taken from https://data.broadinstitute.org/, as of
May 2019.
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Fig. 9. Segmentation of 3D HL60 cell nuclei using the active subdivision surface on the probability map obtained with UNet. For numbering, refer to
Figure 8.

TABLE VI

JACCARD INDICES FOR THE SEGMENTATION OF 3D HL60 CELL NUCLEI IN LOW SNR

performance of the active subdivision surface optimized on the
original volume can be explained by two reasons. First, our
method is robust to noise (see Section IV-A). Second, although
the internal intensity distribution of nuclei is heterogeneous,
nuclei are well contrasted with the background image; this
renders our region-based energy (11) suitable for this applica-
tion. By additionally taking nuclei texture into account through
the use of the probability map f , we further improve the
segmentation accuracy.

Compared to UNet alone, the combined method has two
main advantages: it provides a continuous limit surface of
the structure of interest, and leads to better segmentation
results, at least for this application. The weaker performance
of UNet is mainly due to the threshold that is applied to
the probability map to obtain the final binary segmentation.
This threshold introduces holes in the nuclei and irregular-
ities at the boundaries (see Figure 10 (a2) and (b2)). The
continuity and smoothness of our active subdivision surface
prevent these issues (see Figure 10 (a3) and (b3)). In addi-
tion, while the thresholding decision process uses only local
features, our method infers the boundaries of the regions
of highest probability by taking into account both local
and global information (through the energies (8) and (11),
respectively). This prevents our surface to be attracted by
outlier voxels with false high probabilities or to integrate in
the segmentation outcome voxels with false low probabilities
(see Figure 10 (a1) and (b1)).

Fig. 10. 2D XY orthogonal views of two nuclei segmentation outcomes
obtained with the UNet ((a2) and (b2)) and with our active subdivision
surface optimized on the 3D probability map f ((a3) and (b3)). Slices of the
corresponding volumes f are displayed in (a1) and (b1), where we indicate
the segmentation outcomes obtained with our method (cyan contour). The
ground-truths are given in (a4) and (b4).

In a second experiment, we investigated the segmentation
of brain tumors on MRI images. Tumors have low con-
trast with the surrounding healthy tissue and a high spatial
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TABLE VII

JACCARD INDICES FOR THE SEGMENTATION OF 3D BRAIN
TUMORS ON MRI IMAGES

Fig. 11. 2D XY orthogonal views of the 3D probability map f obtained with
the UNet (a), the segmentation outcome obtained with UNet for a decision
threshold of 0.5 (b), the one obtained with our active subdivision surface
optimized on f (c), and the ground-truth (d).

heterogeneity. Neural networks are widely used in medical
and cancer applications thanks to their ability to learn the
optimal discriminative features [48], [49]. We trained a 3D
UNet on the Brain Tumors Segmentation (BraTS) dataset
from the publicly-available Medical Segmentation Decathlon
Challenge4 [50], [51]. This dataset contains 484 multimodal
(FLAIR, T1w, T1gd, T2w) MRI volumes (240 × 240 × 155)
depicting high- or low-grade gliomas. For this experiment,
we used only the FLAIR channel and we focused on the
segmentation of the whole tumor. We used 411 images for the
training set, 36 images for the validation set, and 37 for the test
set. For each test image, we optimized our active subdivision
surface on the 3D probability map f provided by the 3D
trained UNet by using a mix of our intensity-based energies (8)
and (11). The average Jaccard index over the 37 test images
is given in Table VII. We also reported the average Jaccard
index obtained with UNet for a decision threshold of 0.5, and
the one obtained with our active subdivision surface optimized
on the original volumes.

As expected, our proposed active subdivision surface fails to
extract gliomas from the original volumes. However, the incor-
poration of deep learning into our method considerably
improves its performance, as it almost reaches the accuracy
level obtained with UNet. The aforementioned benefits of
finding the regions of highest probability using the active
subdivision surface over the threshold are still observed in
this application (see Figure 11). However, some tumors are
fragmented in the test set (see Figure 12); this does not adapt
well to our method, which was developed for the segmentation
of a single object in the volume. This limitation of our
method is discussed in Section IV-F1. It explains the reduced
performance of our active subdivision surface combined to
deep learning compared to UNet. As user-interaction is one

4The BraTS dataset was taken from http://medicaldecathlon.com/, as of
January 2021.

Fig. 12. Illustration of three fragmented brain tumors from 3D MRI images.

