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Abstract. The automated detection of cortical lesions (CLs) in patients
with multiple sclerosis (MS) is a challenging task that, despite its clinical
relevance, has received very little attention. Accurate detection of the
small and scarce lesions requires specialized sequences and high or ultra-
high field MRI. For supervised training based on multimodal structural
MRI at 7T, two experts generated ground truth segmentation masks of
60 patients with 2014 CLs. We implemented a simplified 3D U-Net with
three resolution levels (3D U-Net-). By increasing the complexity of the
task (adding brain tissue segmentation), while randomly dropping input
channels during training, we improved the performance compared to the
baseline. Considering a minimum lesion size of 0.75 µL, we achieved a
lesion-wise cortical lesion detection rate of 67% and a false positive rate
of 42%. However, 393 (24%) of the lesions reported as false positives
were post-hoc confirmed as potential or definite lesions by an expert.
This indicates the potential of the proposed method to support experts
in the tedious process of CL manual segmentation.
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1 Introduction

Multiple sclerosis (MS) is the most common demyelinating disease affecting the
central nervous system. Demyelination results in focal lesions that appear in both
the white matter (WM) and gray matter (GM) of the brain and of the spinal
cord. Magnetic resonance imaging (MRI) is the conventional imaging tool used
for the diagnosis and evaluation of disease progression and therapy response,
with a focus on WM lesions (WMLs) dissemination in space and time. While
WMLs remain a hallmark of MS, in 2017 cortical lesions (CLs) were added
to the diagnostic criteria of MS [22]. CLs are associated with worse disability
and with progressive forms of MS, and these associations appear to be at least
partially independent of WML burden [3,23]. CLs can be divided into three
subtypes: leukocortical (type I, involving the cortex and WM), intracortical (type
II, entirely within the cortex but not touching the pial surface), and subpial
(type III and IV, touching the pial surface of the cortex). There is increasing
evidence that subpial lesions form due to inflammation in the overlying meninges,
in a somewhat distinct mechanism from that of WM and leukocortical lesion
formation [17]. Thus, it is important to understand the clinical implication of
subpial lesions and their response to existing and novel MS treatments in order
to optimize MS diagnostic and prognostic accuracy and maximize treatment
efficacy.

CLs, however, are only visible with specialized advanced MRI sequences at
high (3T) and ultra-high magnetic field (7T) [13,14]. Specifically, 7T MRI has
become the reference in vivo technique for CL identification due to its increased
signal-to-noise ratio (SNR) and often higher imaging resolution [13]. Moreover,
7T MRI is significantly more sensitive to intracortical and subpial lesions com-
pared to 3T [18]. Magnetization-prepared 2 rapid acquisition with gradient echo
(MP2RAGE) [14,19], in particular, has emerged as a promising sequence for
detecting CLs at 7T [2], but different T2*-weighted (T2*w) contrasts have been
suggested as well [18,20]. Overall, the combination of MP2RAGE and one (or
more) T2*w sequence gives the highest sensitivity [2].

A wide range of machine learning algorithms have been proposed in order to
automatically segment WMLs in MRI [10]. Recently, deep learning algorithms
have achieved the best performance in terms of WML detection and segmen-
tation [4]. However, the automated detection of CLs in MRI has been barely
explored. CLs are smaller and show a lower intensity contrast compared to
WMLs. Moreover, CLs locations (within the cortex and at its interface with
WM) make their detection more challenging than lesions entirely within the WM.
Finally, the need for advanced MRI sequences limits the dataset availability and
thus the availability of training samples. Nevertheless, at 3T, four methods have
been tested to automatically segment both WMLs and CLs [7,8,15,16]. All meth-
ods were applied in a multimodal setting, including advanced sequences such as
MP2RAGE, 3D fluid-attenuated inversion recovery (FLAIR) and 3D double-
inversion recovery (DIR) [7,8], or only MP2RAGE and 3D FLAIR [15,16].

