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Accurate characterization of in utero human brain maturation is critical as it involves complex 
and interconnected structural and functional processes that may influence health later in life. 
Magnetic resonance imaging is a powerful tool to investigate equivocal neurological patterns 
during fetal development. However, the number of acquisitions of satisfactory quality available in 
this cohort of sensitive subjects remains scarce, thus hindering the validation of advanced image 
processing techniques. Numerical phantoms can mitigate these limitations by providing a controlled 
environment with a known ground truth. In this work, we present FaBiAN, an open‑source Fetal 
Brain magnetic resonance Acquisition Numerical phantom that simulates clinical T2‑weighted fast 
spin echo sequences of the fetal brain. This unique tool is based on a general, flexible and realistic 
setup that includes stochastic fetal movements, thus providing images of the fetal brain throughout 
maturation comparable to clinical acquisitions. We demonstrate its value to evaluate the robustness 
and optimize the accuracy of an algorithm for super‑resolution fetal brain magnetic resonance imaging 
from simulated motion‑corrupted 2D low‑resolution series compared to a synthetic high‑resolution 
reference volume. We also show that the images generated can complement clinical datasets to 
support data‑intensive deep learning methods for fetal brain tissue segmentation.

Today, there is a growing awareness of the importance of early brain development on health later in  life1–9 as brain 
maturation involves complex and interconnected structural and functional processes that can be altered by vari-
ous genetic and environmental factors. Magnetic resonance imaging (MRI) may be required during pregnancy 
to investigate equivocal situations as a support for diagnosis and prognosis, but also for postnatal management 
 planning10. In clinical routine, T2-weighted (T2w) fast spin echo (FSE) sequences are used to scan multiple 2D 
thick slices that provide information on the whole brain volume with a good signal-to-noise ratio (SNR) while 
minimizing the effects of random fetal motion during  acquisition11. However, stochastic movements of the fetus 
in the womb cause various artefacts in the images, including drops in signal intensity. Post-processing approaches 
built on motion estimation and correction can compensate for such artefacts. Especially, super-resolution (SR) 
reconstruction techniques take advantage of the redundancy between low-resolution (LR) series acquired in 
orthogonal orientations to reconstruct an isotropic high-resolution (HR) volume of the fetal brain with reduced 
intensity artefacts and motion  sensitivity12–17. Navigating through the resulting SR volume provides valuable 
information on the developing brain anatomy, including consistent biometric  measurements18–20. Besides, fetal 
brain tissue segmentation is critical for further investigation of brain development, especially for volumetric 
 evaluation21–25.

Manual segmentation is a cumbersome and time-consuming task. Therefore, supervised deep learning 
approaches that rely on annotated data have emerged as accurate techniques for automated delineation of the 
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fetal  brain22–24,26. The development and validation of such advanced image processing and analysis methods 
require access to large-scale data to account for the subject variability, but the number of good quality, exploit-
able MR acquisitions available in this sensitive cohort remains relatively scarce.

Numerical simulations can mitigate these limitations by providing a controlled environment with a known 
ground truth for accurate, robust and reproducible  research27,28. MR developments often rely on computer 
simulations that enable pulse sequence design, accurate prototyping and evaluation of new advanced acquisi-
tion schemes as well as validation of reconstruction techniques in a controlled  setting27–31. Such platforms are 
also valuable educational tools for physicists and  technologists29,30. In this sense, MR simulations can efficiently 
complement or even replace the design and use of sophisticated experimental phantoms, as well as experiments 
on animal models or even on human  volunteers30. MR simulators can be designed to address multiple chal-
lenges, such as system imperfections, multichannel transmission, correction/suppression of image artefacts, and 
optimization of specific absorption rate (SAR)31,32.

Motion is a major hurdle in various MRI applications, from cardiovascular MR to functional MRI analysis 
and fetal imaging, as it is responsible for artefacts in the images and can lead to erroneous data analysis and 
 interpretation27,28,30,32. Whereas periodic movements can be directly related to physiological processes such as 
breathing or a heartbeat, and may therefore be compensated during post-processing, stochastic fetal motion 
impedes the repeatability of  measurements28 and thus hinders retrospective motion correction. The difficulty 
of estimating such unpredictable movements results in the lack of any ground truth, yet necessary for the 
validation of new  methods32. Numerical phantoms are an interesting alternative that offers a fully scalable and 
flexible environment where any image-acquisition, -reconstruction, or -processing technique can be evaluated, 
optimized, and validated from a collection of synthetic, yet realistic data that simulate multiple controlled condi-
tions. Furthermore, the results obtained by these various strategies can be quantitatively compared to each other 
through simulated reference data based on full-reference image quality assessment metrics such as the mean 
squared error (MSE), the peak signal-to-noise ratio (PSNR), or even the more perceptual structural similarity 
index (SSIM)12,33,34.

Paradoxically, the diversity of MRI simulators, each with its own advantages and limitations, jeopardizes 
the comparison from one setup to  another27. In contrast to a simplified analytical description of the MR signal 
arising from proton isochromats, advanced developments in the field of MRI require more realistic numerical 
 simulations31. Two main approaches have been investigated: on one hand, (i) the analytical numerical formal-
ism is based on a mathematical description of both the anatomy and the MR experiment as in the Shepp–Logan 
head  phantom35, and on the other hand, (ii) voxel-based phantoms are usually derived from segmented clinical 
acquisitions relevant to the targeted  application27. The correspondence between the image and the correspond-
ing k-space is governed by the continuous Fourier transform in analytical numerical models which enables an 
accurate representation of k-space, whereas it is approximated by its discrete version in their voxel-based equiva-
lents. Analytical numerical phantoms are powerful tools to study k-space truncation artefacts while voxel-based 
simulations can be used to also model physiological processes and motion that may alter the  acquisitions27,28. 
However, spatial and temporal resolutions depend on the original images from which voxel-based phantoms are 
derived, which may limit their use in reproducibility studies.

Hybrid phantoms have been developed to leverage both approaches and overcome their respective limita-
tions, resulting in versatile and realistic  models27,28. Depending on the targeted application, advanced phantoms 
can be built on these models to include more features as in the case of the fetal extended Cardiac-Torso (XCAT) 
cardiovascular magnetic resonance imaging (Fetal XCMR) phantom that combines two independent XCAT 
models of both the anatomy and physiology of a mother and her baby with a simulation framework for 2D car-
diovascular magnetic resonance (CMR)  acquisitions28. Of note, realistic MRI simulations are hampered by the 
high computational burden associated with the 3D representation of the simulated object and the introduction 
of motion during  acquisition30,31. Although the parallelization of calculations on computer clusters allows to 
speed up the simulations, such advanced infrastructures are not always available.

Various advanced MRI simulation  platforms31,36,37 are based on the numerical resolution of Bloch equations 
which may be demanding due to the need to compute a numerical solution for each resonant frequency within 
a single voxel. The extended phase graph (EPG)  concept38–40 is a surrogate for Bloch equations to describe the 
magnetization response to various MR pulse sequences, including complex acquisition schemes that involve 
multiple radiofrequency (RF) pulses and gradients. Modeling the evolution of spin magnetization depending 
on tissue properties allows to gain insight into the obtained MR signal and to evaluate its behavior. Originally 
suggested to assess signal intensities in multi-echo experiments with variable flip  angles41, the EPG algorithm 
has aroused growing interest in recent years, especially for precise characterization of  echoes42–44 and diffusion 
 effects45, evaluation of physics-constrained reconstruction  methods46, sequence pulse  design38,47,48 and quan-
titative MRI  techniques49–51. The EPG formalism relies on the Fourier representation of the evolution of spin 
magnetization within a voxel after application of various RF pulses and gradients. It assumes that a single set of 
relaxation parameters can characterize a given  tissue40. The Fourier series are used to account for the multiple 
resonant frequencies that may arise from local magnetic field inhomogeneities within a voxel. Thus, the EPG 
algorithm is able to provide fast and accurate simulations.