Fig. 13. Illustrations of the user-interactivity of our method. We manually edit
the segmentation outcome of brain tumors obtained with our active subdivision
surface that was optimized on the probability map produced by a UNet.

of the main assets of our framework, we used it either to
manually initialize additional subdivision surfaces in volumes
containing fragmented tumors, or to refine segmentation out-
come locally by manually moving one or several control
points (see Figure 13). Note that the Jaccard indices given
in Table VII were computed on the non-edited segmentation
outcome.

We will not go any further into deep-learning experiments.
The goal here was to highlight and illustrate that our method
can be easily combined with CNN if needed.

E. Segmentation on Real Biomedical Images

We illustrate the behavior of the proposed active subdivision
surface on two real biomedical images with unknown ground
truth. We rely on qualitative assessments to validate the accu-
racy of the segmentation. The volumetric data of Figure 14
represent the optical density of the neuron of a rat in a 3D
microscopic image [52]. The volumetric data of Figure 15
results from the MRI acquisition of a human brain, with the
purpose of measuring its total intracranial volume (TIV). TIV
is used in medicine to detect morphological changes related
to the evolution of neurological diseases [53]. This particular
segmentation task is challenging because of the numerous
concavities that compose the brain, such as the convoluted
areas formed around the temporal lobe and the cerebellum.
As a point of a comparison, we provide in Figure 16 the TIV
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Fig. 14. Segmentation of the nucleus of the neuron of a rat in a 3D microscopic volume with the active subdivision surface. Blue dots: control points.

Fig. 15. TIV segmentation of a 3D MRI scan with the active subdivision surface. Blue dots: control points.

segmentation outcomes obtained with the 3D active mesh and
the active parametric surface. Besides being the most accurate,
our method is also the fastest: it took minutes while the active
mesh took hours.

F. Limitations

In this section, we identify some limitations of our method
and suggest options to address them.

1) Initialization: Like all deformable models, our active
subdivision surface requires the specification of an initial
configuration. In the present implementation, it is placed
manually by the user through a graphical interface. However,
this approach is appropriate neither for automatization nor for
applications with numerous objects to segment in a single
image. In this case, the initial position ought to be provided by
some auxiliary rough detection algorithms (e.g., DoG filtering
followed by a local maxima detection or atlas-based segmen-
tation methods) applied either to the original volume or to the

probability map produced by a CNN. Moreover, as the energy
Eregion in (11) is sensitive to the image contrast between the
core and the shell of the active subdivision surface, the initial
configuration ought to be such that the core intersects the
object of interest and the shell intersects the background.

2) Energy Functional: Since our energy terms (8) and (11)
are based on intensity information only, they do not perform
well when the contrast between the object of interest and the
background is low. In this context, an efficient approach is
to find discriminative features, by making use of CNN for
instance, as illustrated in Section IV-D.

3) Segmentation of Touching Objects: With our method,
the segmentation of touching objects may result in overlapping
segmentations as two active subdivision surfaces are optimized
independently. A solution is to include in our framework a
collision detection between two meshes, as the ones described
in [8] and [26]. Another solution is to design a new energy
term to repulse meshes that would be optimized jointly.
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Fig. 16. 3D views of TIV segmentation outcomes. Blue dots: control points.

V. CONCLUSION

Our main contribution in this paper is a generic framework
that specifies active surfaces based on subdivision for the
semiautomatic segmentation of volumetric biomedical struc-
tures. Our active surfaces are characterized by a small set
of control points, which eases the interactions with the user.
Such deformable models can approximate closed surfaces with
arbitrary precision by iteratively refining the underlying mesh.
We have provided a specific example of our construction
using a widely used subdivision scheme: Loop’s scheme.
We have designed a surface-based energy as well as a robust
region-based energy. We have also proposed an integrated
coarse-to-fine optimization strategy to adapt the resolution of
the mesh to the level of details in the volume. It results in
speedup of the optimization and better robustness. Moreover,
this multiresolution strategy allows us to maintain a favorable
sampling of the mesh by gradually increasing the flexibility
of the model during the optimization. We have applied our
proposed method to a variety of problems that involve syn-
thetic data and real biomedical images. We have compared our
framework with several segmentation methods and shown that
our model is robust with respect to noise and initial conditions.

APPENDIX

A. Definition, Notation, and Properties of Regular Meshes

A triangular mesh without extraordinary vertices
(see Section II-A) is called regular. In this section, we present
properties of regular meshes that will be used in the proofs
of Propositions 1 and 2.