At 7T, however, the problem of automatically detecting CLs differs from
3 T for three main reasons. Firstly, a significantly higher number of CLs is
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visible, including subpial ones which are almost not seen at lower magnetic
fields. Secondly, the increased inhomogeneity in the radiofrequency (B1) field
and local variations of the static magnetic field (B0) create artefacts and spatial
distortions. Thirdly, the T2w 3D FLAIR sequence, commonly used at 1.5 and
3T, presents artefacts and alternative advanced sequences are acquired instead.
Beyond these challenges and in the recent approval of the first 7T MRI scanner
for clinical use, the development of automated tools for MS lesion segmenta-
tion at ultra-high field is needed to help physicians in better analysing those
images. Pioneering work of Fartaria et al. [9] proposed an automated segmenta-
tion of MS lesions at 7T, based on the concatenation of skull stripping, tissue
segmentation, and morphological operations. Their approach, based on a single
MP2RAGE scan, segments both WMLs and CLs (mostly leukocortical), report-
ing an accuracy for CLs of 58% with 40% of false positives.

Fig. 1. Examples of the four types of CLs seen in the three different contrasts at 7T
MRI.

In our work, we present a deep learning 7 T multimodal approach for CL
detection only, considering MP2RAGE, T2*w echo planar imaging (EPI) [20,21],
and T2*w gradient recalled echo (GRE) sequences. This is the first attempt
to detect CLs and classify them in two different types: leukocortical and sub-
pial/intracortical. We implemented a 3D U-Net [5] with fewer resolution lev-
els resulting in substantially fewer parameters. Considering this architecture as
baseline, we increased the complexity of the prediction task by simultaneously
predicting main tissue types and randomly dropping input channels during train-
ing. Another important contribution of this work is the validation framework.
Compared to the only previous work in literature, we increase the number of
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patients and CLs used for validation: from 25 and 364 in [9] to 60 and 2014.
Furthermore, we target small CLs with a minimum volume of 0.75 µL instead
of 6 µL considered in [9].

2 Methodology

2.1 Dataset

MRI acquisitions were done on 60 patients (38/22 female/male, 49 ± 11 years
old, age range [29–77] years) with Expanded Disability Status Scale (EDSS)
scores ranging from 0 to 7.5 (median 2.0 ± 2.0), 17 were progressive and 43
relapsing remitting MS. Imaging was performed on a 7 T whole-body research
system (Siemens Healthcare, Erlangen, Germany) using a 32-channel head
coil. The MRI protocol included: (i) 3D MP2RAGE [14] (TR/TI1/TI2/TE =
6000/800/2700/5 ms, voxel size = 0.5 × 0.5 × 0.5 mm3), (ii) 3D-Segmented
T2*w EPI [20,21] (TR/TE = 52/23 ms, voxel size = 0.5 × 0.5 × 0.5 mm3)
acquired in two partially overlapping volumes, (iii) T2*w multi-echo GRE
(TR/TE1/TE2/TE3/TE4/TE5 = 4095/11/23/34/45/56 ms, voxel size = 0.5×
0.5×0.5 mm3) acquired in three volumes.

The study was approved by the Institutional Review Board of our institution,
and all patients gave written informed consent prior to participation.

Manual CL Detection and Tissue Segmentation. 2014 CLs were manually
detected and classified by consensus by one neurologist and one neuroradiologist,
both with several years of experience identifying CLs. They analyzed multiple
planes and considered, if needed, all three MRI contrasts. Additional lesions
which did not fully convince the experts, due to their poor intensity contrast,
small size, or appearance on a single contrast, were marked as “possible CLs”.
The brain tissue was segmented in white and gray matter with the automatic
software ANTs [1] for the training tissue labels.

Types of MS CLs. Our experts classified the CLs according to [3]. See Fig. 1 for
an example of each type. Within our dataset, 38% of the CLs identified belong
to type I, 7% to type II, 44% to type III, and 11% to type IV.

Pre-processing. The images of each subject were linearly registered to the
same space (MP2RAGE), and intensity non-uniformities were corrected using a
variant of the nonparametric nonuniform intensity normalization algorithm [24].