To our knowledge, there is no simulation framework for fetal brain MRI. In this work, we present FaBiAN, 
an open-source Fetal Brain magnetic resonance Acquisition Numerical phantom that simulates T2w images 
of the in utero developing brain built on segmented anatomical images from a previously published normative 
spatiotemporal HR MRI atlas of the fetal  brain10. FaBiAN relies on the EPG  formalism38–40 of the signal forma-
tion to simulate FSE acquisitions of the fetal brain, in this case Half-Fourier Acquisition Single-shot Turbo spin 
Echo (HASTE, Siemens Healthineers) and Single-Shot Fast Spin Echo (SS-FSE, GE Healthcare) sequences, based 
on a flexible and realistic setup that accounts for intensity non-uniformity fields and stochastic fetal motion. 
We investigate the capabilities of the developed framework and provide a proof of concept of its practical value 
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in two key application examples. First, we generate LR images with multiple levels of motion to fine-tune a SR 
reconstruction  algorithm16,52. Then, we explore the potential of using multiple fetal brain images simulated at 
different gestational ages (GA) with several motion amplitudes and a variety of acquisition parameters for data 
augmentation in fetal brain tissue segmentation.

Methods
Numerical implementation of FSE sequences. Figure 1 provides an overview of the workflow imple-
mented in MATLAB (MathWorks, R2019a) to simulate T2w fetal brain images acquired using clinical FSE 
sequences. (i) High-resolution anatomical images from a normative spatiotemporal MRI  atlas10 are used as a 
model of normal fetal brain. (ii) Segmented brain tissues are organized into gray matter, white matter and cer-
ebrospinal fluid as shown in Table 1, and (iii) are assigned relaxometry properties from the literature at 1.5  T53–57 
or 3  T58–62 accordingly. (iv) The T2 decay over time is computed in every voxel of the HR anatomical images from 
the sequence parameters using the EPG  formalism39,40. (v) The Fourier domain, or k-space, of the simulated 
images is sampled from the T2 decay matrix to reflect the process of FSE acquisition in the presence of random 
rigid motion. (vi) The final simulated images are recovered by a 2D inverse Fourier transform.

(i) Segmented HR anatomical 
images of the fetal brain

(ii) Tissue classification:
- gray matter
- white matter
- cerebrospinal fluid

(iii) Conversion to MR contrast: 
T1 and T2 reference maps

(v) K-space sampling

(vi) Simulated FSE images
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Figure 1.  Workflow for simulating images of the fetal brain acquired by a fast spin echo (FSE) sequence (i) 
from segmented HR anatomical MR  images10, illustrated for a fetus of 30 weeks of GA. (ii) Brain tissues are 
classified into gray matter, white matter and cerebrospinal fluid. (iii) Anatomical structures are converted to 
the corresponding MR contrast to obtain reference T1 and T2 maps of the fetal brain at either 1.5 or 3 T. (iv) 
The EPG algorithm allows to accurately simulate the T2 decay over time in every brain voxel by accounting 
for the effects of the stimulated echoes, as highlighted by the enlargement of the beginning of the curve. This 
spatiotemporal information is subsequently used (v) to sample the Fourier domain of the simulated images of 
the moving fetus. After the addition of noise to match the SNR of real clinical acquisitions, (vi) FSE images of 
the fetal brain are eventually recovered by 2D inverse Fourier transform (2D FT−1).
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The clinical implementation of FSE sequences can vary from one MR vendor to another, but also according to 
the technical characteristics and hardware limitations of the MR scanner. For instance, the gradients are charac-
terized by their slew rate that directly impacts the echo time. Especially in the context of fetal imaging, different 
SAR limits may be enforced, resulting in various flip angles. Furthermore, a specific clinical indication may 
require adjusting standard acquisition parameters, for example by increasing the effective echo time to enhance 
the contrast between the subplate and surrounding structures, and investigate pathologies of the cerebrospinal 
fluid. Therefore, we have developed this open-source numerical phantom with the idea of keeping the frame-
work as general as possible to enable users a large flexibility in the type of images simulated. As such, multiple 
acquisition parameters can be set up with respect to the MR contrast (effective echo time, excitation/refocusing 
pulse flip angles, echo spacing, echo train length), the geometry (number of 2D slices, slice orientation, slice 
thickness, slice gap, slice position, phase oversampling), the resolution (field-of-view, matrix size), the resort to 
any acceleration technique (acceleration factor, number of reference lines) or to scanner interpolation, as well 
as other settings related to the age of the fetus, the RF transmit field inhomogeneities, the amplitude of random 
fetal motion in the three main directions, and the SNR. Table 2 provides the ranges of values used in this study 
to simulate T2w images of the fetal brain as they are acquired in clinical routine at two sites: Lausanne Univer-
sity Hospital (CHUV, HASTE sequence) and University Children’s Hospital Zurich (Kispi, SS-FSE sequence). 
Additionally, Supplementary Table S1 reports the ranges of values that are relevant to an application in fetal brain 
MRI, thus consistent with common clinical protocols, and that were tested during the development of this first 
prototype. FaBiAN allows to transpose the main differences between the HASTE and SS-FSE protocols related 
to timing (effective echo time and echo spacing), geometry (slice thickness, slice gap, and phase oversampling), 
and spatial resolution (field-of-view and acquisition/reconstruction matrix). Irrespective of the MR vendor, 
the slice profile is modeled by a 2D Gaussian function with the full width at half maximum equal to the slice 
thickness in the slice-selection  direction16. The sampling trajectory is assumed to be the same in both protocols.

The entire simulation pipeline is described in detail in the following.

Fetal brain model and MR properties. Our numerical phantom is based on segmented 0.8-mm-isotropic 
anatomical images (Fig. 1-(i)) from the normative spatiotemporal MRI atlas of the developing brain built by 
Gholipour and colleagues from normal fetuses scanned between 19 and 39 weeks of  gestation10. Due to the lack 
for ground truth relaxometry measurements in the fetal brain, all thirty-four segmented tissues are merged into 
three classes according to medical experts: gray matter, white matter and cerebrospinal fluid (Fig. 1-(ii) and 
Table 1). Corresponding T1 and T2 relaxation times at 1.5  T53–57 are assigned to these anatomical structures to 
obtain reference T1 and T2 maps, respectively (Fig. 1-(iii)). The value of these relaxometry properties at 3 T is 
estimated from the  literature58–62, assuming that doubling the magnetic field strength from 1.5 to 3 T increases 
the T1 relaxation time by approximately 25% in gray matter and 10% in both white matter and cerebrospinal 
fluid, while the T2 properties remain unchanged.

Intensity non‑uniformity (INU) fields. Non-linear slowly-varying INU fields due to transmit field inhomoge-
neities  (B1+) are based on BrainWeb estimations from real scans to simulate T2w  images63–67. The available 20% 
INU version is resized to fit the dimensions of the atlas images and normalized by 1.2 to provide multiplicative 
fields in the range of 0.8 to 1.2 over the brain area. It is subsampled to a 0.1-mm resolution with linear interpo-
lation in the slice thickness orientation in order to account for B1 bias field variations across the slice profile.

EPG formalism. The evolution of thousands of spin systems (i.e. isochromats) over time is commonly studied 
using Bloch equations to characterize echoes. However, this method is computationally expensive, because the 
equations must be solved for each isochromat, and not fully accurate to determine the echo intensity. Therefore, 
and since FSE sequences involve multiple successive RF pulses, the EPG concept seems particularly relevant to 
our application. Indeed, it combines the configuration state and partition state approaches to efficiently account 
for the evolution of a significant ensemble of isochromats, and thus accurately characterize echoes (type, inten-

Table 1.  Classification of segmented brain  tissues10 as gray matter, white matter and cerebrospinal fluid.