For subdivision schemes applied to regular meshes, the ver-
tices of a mesh M(k), k ≥ 0, are on a rectangular grid (u, v)
and

Nk = 22k N0. (14)

Fig. 17. Flat image of a regular mesh that forms a closed surface. We show
the mesh for two subdivision steps of a face-splitting subdivision scheme. The
initial coarse mesh M(0) (solid black lines) is made of N0 = 9 control points
that are on a rectangular grid of size (N0,u × N0,v ), with N0,u = N0,v = 3.
Note that some of the control points appear several times in this figure as it is
a flat representation of a closed surface. At the first subdivision step, we obtain
a regular mesh M(1) (dotted red lines) made of 22 N0 = 36 vertices (black
and red disks) that are on a rectangular grid of size (2 N0,u×2 N0,v ). The
indices correspond to the pair (p, q) of p(k)[p, q], k = 0, 1.

Let the N0 control points be on a rectangular grid of size
(N0,u × N0,v ), such that N0,u , N0,v ∈ N, and N0,u N0,v = N0.
We re-express the set P(k) as P(k) = {p(k)[p, q] ∈ R3, p ∈
{0, . . . , 2k N0,u − 1}, q ∈ {0, . . . , 2k N0,v − 1}} (Figure 17).

For convergent subdivision schemes applied to regular
meshes, we have the property that

lim
k→∞ p(k+l)[2k p, 2kq] = σ (u, v)

∣∣
(u,v)=

(
p
2l , q

2l

), (15)

where l ∈ N ∪ {0}, 0 ≤ p ≤ 2l N0,u and 0 ≤ q ≤ 2l N0,v [54].

B. Proof of Proposition 1

We first recall a classical result.
Theorem of the Double Riemann Sum: Let g : [a, b] ×

[c, d] → R2 be a real continuous function that is
Riemann-integrable on [a, b]× [c, d]. The Riemann sum Rn,m

defined by

Rn,m = b − a

n

d − c

m

n−1∑
p=0

m−1∑
q=0

g(p
b − a

n
, q

d − c

m
) (16)

satisfies

lim
n→+∞ lim

m→+∞ Rn,m =
ˆ b

a

ˆ d

c
g(u, v)dudv. (17)

We first prove Proposition 1 for regular meshes that are
topologically equivalent to a torus. Surfaces that are topolog-
ically equivalent to a torus are periodic along u, v and are
parameterized by

σ(u, v) =
N0,u −1∑

p=0

N0,v −1∑
q=0

c[p, q]ϕN0,u ,N0,v (u − p, v−q), (18)
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where (u, v) ∈ [0, N0,u ]×[0, N0,v ], the c[p, q] are the control
points, and

ϕN0,u ,N0,v (u, v) =
∑
p∈Z

∑
q∈Z

ϕ(u-pN0,u , v-qN0,v ), (19)

with ϕ : R2 → R a suitable basis function.
Using the notation for regular meshes described in

Section A, we rewrite Egrad as

Egrad( f, P(k)) = − 1

22k

×
2k N0,u−1∑

p=0

2k N0,v −1∑
q=0

∇ f (p(k)[p, q]) · n(p(k)[p, q]). (20)

Combining (15) and (20), we have that

lim
k→∞ Egrad( f, P(k)) = − lim

k→∞
1

22k

2k N0,u −1∑
p=0

2k N0,v −1∑
q=0

g(
p

2k
,

q

2k
)

︸ ︷︷ ︸
E

,

(21)

where g(u, v) = ∇ f (σ (u, v)) · n(σ (u, v)) is Riemann-
integrable on [0, N0,u ] × [0, N0,v ] because f, σ1, σ2, σ3 ∈ C1.
We use the theorem of the double Riemann sum with a =
c = 0, b = N0,u , d = N0,v , n = 2k N0,u , and m = 2k N0,v to
obtain that

E = −
ˆ N0,u

0

ˆ N0,v

0
∇ f (σ (u, v)) · n(σ (u, v))dudv. (22)

We have that

dσ = (σ u ∧ σ v )dudv

= n(σ (u, v))dudv. (23)

So, using (22) and (23), we finally obtain that

E = −
‹

S
∇ f (σ ) · dσ . (24)

This concludes the proof for regular meshes with a topology
equivalent to a torus. For regular meshes that form closed
surfaces with a different topology, the proof is the same.
The parameterization (18) still holds for (u, v) ∈ [0, N0,u ] ×
[0, N0,v ] but the bounds of the sum over q depend on the
support of ϕ; additional conditions over the control points may
be necessary.