2.2 Network’s Details

The chosen network architecture (Fig. 2) is inspired by the 3D U-Net [5], which
has proved successful for several biomedical imaging segmentation tasks, includ-
ing MS lesion segmentation [12]. Given the limited amount of data, to avoid
overfitting we reduced the complexity of the network by removing one resolution
layer, and thus the term U-Net-. We were interested in a voxel-wise segmentation
of CLs with three levels (leukocortical lesions, subpial/intracortical lesions, and
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background), distinguishing CLs between these primarily in the GM (type II,
III, and IV) and these affecting the interface between GM and WM (type I). We
chose to work with patches of 68 × 68 × 68 as input yielding an output of 28 ×
28 × 28 voxels. We propose an additional output layer (denoting this network as
multi-task U-Net-) in order to guide the learning procedure. This additional task
consisted of brain tissue segmentation in WM, GM, and background. A joint tis-
sue and lesion segmentation has proven already to be promising in [6] regarding
WM hyperintensities segmentation. Even though tissue segmentation is not the
goal of this work, this architecture allows the network to be aware of the tissue
location of the CLs and improved the detection metrics (see Sect. 3). Each lesion
was sampled with the same probability, regardless of its size and was balanced
with samples from the rest of the brain. The networks were trained with voxel-
wise weighted cross-entropy in order to balance the two output maps. In the CLs
output map weights of 15, 1, and 0 were assigned to CLs voxels, background, and
WMLs respectively in order not to penalize the network if these are segmented
(as some leukocortical lesions appear very similar to juxtacortical WMLs). In
the tissue map, all the lesions had weight 0 to simplify the tissue segmentation
in these regions, whereas other voxels had weight 1. The initial learning rate was
set to 1e−4, and Adam was used as optimizer.
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Fig. 2. Scheme of the 3D U-Net- implemented. In input, the three MRI contrasts, with
input channel dropout, in output a CLs mask and a tissue segmentation.
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Data Augmentation. We applied extensive data augmentation to tackle the
risk of overfitting. Random rotations of up to 180 degrees in all three planes and
flipping of the axes were applied. Input-channel dropout (ICD) for the two T2*w
contrasts was also evaluated. This consists in randomly dropping (eg. multiplying
it by zero) one of the two T2*w contrasts at each training iteration. The main
motivation is that small portions of the brain were occasionally missing on data
from the T2*w GRE sequence, whereas the T2*w EPI shows several artefacts
(see Fig. 3). We hypothesized this augmentation technique would improve the
network robustness to these images’ artefacts (see Sect. 3).

Training was performed on a NVIDIA TITAN X GPU for 50000 iterations
and took approximately 22 hours per each fold. The code has been implemented
in NiftyNet [11] running on top of Tensorflow. The code and models can be
obtained from our research website1.

MP2RAGE MP2RAGEEPI EPIGRE GRE

Fig. 3. On the left, a zoomed-in example where part of the brain is missing in the GRE
sequence. On the right, artefacts affect the EPI.

2.3 Evaluation

We evaluated U-Net-, multi-task U-Net- (adding the tissue segmentation output
layer), and multi-task U-Net- with ICD in a 6-folds cross-validation over the 60
cases available. We considered a minimum lesion size of 6 voxels (0.75 µL), much
lower than the one previously considered by any method performing automatic
MS lesion segmentation. As proposed in [4], we compute the following met-
rics: absolute volume difference (AVD), CLs lesion-wise true and false positives
rates (LTPR and LFPR, respectively), CLs patient-wise true and false positives
rates (TPR and FPR, respectively) and CL classification accuracy (Accuracy).
Wilcoxon signed-rank test is performed to compare the TPR and FPR patient-
wise of the different architectures. Differences are considered significant for p-
value < 0.05.