Gray matter White matter Cerebrospinal fluid

Amygdala Cerebellum Cerebrospinal fluid

Caudate Corpus callosum Lateral ventricle

Cortical plate Fornix

Hippocampus Hippocampal commissure

Putamen Intermediate zone

Subthalamic nuclei Internal capsule

Thalamus Midbrain

Miscellaneous

Subplate

Ventricular zone
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Table 2.  The flexibility of FaBiAN is illustrated by the number of sequence parameters and settings available 
to the user. The ranges of values used to simulate fetal brain MR images are presented, in agreement with 
the clinical protocols respectively in place at CHUV (HASTE sequence) and Kispi (SS-FSE sequence). 
The differences in the implementation of both sequences mainly rely on the simulation of the GRAPPA 
acceleration technique for the HASTE, which affects the way the k-space of the simulated images is sampled, 
and the simulation of the scanner in-line interpolation for the SS-FSE, which requires low-pass filtering before 
zero-interpolation filling of k-space.

Simulations HASTE SS-FSE

GA (weeks) 21–33 21–35

Magnetic field strength 1.5 T 1.5 T or 3 T

Field inhomogeneities 20% INU level provided by  BrainWeb63,64 for T2w images

Acquisition parameters

Contrast

 Effective echo time (ms) 90 116.256–123.60

 Echo spacing (ms) 4.08 10

 Echo train length 224 224

 Excitation flip angle (°) 90 90

 Refocusing pulse flip angle (°) 180 180

Geometry

 Slice orientation Sagittal, coronal or transverse Sagittal, coronal or transverse

 Slice thickness (mm) 3 3–4

 Slice gap (mm) 0.3 0

 Number of slices 45–46 37–51

 Phase oversampling (%) 80 0

 Shift of the field-of-view (mm) ± 1.6 ± 1.6

Resolution

 Field-of-view (mm2) 360× 360 240× 240−300× 300

 Base resolution (voxels) 320–327 256

 Phase resolution (%) 70 100

 Reconstruction matrix 320× 404−327× 414 512× 512

 Zero-interpolation filling – Yes

Acceleration technique

 Reference lines 42 –

 Acceleration factor 2 −

Amplitude of 3D rigid motion

Little motion

 Translation (mm) in x ± 1 ± 1

 Translation (mm) in y ± 1 ± 1

 Translation (mm) in z ± 1 ± 1

 3D rotation ( ◦) ± 2 ± 2

Moderate motion

 Translation (mm) in x ± 3 ± 3

 Translation (mm) in y ± 3 ± 3

 Translation (mm) in z ± 3 ± 3

 3D rotation ( ◦) ± 5 ± 5

Strong motion

 Translation (mm) in x ± 4 ± 4

 Translation (mm) in y ± 4 ± 4

 Translation (mm) in z ± 4 ± 4

 3D rotation ( ◦) ± 8 ± 8

Noise

 Mean 0 0

 Standard deviation 0.15 0.01
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sity, timing)39,68 (see Supplementary Method S1, Supplementary Fig. S1 for further details on the EPG formal-
ism).

The EPG  algorithm39 simulates the T2 decay in every voxel of the anatomical images over each echo train 
(Fig. 1-(iv)) based on the FSE sequence pulse design. Along with reference T1 and T2 maps of the fetal brain, 
the following sequence parameters are fed into the EPG estimation algorithm: the effective echo time, the excita-
tion and refocusing pulse flip angles that modulate the realistic INU fields described above, resulting in spatially 
varying flip angles, and the echo train length, namely the number of repetitions of RF refocusing flip angles. The 
resulting 4D matrix that combines information about both the anatomy and the magnetic relaxation properties 
of the fetal brain is hereafter referred to as the T2 decay matrix.

K‑space sampling and image formation. The T2 decay matrix is Fourier-transformed and subsequently used 
for k-space sampling of the simulated images. For a given echo time (TE), at most one line from the associated 
Fourier domain of the T2 decay matrix is used, with the central line corresponding to the effective TE. If an 
acceleration technique such as GRAPPA interpolation is required to decrease the scanning time as in the HASTE 
sequence acquired in clinical routine at CHUV, multiple reference lines are consecutively sampled around the 
center of k-space. Beyond, one line out of two is actually needed to simulate an acceleration factor of two. As 
a first approximation, these sampled lines are copied to replace the missing lines. According to partial Fourier 
imaging techniques, the properties of Hermitian symmetry in the frequency domain are used to fill the entire 
k-space. While intra-slice motion can be neglected in FSE sequences, inter-slice random 3D translation and 
rotation of the fetal brain are implemented during k-space sampling (Fig. 1-(v)). If needed, zero-interpolation 
filling (ZIP) is performed by filling the edges of the simulated k-space with zeros in order to reach the desired 
reconstruction matrix size, as for the high in-plane resolution SS-FSE images acquired at Kispi. Data in k-space 
are previously processed using a Fermi low-pass filter with a radius of 0.85 and a width of 1/23 to avoid Gibbs 
ringing  artefacts69,70. Complex Gaussian noise (mean, 0; standard deviation, 0.15 for the HASTE, 0.01 for the SS-
FSE implementation respectively) is added to simulate thermal noise generated during the acquisition process 
and qualitatively match the SNR of clinical data. The simulated images are eventually recovered by 2D inverse 
Fourier transform (Fig. 1-(vi)).

With the aim of replicating the clinical protocol for fetal brain MRI, FSE acquisitions are simulated in the 
three orthogonal orientations. Besides, the position of the field-of-view is slightly shifted by ± 1.6 mm in the slice 
thickness orientation to produce additional partially-overlapping datasets in each orientation.

Fetal motion. The amplitude of typical fetal movements is estimated from clinical  data71,72. Three levels are 
defined accordingly for little, moderate and strong motion of the fetus, with a maximum of 5% corrupted slices 
over the fetal brain volume. They are characterized by a uniform distribution of respectively [−1, 1] mm, [−3, 3] 
mm and [−4, 4] mm for independent translation in every direction and [−2, 2] ° , [−5, 5] ° and [−8, 8] ° for 3D 
rotation (Fig. 1-(v)).

Computational specifications. Since the addition of 3D motion during k-space sampling is expensive in com-
puting memory, the simulations are run on 16 CPU workers in parallel with 20 GB of RAM each. After investi-
gation, the amount of resources allocated to run such simulations can be reduced to 13 CPU workers in parallel 
with 20 GB of RAM each.

Simulating data from clinical MR acquisitions. Clinical datasets. The data used in this study were 
acquired in earlier studies in accordance with the relevant guidelines and regulations, under the supervision of 
Ethics Boards composed of representatives at different levels (hospitals, cantons, and federal state). Mothers of 
all fetuses included in the current work provided written informed consent for the re-use of their data for re-
search purposes. Clinical cases are used as typical acquisition examples to generate realistic synthetic images of 
the fetal brain throughout development and to visually compare the quality of the simulated images.

Thirteen healthy subjects in the GA range of 21 to 33 weeks ( 27.0± 3.85 weeks) were scanned at CHUV as 
part of a larger institutional research protocol approved by the ethical committee of the Canton of Vaud, Swit-
zerland (CER-VD, decision number: 2021-00124). In particular, these clinical cases are used to showcase the 
implemented pipeline and the realistic appearance of the corresponding synthetic HASTE images, as well as to 
explore the potential of FaBiAN in optimizing SR fetal brain MRI. For this purpose, clinical acquisitions were 
reconstructed offline using the docker version of the MIAL Super-Resolution  Toolkit16,52.

Fifteen subjects (thirteen neurotypical subjects and two subjects with light ventriculomegaly) from the Fetal 
Tissue Annotation Dataset (FeTA)25 in the GA range of 21 to 34.6 weeks ( 27.5± 4.46 weeks) were scanned 
at Kispi. Their inclusion in research studies was approved by the ethical committee of the Canton of Zurich, 
Switzerland (KEK, decision number: 2016-01019). The original LR series of each subject were combined with 
each other a posteriori and offline to form a SR volume of the fetal brain using a simplified version of the Image 
Registration Toolkit (SIMPLE IRTK)14 under Licence from Ixico Ltd. The resulting SR reconstructions were 
manually segmented according to the FeTA annotation  guidelines25. In particular, the clinical cases from Kispi 
allow to extend FaBiAN to generate multiple SS-FSE images of the fetal brain with various settings. We investi-
gate if these simulated images are realistic enough to replace part of the original data in the training phase of a 
deep learning network for fetal brain tissue segmentation, and to complement a clinical dataset to improve the 
performance of the segmentation algorithm.