For meshes with extraordinary vertices, we give a gist
of the proof, as a detailed one may imply the introduction
of too many notations and notions. Note that, in addition,
we validated our energy for meshes with extraordinary vertices
in our experiments. The gist of the proof is based on the
following mathematical pipeline:

• we consider a portion of the initial mesh that contains
one extraordinary vertex only, and we locally express the
limit surface σ as the union between the limit point of the
extraordinary vertex and the sequence of rings {r(k)}k≥0
defined by the regular vertices around it [37], [55];

• for each ring r(k), we apply the reasoning that we used
for regular meshes where the Riemann integral is instead
defined on a local part of the surface σ ;

• finally, doing this for each ring and taking the union over
k, we conclude the proof.

C. Proof of Proposition 2

We first recall Gauss’ theorem.
Gauss’ Theorem: Let V be a subset of Rn that is compact

and has a piecewise-smooth boundary S. If G is a contin-
uously differentiable vector field defined on a neighborhood
of V , then we have that

‹
S

G · dS =
˚

V
div(G)dV . (25)

For this proof, we follow the same procedure as described in
the proof of Proposition 1. The gist of the proof for meshes
with extraordinary vertices is the same as the one presented
in Appendix B. Hereafter, we thus only detail the proof for
regular meshes with a topology equivalent to that of a torus.

Using the notation for regular meshes introduced in
Section A, we rewrite Eregion as

Eregion( f, P(k)) = 1∣∣V(P(k))
∣∣ 22k

×
⎛
⎝2

2k N0,u −1∑
p=0

2k N0,v −1∑
q=0

F(p(k)[p, q])n1(p(k)[p, q])

−
2k N0,u −1∑

p=0

2k N0,v −1∑
q=0

F(pλ(k)[p, q])n1(pλ(k)[p, q])
⎞
⎠. (26)

As σ is the limit surface of the subdivision scheme (see Equa-
tion (5)), we have that

lim
k→∞

∣∣V(P(k))
∣∣ = |V| , (27)

where V(P(k)) and V are the volume enclosed by M(k) and σ ,
respectively. Combining (15), (26) and (27), we obtain that

lim
k→∞ Eregion( f, P(k)) = 1

|V | lim
k→∞

1

22k

×
⎛
⎝2

2k N0,u −1∑
p=0

2k N0,v −1∑
q=0

g(
p

2k
,

q

2k
)

−
2k N0,u−1∑

p=0

2k N0,v −1∑
q=0

gλ(
p

2k
,

q

2k
)

⎞
⎠

= E, (28)

where the functions g(u, v) = F(σ (u, v))n1(σ (u, v)) and
gλ(u, v) = F(σ λ(u, v))n1(σ λ(u, v)) are Riemann-integrable
on [0, N0,u ] × [0, N0,v ] because f , σ1, σ2, σ3, σλ,1, σλ,2,
σλ,3 ∈ C1. We use the theorem of the double Riemann sum
with a = c = 0, b = N0,u , d = N0,v , n = 2k N0,u , and
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m = 2k N0,v to obtain that

E = 1

|V |
(

2
ˆ N0,u

0

ˆ N0,v

0
F(σ (u, v))n1(σ (u, v))dudv

−
ˆ N0,u

0

ˆ N0,v

0
F(σ λ(u, v))n1(σ λ(u, v))dudv

)

= 1

|V |
(

2
ˆ N0,u

0

ˆ N0,v

0
G(σ (u, v)) · n(σ (u, v))dudv

−
ˆ N0,u

0

ˆ N0,v

0
G(σλ(u, v)) · n(σ λ(u, v))dudv

)
, (29)

where G(x1, x2, x3) = (F(x1, x2, x3), 0, 0). Thus, we have
that

E = 1

|V |
(

2
‹

S
G · dσ −

‹
Sλ

G · dσ

)
. (30)

The use of Gauss’ theorem then yields that

E = 1

|V |
(

2
˚

V
div(G)dV −

˚
Vλ

div(G)dV

)

= 1

|V |
(

2
˚

V
f dV −

˚
Vλ

f dV

)

= 1

|V |
(˚

V
f dV −

˚
Vλ\V

f dV

)
, (31)

which concludes the proof in the case of regular meshes.
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