Clinical MRI protocol. Typical fetal brain HASTE images are acquired on patients at 1.5 T (MAGNETOM Aera, 
Siemens Healthcare, Erlangen, Germany) with an 18-channel body coil and a 32-channel spine coil at CHUV. At 
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least three T2w series (3–11 series, 6.69± 2.14 series) of 2D thick slices are acquired in three orthogonal orien-
tations (axial, coronal and sagittal) with respect to the fetal brain using an ultra-fast multi-slice HASTE sequence 
(TR/TE, 1200 ms/90 ms; flip angle, 90°; echo train length, 224; echo spacing, 4.08 ms; field-of-view, 360 × 360 
mm2 ; voxel size, 1.13 × 1.13 × 3.00 mm3 ; inter-slice gap, 10%)20,73. Twenty-two to thirty slices are needed to cover 
the whole fetal brain depending on the GA (between 21 and 33 weeks) and size of the fetus, which corresponds 
to an acquisition time of between 26 to 36 seconds.

Fetal brain SS-FSE images are acquired on patients on either a 1.5-T or 3-T clinical GE whole-body scan-
ner (Signa Discovery MR450 or MR750), either using an 8-channel cardiac coil or body coil, at Kispi. At least 
three series (4–6 series, 5.53± 0.64 series) of 2D thick slices are acquired in three orthogonal orientations 
(axial, coronal and sagittal) with respect to the fetal brain using a T2w SS-FSE sequence (TR/TE, 3000–3200 
ms/116.032–124.08 ms; flip angle, 90°; echo train length, 224; echo spacing, 3–3.2 ms; field-of-view, from 
240× 240mm2 to 300× 300mm2 ; slice thickness, 3.00–4.00 mm; acquisition matrix, 1.5 T: 256× 224 voxels2 , 
3 T: 320× 224 voxels2 ; reconstruction matrix, 512× 512 voxels2 ; isotropic in-plane resolution, from 
0.47× 0.47mm2 to 0.59× 0.59mm2)25. Twenty-four to forty-three slices are needed to cover the whole fetal 
brain depending on the GA (between 21 and 34.6 weeks) and size of the fetus, which corresponds to an acquisi-
tion time of between one to two minutes.

The position of the field-of-view is slightly shifted in the slice thickness orientation to acquire additional data 
with some redundancy. In clinical practice, a total of six partially-overlapping LR series are commonly acquired 
in the three orthogonal orientations for subsequent SR reconstruction of the fetal brain.

Simulated datasets. The general framework presented in this paper makes it possible to simulate the clinical 
acquisition schemes described above for different MR vendors, at various magnetic field strengths, and with 
realistic SNR and amplitude of fetal movements.

The clinical cases from CHUV are used as representative examples of fetal brain HASTE acquisitions: the 
corresponding sequence parameters are replicated to simulate HASTE images of the fetal brain at various GA in 
the GA range of 21 to 33 weeks ( 27.8± 3.74 weeks). The amplitude of fetal movements in clinical acquisitions is 
assessed by an engineer expert in MR image analysis to ensure a similar level of motion in the simulated images. 
Besides, a 3D HR 1.1-mm-isotropic HASTE image of the fetal brain is simulated without noise or motion to 
serve as a reference for the quantitative evaluation of SR reconstructions from simulated LR 1.1-mm-in-plane 
HASTE images using the docker version of the MIAL Super-Resolution  Toolkit16,52.

SS-FSE images of the fetal brain are simulated for fifteen subjects in the GA range of 21 to 35 weeks 
( 28.0± 4.47 weeks) at either 1.5 T or 3 T. We reproduce the same acquisition parameters and geometry as in 
the clinical dataset from Kispi. For every subject, three partially-overlapping series are simulated in each of the 
three orthogonal orientations, two with little motion and one with moderate motion.

Table 3 reports the main characteristics of the original clinical acquisitions and the simulated data according 
to the MR vendor and the main magnetic field strength.

Motion index. An engineer in biomedical imaging visually inspected all the clinical data retrospectively. 46% of 
the MR images from CHUV were rated as corrupted by little motion, 38% by moderate motion, and the remain-
ing 16% by strong motion. In the case of MR images from Kispi, 53% were rated as corrupted by little motion, 
35% by moderate motion, and the remaining 12% by strong motion. A motion index is defined to support the 
assessment of the level of fetal movements in clinical acquisitions and simulations based on binary masks that 
are drawn on each LR series to cover the whole fetal brain volume using ITK-SNAP74. The motion index is 
estimated from tracking the displacement of the centroids of the 2D brain masks. It is computed as the sum of 
the variances of the 2D brain mask centroid coordinates of adjacent slices over the central third of the 3D brain 
mask, normalized by the number of slices considered (see Supplementary Method S2). An index less than 0.5 
mm stands for little motion, in the range of [0.5,1]mm for moderate motion, and larger than 1 mm for strong 
motion. This motion index correlates well with the assessment of motion in multiple MR images from CHUV by 
an engineer expert in MR image analysis. It is used in the following to estimate the amplitude of fetal movements 
in clinical acquisitions and ensure a similar level of motion in the simulated images.

Table 3.  Number of subjects, either scanned or simulated, considered throughout this study and distribution 
of gestational age (GA) according to the MR vendor and the main magnetic field strength.

MR vendor Magnetic field (T)

Clinical acquisitions Simulated acquisitions

Number of subjects

GA (weeks)

Number of subjects

GA (weeks)

Min–max 
( mean± SD)

Min–max (mean 
± SD)

Siemens Healthineers 1.5 13 21.0–33.0 
( 27.0± 3.85) 10 21.0–33.0 ( 27.1± 3.75

)

GE Healthcare
1.5 6 21.0–34.6 

( 27.3± 5.27) 6 21.0–35.0 ( 27.3± 5.54

)

3 9 21.3–33.0 
( 27.6± 4.18) 9 22.0–34.0 ( 28.4± 3.91

)
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Qualitative assessment. A neuroradiologist and a pediatric (neuro)radiologist provided independent 
qualitative assessment of the HASTE images of the fetal brain simulated in the GA range of 21 to 33 weeks, 
in the three orthogonal orientations and with various levels of motion. Special attention was paid to the MR 
contrast between brain tissues, the SNR, the consistency of the brain anatomy, the delineation and sharpness of 
the structures of diagnostic interest (i.e., corpus callosum, vermis, brain stem, lateral ventricles, cortex, white 
matter, pituitary gland, etc.) that are analyzed in clinical routine, as well as characteristic motion artefacts. In 
a second step, six months later, the same neuroradiologist (Rater 1) and pediatric (neuro)radiologist (Rater 2) 
went through most of the simulated images, including SS-FSE images, and evaluated their realistic appearance 
and their similarity to MR images acquired in clinical routine based on a quality index between 0 and 2: 0 cor-
responds to data that do not look realistic, 1 to quite realistic data, meaning they have similarities with clinical 
acquisitions, and 2 to highly realistic data.

To facilitate visualization and qualitative comparison of images throughout this manuscript, simulated brain 
images were co-registered with clinical acquisitions of fetuses at the same GA and with equivalent level of motion. 
For this purpose, at least five landmarks were manually defined over the fetal brain volume using the landmark 
registration of 3D  Slicer75.

Application 1: Super‑resolution reconstruction. Implementation of SR reconstruction. Orthogonal 
T2w LR HASTE series contain redundant information that enables the subsequent reconstruction of a 3D HR 
volume. Clinical acquisitions, respectively simulated images, are combined into a motion-free 3D image X̂ using 
the Total Variation (TV) SR reconstruction  algorithm16,52 which solves:

where the first term relates to data fidelity with k being the k-th LR series XLR and l the l-th slice, ‖X‖TV is a TV 
prior introduced to regularize the solution, and � balances the trade-off between data fidelity and regularization 
terms (default setting, � = 0.75). D and B are linear downsampling and Gaussian blurring operators given by the 
acquisition characteristics. M encodes the rigid motion of slices.

Regularization setting. LR HASTE images of the fetal brain are simulated to mimic clinical HASTE acquisitions 
of three subjects of 26, 30 and 33 weeks of GA respectively, which are characterized by a high SNR, the pres-
ence of a realistic low to moderate bias field, and variable amplitudes of fetal movements, from little to strong. 
Particular attention is paid to ensuring that the motion level is respected. For each subject, a SR volume of the 
fetal brain is reconstructed from the various orthogonal acquisitions, either real or simulated (six, respectively 
seven and eight series were acquired and are further simulated in the subject of 26, respectively 30 and 33 weeks 
of GA), with different values of � (0.1, 0.3, 0.5, 0.75, 1.5, 3) to study the potential of FaBiAN in optimizing the 
quality of the SR reconstruction in a clinical setup. Indeed, the weight � is a sensitive hyper-parameter in SR 
methods that are based on solving an inverse problem. A quantitative analysis is conducted on the resulting SR 
reconstructions to determine the value of � that provides the sharpest reconstruction of the fetal brain with high 
SNR, namely the smallest normalized root mean squared error (NRMSE) with respect to the corresponding 
synthetic 3D HR ground truth.

Number of LR series: an SNR and motion case study. Static LR HASTE images of the fetal brain (GA of 30 
weeks) are recovered after the addition of various levels of complex Gaussian noise (mean, 0; standard deviation, 
0.07, 0.15 or 0.3) to k-space. A standard deviation (SD) of 0.15 results in synthetic images that closely resemble 
clinical acquisitions. Six independent realizations of the 2D series are generated for each SNR. A SR volume of 
the fetal brain is reconstructed from three, six and nine orthogonal LR HASTE series using the different realiza-
tions. In total, fifty-four SR volumes are reconstructed.

Additional LR HASTE acquisitions of the fetal brain (GA: 30 weeks, SD of noise: 0.15) are simulated with 
inter-slice motion. The impact of little and moderate movements of the fetus on SR reconstructions from vari-
ous numbers of LR series is studied using a reference series without motion and with little amplitude of fetal 
motion respectively.

The different configurations are compared to each other by computing the NRMSE, the local SSIM and its 
mean (MSSIM) over the image with respect to the 3D isotropic ground truth. The latter are computed using 
Matlab ssim function with the SD of the isotropic Gaussian function that determines the weights of the pixels in 
a neighborhood to estimate local statistics set to its default value (1.5), and the dynamic range of the normalized 
input images to 255.

Application 2: Data augmentation for automated fetal brain tissue segmentation. Supplemen-
tary Figure S2 displays the histograms of the distribution of (a) gestational age (from 21 to 35 weeks, 27.8± 4.40 
weeks) across the original clinical cases and simulated subjects involved in this experiment, as well as (b) in-
plane isotropic resolution in the corresponding LR images according to the main magnetic field strength.

LR SS-FSE images of the fetal brain are simulated based on the MR sequence parameters and acquisition 
settings extracted from the clinical cases scanned at Kispi to mimic typical MR acquisitions, thus minimizing 
confounding factors. The synthetic images are interpolated to 0.8594mm× 0.8594mm in the in-plane direc-
tion to match the resolution of the clinical SR reconstructions. Label maps are automatically generated from 
the simulation framework using a nearest-neighbour interpolation. Two different labels are assigned to the 
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ventricular system (lateral, third and fourth ventricles) and to the extra-axial cerebrospinal fluid spaces in the 
SR reconstructions from Kispi  subjects25, whereas the segmented HR anatomical images from which our simula-
tions are derived distinguish the lateral ventricles from the cerebrospinal  fluid10. For consistency between brain 
annotations, we merge the labels that correspond to structures from the ventricular system and the cerebrospinal 
fluid spaces in both models.

Network architecture. We designed a convolutional neural network based on the well established U-Net 
 architecture76 for biomedical semantic image segmentation, as it recently proved its ability to perform well for 
2D fetal brain MRI tissue  segmentation22. The baseline 2D U-Net is trained using a hybrid loss function defined 
as the sum of a categorical cross-entropy and a Dice loss. The latter is intended to mitigate any imbalance in the 
samples of the different  classes22,77.

The implementation is performed in the framework of TensorFlow 2.578 and an Nvidia GeForce RTX 2080 
GPU is deployed for training.

Experimental design. As indicated in Table 4, we run two independent experiments:

• Experiment 1: It aims at investigating whether the simulated images are realistic enough to substitute for clini-
cal data. We compare three configurations that combine different proportions of subjects with SR volumes 
from clinical MR acquisitions and subjects with simulated LR images: a baseline (A) that consists of real 
data only (fifteen subjects), a configuration (B) that gathers ten original subjects and five simulated ones, a 
configuration (C) with eight original subjects and seven simulated ones. Real data remain predominant in 
all configurations studied.

• Experiment 2: If the MR images generated using FaBiAN are close enough to real data, we hypothesize that 
they could complement a small clinical dataset. In this setting, synthetic images are used as additional data 
to augment the training dataset. The configuration (D) complements the fifteen original subjects from the 
baseline (A) with fifteen simulated ones. It is compared to a conventional data augmentation strategy (E) 
that includes only the fifteen original subjects from the baseline (A).

Since we could not automatically propagate the annotations on the simulated images to the corresponding SR 
reconstruction, and conversely the labels in the SR reconstruction from clinical acquisitions to the original LR 
2D series, three LR series are needed to replace one SR volume. The segmentation is computed on skull-stripped 
images to process only the voxels within the intracranial volume.

Training strategy. Networks are fed with 64-by-64 overlapping patches in the axial orientation. To avoid any 
bias, we ensure an equivalent number of 2D patches between an SR-reconstructed clinical case and three LR 
axial series simulated for a given subject. Intensities of all image patches are standardized.

• Experiment 1: Each patch is repeated once using minimal data augmentation, i.e., random flip and rotation 
of the patches (n times, by n× 90◦ , n ∈ �0, 3�).

• Experiment 2: To maintain a similar number of input samples, each patch from configuration (D) is repeated 
once, while patches from configuration (E) are repeated three times. (D) is only augmented through ran-
dom flip and rotation, while more extensive conventional augmentation strategies used in fetal brain MRI 
 segmentation25, which also include random Gaussian noise, random gamma, and random bias field, are 
applied in configuration (E)79.

Five-fold cross-validation approaches (training sets: 12 subjects, validation sets: 3 subjects) are used to determine 
the epochs for the learning rate decay in each configuration.

Table 4.  Two experiments are presented along with the different configurations studied to compare the 
performance of an algorithm for automated fetal brain tissue segmentation. For each configuration, the 
respective number of clinical cases and simulated subjects, and the total number of subjects involved in the 
cross-validation are reported, as well as the number of times standard augmentation is performed (number of 
replicates).

Configuration
Number of clinical 
subjects

Number of simulated 
subjects

Total number of 
subjects Number of replicates

Experiment 1

(A) 15 0 15 2

(B) 10 5 15 2

(C) 8 7 15 2

Experiment 2
(D) 15 15 30 2

(E) 15 0 15 4
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Analysis. The performance of the fetal brain tissue segmentation networks is evaluated based on the Dice 
similarity coefficient (DSC)80 that quantifies the overlap between the predicted segmentation and the manually-
annotated ground truth. The performance metrics are assessed on the validation sets. We report the average over 
all folds. Statistical significance is given between both data augmentation strategies (configurations (D) and (E)) 
in Experiment 2. P-values of Wilcoxon rank sum test for individual fetal brain tissue segmentation are adjusted 
for multiple comparisons using Bonferroni correction. P < 0.05 is considered statistically significant.

Results
Computational performance. As highlighted in Fig. 1 for a fetus of 30 weeks of GA whose brain is cov-
ered by twenty-five slices, the computation time to convert segmented HR anatomical images of the fetal brain 
to MR contrast is in the order of one second. EPG simulations are run in every voxel of the 3D HR anatomical 
images in less than four minutes. For one axial series with either little, moderate or strong motion, k-space sam-
pling takes less than seven minutes for HASTE images simulated with an acceleration factor of two, respectively 
less than eight minutes for SS-FSE images simulated without using any acceleration technique.

Qualitative assessment. Figure 2 illustrates the close resemblance between simulated HASTE images of 
the fetal brain and clinical MR acquisitions in terms of MR contrast between tissues, SNR, brain anatomy and 
relative proportions across development for representative subjects in the GA range of 23 to 32 weeks, as well 
as typical out-of-plane motion patterns related to the interleaved slice acquisition scheme. A neuroradiologist 
and a pediatric (neuro)radiologist report a good contrast between gray and white matter, which is important to 
investigate the cortex continuity and identify the deep gray nuclei as well as any neuronal migration defect. The 
radiologists also notice good SNR in the different series and report proper visualization of the main anatomi-
cal structures: the four ventricles, the corpus callosum, the vermis, the cerebellum, even sometimes the fornix. 
Besides, the experts are able to monitor the evolution of normal gyration throughout gestation. However, the 
radiologists point out that small structures such as the pituitary gland, the chiasma, the recesses of the third 
ventricle, and the vermis folds that look part of the cerebellum, are more difficult to observe. The cortical rib-
bon is clearly visible but quite pixelated, which is likely to complicate the diagnosis of polymicrogyria. White 
matter appears too homogeneous, which makes its multilayer aspect barely distinguishable, with an MR signal 
that is constant across GA, thus preventing physicians from exploring the myelination process throughout brain 
maturation.

Further investigation is illustrated in Table 5 based on a quality index, where Rater 1 refers to the neuroradi-
ologist and Rater 2 to the pediatric (neuro)radiologist. Most images are evaluated as highly realistic, or at least 
quite realistic: 97%, respectively 86% of the HASTE images are evaluated with an index greater than or equal to 
1 by Rater 1, respectively Rater 2, and 92%, respectively 78% of the SS-FSE images are evaluated with an index 
greater than or equal to 1 by Rater 1, respectively Rater 2. The better evaluation of the simulated HASTE images 
may be related to the fact that the raters are used to analyzing HASTE acquisitions in their daily practice rather 
than SS-FSE scans. Rater 1 emphasizes that synthetic images look even more realistic in older fetuses. Rater 1 
also highlights that FaBiAN reproduces incredibly well fetal movements as they occur in clinical practice. It 
is worth noting that this index is intended to better reflect the realism of the simulated images rather than the 
actual image quality. However, especially for those corrupted by high levels of fetal motion, the low quality of 
the resulting images may impact the overall appreciation of the raters. Indeed, the HASTE images that have been 
evaluated with an index of 0 are, in most cases ( > 83% ), corrupted by a moderate to strong level of motion. More 
than half of the SS-FSE images that have been evaluated as not realistic are simulated in the sagittal orientation. 
Rater 2 points out that sagittal views of fetuses of GA between 32 and 35 weeks show cerebrospinal fluid above 
the posterior part of the corpus callosum, which is not as pronounced in clinical images. In addition, Rater 2 
explains that images with significant duplication of a structure are also rated at 0 because such artefacts do not 
appear as prominent in clinical practice, but either the image is not in a strict orientation or part of it is darker 
due to signal drops.

Application 1: Super‑resolution reconstruction. Regularization setting. Thanks to its controlled en-
vironment, FaBiAN makes it possible to adjust the parameter � for optimal SR reconstruction with respect to a 
simulated 3D isotropic HR ground truth of the fetal brain. Figure 3 explores the quality of SR fetal brain MRI 
from LR HASTE images corrupted by motion depending on the weight of TV regularization in two subjects of 
26 and 30 weeks of GA respectively. Based on the simulations, a high level of regularization ( � = 0.1 ) provides 
a blurry SR reconstruction with poor contrast between the various structures of the fetal brain, especially in the 
deep gray nuclei and the cortical plate. In addition, the cerebrospinal fluid appears brighter than in the reference 
image. A low level of regularization ( � = 3 ) leads to a better tissue contrast but increases the overall amount of 
noise in the resulting SR reconstruction. A fine-tuned regularization ( � = 0.75 ) provides a sharp reconstruction 
of the fetal brain with a high SNR and a tissue contrast close to the one displayed in the reference image. In the 
SR images reconstructed from clinical LR HASTE series altered by a little-to-moderate level of motion, as in the 
simulations, the structure of the corpus callosum and the delineation of the cortex are especially well defined 
for appropriate TV regularization ( � = 0.75 ), leading to high-SNR HR images of the fetal brain. Although the 
NRMSE between SR reconstructions from simulated HASTE images and the corresponding ground truth are 
close to each other for a given GA across the various weights studied, Fig. 4 shows that the error is systematically 
minimal for � = 0.75 , which further supports this parameter setting for optimal SR reconstruction of the fetal 
brain from this type of MR images.
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Number of LR series: an SNR and motion case study. Figure 5 shows the NRMSE and the MSSIM between SR 
reconstructions from different numbers of orthogonal LR HASTE series simulated with various SNR or variable 
amplitude of movements and a 3D HR  reference81.

In the case of static data (Fig. 5-left panel), the NRMSE decreases when increasing the number of series used 
in the SR reconstruction. According to both the NRMSE and the MSSIM, the quality of the SR reconstructions 
resulting from simulated images with an SNR close to that observed in clinical acquisitions and from synthetic 
images with a distribution of complex Gaussian noise of twice less SD is similar. Noisier images lead to a slight 
decrease in the NRMSE, but also in the MSSIM which in turn increases with the number of series.

Coronal, 26 weeks

Clinical data Simulations
(little motion)

Coronal, 23 weeks

Clinical data Simulations
(moderate motion)

skeew 23 ,laixAskeew 03 ,laixA

atad lacinilCatad lacinilC Simulations
(strong motion)

Simulations
(little motion)

Figure 2.  Visual inspection and comparison between clinical MR acquisitions and representative simulated 
HASTE images of the fetal brain in the three orthogonal orientations at four different GA (23, 26, 30 and 32 
weeks). The amplitude of movement of the fetus is indicated from the motion index computation. Red arrows 
point out typical out-of-plane motion patterns.
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Table 5.  Independent evaluation of the realism of the images generated using FaBiAN based on a quality 
index. Percentage of 2—highly realistic, 1—quite realistic, 0—non-realistic synthetic HASTE and SS-FSE 
images according to a neuroradiologist (Rater 1) and a pediatric (neuro)radiologist (Rater 2).

Index

Simulated HASTE images Simulated SS-FSE images

2 1 0 2 1 0

Rater 1 54 43 3 56 36 8

Rater 2 74 12 14 52 26 22
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lattiga
S

GA = 26 weeks

Clinical caseSimulations

λ = 0.1 λ = 0.75 λ = 3Ground  truth λ = 0.1 λ = 0.75 λ = 3
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Figure 3.  Appreciation of the quality of SR reconstruction depending on the weight � that controls the strength 
of the TV regularization. The potential of our framework FaBiAN for optimizing the reconstruction quality 
through parameter fine-tuning in the presence of motion is illustrated at two GA: 26 and 30 weeks. Two 
representative clinical cases are provided for comparison. The results for three values of � are presented. For 
� = 0.1 , the SR reconstruction looks blurry with poor tissue contrast. Using � = 3 improves the contrast but the 
images look noisy. For � = 0.75 , the SR reconstruction is sharp with a contrast between different brain tissues 
similar to that observed in the 3D isotropic ground truth. Clinical cases from which the simulated HASTE 
images are derived highlight the accuracy of a SR reconstruction for this intermediate value of � , especially with 
regards to the definition of the corpus callosum and the delineation of the cortex.
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Figure 4.  Normalized root mean squared error (NRMSE) between SR reconstructions from simulated data at 
a GA of 26, 30 and 33 weeks respectively and the corresponding 3D HR ground truth depending on the weight 
� of the TV regularization. Six values of � are tested: 0.1, 0.3, 0.5, 0.75, 1.5 and 3. The NRMSE is minimal for � = 
0.75.
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Figure 5.  (a) Normalized root mean squared error (NRMSE) and (b) mean structural similarity index 
(MSSIM) between SR reconstructions from different numbers of orthogonal LR HASTE series simulated at a 
GA of 30 weeks and the corresponding static 3D HR ground truth. The left panel shows results for motion-free 
data with various noise levels, a SD of 0.15 leading to a similar appearance as in clinical acquisitions. The right 
panel illustrates how the algorithm performs depending on the amplitude of fetal movements in the input series.
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The stronger the movements in the LR series, the higher the NRMSE of the resulting SR reconstruction. 
The addition of motion-corrupted LR series to reconstruct a SR volume of the fetal brain does not increase 
the MSSIM. Data with slight motion are well handled by the SR algorithm as the MSSIM is equivalent for SR 
reconstructions from static images and series with little motion. In the case of moderate motion, the MSSIM is 
lower than in the case of little motion.

Figure 6 highlights the benefit of increasing the number of orthogonal LR series on the rendering of the SR 
reconstruction. The higher the number of LR series combined in the SR reconstruction, even altered by motion, 
the smoother the frontal cortex and the sharper the putamen area in the resulting SR  volume81.

Application 2: Data augmentation for automated fetal brain tissue segmentation. We aim at 
proving the realistic appearance of the simulated images (representative SS-FSE images of two subjects scanned/
simulated at 1.5 T and 3 T respectively are provided as Supplementary Fig. S3) and demonstrating the practical 
value of the developed environment to complement clinical datasets for data augmentation strategies in deep 
learning, here with the example of fetal brain tissue segmentation.

Table 6 shows the mean DSC ± SD computed for every segmented brain tissue in each configuration. Overall, 
the performance of the segmentation algorithm is maintained when replacing original subjects by synthetic 
images obtained from an SS-FSE sequence simulated with the same acquisition parameters as in the clini-
cal protocol (Table 6, Experiment 1). This trend is also observed for each individual structure studied. In the 
configuration (C), the overall DSC for brain tissue segmentation is slightly increased compared to the baseline.

Since the simulated images look realistic enough to substitute for original clinical acquisitions, we further 
investigate if they can be used for data augmentation (Table 6, Experiment 2). Increasing the training data (15 
real cases) by 15 supplementary simulated subjects (configuration D) results in a significantly improved mean 
DSC of 0.90 ± 0.05 over the six segmented brain tissues compared to 0.86 ± 0.06 in configuration (E), where 
the 15 original cases are extensively augmented by conventional intensity-based operations such as additional 
Gaussian noise, bias field and gamma intensity  changes79. In more detail, the DSC is higher for all segmented 
brain structures when complementing clinical acquisitions with close simulated data, with statistical significance 

3D 1.1-mm isotropic 
ground truth

SR reconstruction from series corrupted by little motion

3 series 6 series 9 series
Mapping of local SSIM values

MSSIM = 0.5836 MSSIM = 0.5982 MSSIM = 0.6166

Figure 6.  Appreciation of sharpness and tissue contrast enhancement in SR reconstructions from higher 
numbers of simulated orthogonal LR HASTE images corrupted by little motion at a GA of 30 weeks in 
comparison with the corresponding static 3D HR ground truth. The frontal cortex looks smoother and the 
putamen area sharper in the SR reconstruction from nine series compared to the SR reconstruction from three 
series. The mapping of local SSIM values and the computation of the MSSIM over the corresponding region-of-
interest further support these observations.
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( p < 0.05 ) for the cerebrospinal fluid and ventricles, the cortical gray matter, the cerebellum, the deep gray 
matter and the brain stem.

Figure 7 illustrates on an axial view the accuracy of fetal brain tissue segmentation in a subject of 30.6 weeks 
of GA. The results obtained in the configuration (D) where real clinical data are complemented with simulated 
subjects look close to the manually-annotated ground truth. In particular, the segmentation seems to be more 
accurate in the cortex with an enhanced sensitivity to folding compared to the segmentation obtained in the 
baseline (A) where the network is solely trained on clinical data.

Discussion and conclusion
In this work, we present FaBiAN, a novel Fetal Brain magnetic resonance Acquisition Numerical phantom, and 
illustrate some of its potential uses. Our tool relies on EPG simulations to account for stimulated echoes in the 
computation of the T2 decay in every voxel of the HR anatomical images from which the simulated images are 
derived. The developed framework remains general and highly flexible in the choice of the sequence parameters 
and anatomical settings available to the user. It simulates as closely as possible the physical principles involved in 

Table 6.  DSC (mean ± SD) in the different configurations studied for all segmented brain tissues: 
cerebrospinal fluid (CSF) and ventricles, cortical gray matter (GM), white matter (WM), cerebellum, deep 
gray matter and brain stem, and on average. The number of clinical cases (Cxx) and the number of simulated 
subjects (Sxx) are recalled. We also emphasize that augmentation is performed twice more in configuration 
(E) compared to other configurations. The segmentation algorithm performs better (score in bold) in every 
structure when complementing the baseline dataset (configuration (A)) with simulated subjects (configuration 
(D)) than when performing standard data augmentation (configuration (E)). P-values of Wilcoxon rank sum 
test between both data augmentation strategies (configurations (D) and (E)) for individual fetal brain tissue 
segmentation are adjusted for multiple comparisons using Bonferroni correction. P < 0.05 (*) is considered 
statistically significant.

Experiment 1 Experiment 2

(A) C15/S0 (B) C10/S5 (C) C8/S7 (D) C15/S15 (E) C15/S0

CSF & ventricles 0.93 ± 0.01 0.94 ± 0.01 0.94 ± 0.02 0.95 ± 0.02 (*) 0.93 ± 0.01

Cortical GM 0.77 ± 0.02 0.80 ± 0.04 0.81 ± 0.05 0.84 ± 0.05 (*) 0.77 ± 0.02

WM 0.92 ± 0.01 0.92 ± 0.02 0.92 ± 0.02 0.93 ± 0.02 0.92 ± 0.01

Cerebellum 0.88 ± 0.04 0.87 ± 0.10 0.87 ± 0.09 0.92 ± 0.04 (*) 0.87 ± 0.06

Deep GM 0.85 ± 0.03 0.84 ± 0.10 0.87 ± 0.04 0.90 ± 0.04 (*) 0.85 ± 0.04

Brain stem 0.84 ± 0.03 0.85 ± 0.04 0.86 ± 0.04 0.88 ± 0.03 (*) 0.85 ± 0.03

Overall 0.87 ± 0.06 0.87 ± 0.08 0.88 ± 0.06 0.90 ± 0.05 (*) 0.86 ± 0.06

Cerebrospinal fluid and ventricles              Cortical gray matter              White matter              Deep gray matter

(a) (b) (c) (d)

SR reconstruction Manual annotations
ground truth

FaBiAN-augmented 
segmentation
(D) C15/S15(E) C15/S0

Standard 
segmentation

Figure 7.  Illustration of the accuracy of fetal brain tissue segmentation in a subject of 30.6 weeks of GA on 
(a) an axial slice from the SR reconstruction. Comparison of (b) the reference manual annotations, (c) the 
segmentation results obtained when performing extensive standard data augmentation on the clinical SR 
reconstructions (configuration (E), C15/S0), (d) the segmentation results obtained by the configuration (D) 
that complements this original dataset with fifteen additional simulated subjects (C15/S15), overlaid on the SR 
image. The segmentation of the cortex especially looks more accurate in (d), with an increased sensitivity to 
folding as highlighted by the white arrows.
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FSE sequences on several MR systems, namely from various MR vendors and at different magnetic field strengths, 
resulting in highly realistic T2w images of the developing brain throughout gestation.

The limitations in the resemblance of the simulated FSE images compared to typical clinical MR acquisitions 
may be explained by the origin of the simulated images and the lack of T1 and T2 ground truth measurements, 
both in the multiple fetal brain tissues and throughout maturation. As a model for our simulations, we use a 
normative spatiotemporal MRI atlas of the fetal  brain10 where representative images at each GA correspond 
to an average of fetal brain scans across several subjects, thus resulting in smoothing of subtle inter-individual 
heterogeneities, especially in the multilayer aspect of the white matter. T1 and T2 mapping of the fetal brain is 
currently limited by long scanning times, unpredictable fetal motion, and acquisition of thick slices to ensure 
a good SNR over the whole fetal brain volume. For ethical reasons, there is also a lack of normative T1 and T2 
values across GA. Therefore, and as a first approximation, we consider average T1 and T2 values of the various 
fetal brain structures labeled as gray matter, white matter or cerebrospinal fluid throughout development. As a 
result, our simulated images may fail to capture the fine details of the fetal brain anatomy as well as maturation 
processes that imply changes in T1 and T2 relaxation times during gestation. In this sense, experts report that 
they would feel confident in performing standard biometric measurements on the simulated images and in 
evaluating the volume of white matter, but not its fine structure. It is worth noticing that in-plane motion artefacts 
like signal drops are not accounted for at this stage, as slices severely corrupted by such artefacts will be removed 
from the analysis. Furthermore, we restricted our simulations to images of the fetal brain without the remaining 
fetal anatomy or the surrounding maternal uterine cavity, as most image analysis and post-processing techniques 
intended for fetal brain MRI, including SR reconstruction, first perform an automated fetal brain extraction/
segmentation. Unlike other models that represent fetal subjects by scaled pediatric data and oversimplify the 
complexity of the fetal brain anatomy by reducing it to white matter alone or to a single brain tissue  label82–84, we 
wanted our numerical simulations to be based on a comprehensive model of the fetal brain consistent with the 
underlying clinical application. In this sense, the normative spatiotemporal MRI atlas of the fetal  brain10 from 
which the simulated FSE images are built captures the details of the fetal brain anatomy throughout matura-
tion. Future work will improve the accuracy of the fetal brain model, both in terms of structure differentiation 
and T1 and T2 changes during maturation. This implies modeling of T1 and T2 variations, both locally and 
across time, especially within white matter. We will generate locally varying reference relaxometric properties 
assigned to every brain tissue to capture changes within finer structures, and modulate these values according 
to the gestational age of the fetus to enhance the MR contrast between the various brain tissues throughout 
gestation and simulate more realistic images of the developing fetal brain. Thanks to the flexibility of FaBiAN, 
the surrounding fetal and maternal anatomy, as well as any other structures, could easily be included as long as 
we have access to segmented HR images, for instance by resorting to more complex anatomical models such as 
the XCAT  phantoms85–87. Several models can also be combined.

We have designed this open-source simulator to aid in the development and validation of advanced image 
processing techniques dedicated to improving the analysis of fetal brain MR images and support accurate diag-
nosis. Despite SR reconstruction has already demonstrated its potential for accurate biometric measurements 
in the fetal  brain18–20, some parameters still need to be adjusted to the nature of the input LR images to provide 
optimal evaluation and support computer-assisted diagnosis. In fetal MRI, the level of regularization is commonly 
set empirically based on visual  perception12–14,17. Intuitively, the level of regularization depends on the amount 
of data available to solve the ill-posed inverse problem. Thanks to its controlled environment, the presented 
framework makes it possible to explore the optimal settings for SR fetal brain MRI according to the quality of 
the input motion-corrupted LR series with respect to a synthetic 3D HR ground truth. It is worth noticing that 
in-plane motion artefacts like signal drops are not accounted for in the simulation workflow at this stage, as heav-
ily corrupted slices are commonly removed from the reconstruction. Besides, FaBiAN also enables quantitative 
assessment of the robustness of any SR reconstruction algorithm depending on various parameters that can be 
intrinsic to the system like noise, or related to the clinical application such as the amplitude of fetal motion in 
the womb and the number of series used for SR  reconstruction81. For instance, a decrease in the MSSIM when 
adding motion-corrupted series to reconstruct a SR volume of the fetal brain compared to the SR reconstruction 
from static series can be caused by an inappropriate slice-to-volume registration (SVR). Therefore, our numerical 
phantom provides a valuable framework for reproducibility studies and validation of image processing methods. 
Additional examples among its wide variety of applications include the simulation of a static reference volume at 
a given GA on which to align the clinical orthogonal LR series acquired in a subject at the same GA in order to 
perform SVR and subsequent SR reconstruction of the fetal brain, especially in the presence of heavily motion-
corrupted acquisitions. Besides, the performance of the SVR can be quantitatively assessed by comparing the 
motion transform estimated by the algorithm to the controlled 3D rigid movements actually simulated in the 
images. Synthetic HR images can also be used as a reference for more general motion compensation techniques.

As raised by Wissmann et al., the lack of comparability between simulation setups hinders the evaluation of 
image reconstruction methods in relation to each  other27. This first numerical phantom for MR imaging of the in 
utero developing brain has already proven its high flexibility in generating multiple images with various acquisi-
tion parameters and settings. To make it even more general, we will extend FaBiAN to other MR vendors and 
sequences. From image acquisition to post-processing developments, the fetal brain MRI community should be 
able to take advantage of such a unified environment that is intended to simulate MR images of the developing 
fetal brain as they are acquired in clinical routine all around the world.

Furthermore, the developed framework generates T2w images of the fetal brain realistic enough to comple-
ment real clinical acquisitions for data augmentation strategies, as shown here with a proof of concept for fetal 
brain tissue segmentation. It especially makes it possible to exploit the whole range of GA in the simulated data 
when clinical cases are scarce and not necessarily uniformly distributed across development. Thus, we can take 
advantage of larger and more diverse datasets at no cost. In Experiment 1, we limit augmentation of the clinical 
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and simulated data to random flip and rotation only in order to minimize its effect in evaluating the combination 
of both types of images. Thus, it becomes possible to explore how replacing a real image with a synthetic one 
impacts the variability of the model, and subsequently the segmentation accuracy. In the scenario of Experiment 
2, we rather compare standard data augmentation practices in modern convolutional neural network segmenta-
tion pipelines (additional Gaussian noise, bias field, and gamma intensity corrections)25,79 to the data augmenta-
tion possibilities offered by FaBiAN. Results show that the greater anatomical variability brought by the addition 
of MR images simulated from another source (configuration (D)) certainly benefits the segmentation accuracy 
more than intensity-based operations (configuration (E)). Overall, the SR images from the FeTA dataset used in 
this study present a homogeneous appearance, with high quality, denoised and bias-free reconstructions. Thus, 
augmentation of the original clinical dataset through noise addition and intensity changes does not help the 
network to better generalize in this cohort. Conversely, the segmentation network is more likely to take advantage 
of the more heterogeneous and diverse data generated by FaBiAN. In this proof-of-concept study, it is worth 
highlighting that the bias field and SNR are the same throughout all simulations. However, as demonstrated in 
this manuscript, FaBiAN is an excellent playground to perform additional data augmentation itself by generating 
multiple MR images for the same subject with varying parameters, whether related to intensity changes, spatial 
resolution, or amplitude of fetal movements. This asset would further complement conventional data augmenta-
tion strategies to enhance data heterogeneity and mitigate the scarcity of fetal brain MR images.

Although the resort to an atlas restricts the inter-subject variability at a given GA, the great flexibility of 
FaBiAN also lies in the possibility of simulating images from various sources, either atlases or clinical segmented 
HR anatomical images of the fetal brain like SR reconstructions. Thus, it becomes possible to simulate several 
subjects at a given GA from various fetal brain models to increase the inter-subject anatomical heterogeneity in 
the synthetic images. Beyond normal brain development, we aim at exploring common developmental patholo-
gies, like ventriculomegaly and spina bifida, by simulating new datasets of synthetic MR images from annotated 
SR reconstructions of the fetal brain in pathological subjects.

In line with the demonstration of the added value of FaBiAN for diverse applications that revolve around 
improving diagnosis and prognosis from MR images of the developing fetal brain, future work involves inves-
tigating the ability of such a numerical framework to generalize post-processing tools like fetal brain tissue 
segmentation to datasets acquired on other MR systems and with other sequence parameters using a collection 
of various synthetic images for domain adaptation techniques.

 Data availability
 All the simulated datasets that support the various proof-of-concept studies documented in this manuscript will 
be made publicly  available88 upon acceptance of the present work. 

 Code availability
 The proposed  framework89 is open source. 
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