3 Results

Lesion-Wise Analysis. Evaluation metrics of U-Net-, Multi-task U-Net-, and
Multi-task U-Net- + ICD are reported in Table 1. The latter outperforms the
1 https://github.com/Medical-Image-Analysis-Laboratory.

https://github.com/Medical-Image-Analysis-Laboratory
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others in all four metrics. This network achieves a CLs LTPR of 67%, LFPR
of 42%, AVD of 36%, and CLs classification accuracy of 86%. We analyse the
Multi-task U-Net- + ICD LTPR depending on the minimum lesion size and per
lesion type (see Fig. 5). As can be observed, CLs Type II are the most challenging
ones, with a detection rate of 34% considering 0.75 µL as minimum lesion volume.
Increasing the minimum lesion volume to 6µL (as in [9]), the network reaches
an overall CL detection rate of 75%, with consistent improvements especially for
type II and type III CLs. A qualitative example of the segmentation outputs is
shown in Fig. 4 in comparison with the experts’ ground truth.

Table 1. Lesion-wise TPR and FPR, patient-wise AVD, and CL classification accu-
racy reported for the different networks. Statistical differences are found for the AVD
between all three methods (p-values < 0.01).

Network LTPR LFPR AVD Accuracy

3D U-Net- 0.63 0.53 1.22 0.82

Multi-task 3D U-Net- 0.66 0.44 0.55 0.85

Multi-task 3D U-Net- + ICD 0.67 0.42 0.36 0.86

Fig. 4. Examples of CLs (leukocortical in red and subpial/intracortical in green) in the
experts’ ground truth compared to the output masks of Multi-task 3D U-Net- + ICD.
The tissue classes are color coded as red (WM) and green (GM). (Color figure online)

False Positives Analysis. Given the difficulty of the CL detection task, even
for experts, we further analyzed the false positive lesions given by our best
network architecture. Retrospectively, one of the experts re-evaluated each of
the FP and assigned 24% of those (385 lesions) to actual CLs or “possible CLs”.
This is on one side clear evidence of the difficulty of the task, as two experts
missed them, and on the other side, a sign of the practical value of the automatic
method proposed, for instance to present candidate lesions to support and speed
up the experts’ routine MRI analysis.
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Fig. 5. On the left, the CL LTPR depending on the minimum lesion size considered, per
lesion type. On the right, Bland-Altman plot (reference - prediction) of the manually
and automatically segmented CL volumes.

Patient-Wise Analysis. The final architecture outperformed the two compar-
ison networks also patient-wise (Fig. 6). Adding the output tissue segmentation
map helped reduce false positives in the WM, and therefore the overall FPR.
Statistical differences were found between multi-task 3D U-Net- + ICD and the
baseline 3D U-Net- for both LTPR and LFPR. Bland-Altman plot of the manu-
ally and automatically CLs volume segmented per patient is presented in Fig. 5
right. Aside from two outliers, all differences are within mean ± 1.96 SD, and
we do not observe any systematic error estimation bias as a function of the total
lesion volume size.

Fig. 6. TPR and FPR patient-wise for the three networks. N.S.: not significant.

4 Conclusion

In this work, we explore the capability of deep learning-based techniques for
the automated detection of MS cortical lesions in advanced MRI sequences
(MP2RAGE, T2*w EPI, and T2*w GRE) at 7T. To the best of our knowledge,
this is the first automated method specifically proposed for MS CL detection
at ultra-high field MRI. Furthermore, it differentiates them into two classes:
leukocortical and intracortical/subpial.
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Our work is evaluated on a large dataset of 60 MS patients including over 2000
CLs manually labelled by two experts. Considering as baseline a simplified 3D
U-Net, we increased the complexity of the classification task by simultaneously
predicting GM and WM tissue types. Moreover, we propose an input channel
dropout technique to tackle the issues of artifacts or missing parts of the brain in
the T2*w contrasts. This architecture achieves a 67% CL detection rate with 42%
false positives, considering a minimum lesion size of 0.75 µL, much lower than
any previous work. Interestingly, a retrospective analysis of the false positives
by a single expert showed that 24% of them could be considered CLs or possible
CLs missed in the initial labelling. This proves the potential of the proposed
method for supporting experts in the tedious process of CL labelling, possibly
presenting them with candidate lesions.

Future work will include exploring the T1 quantitative map of the MP2RAGE
sequence, and experimenting during training a soft ground truth, which could
help coping with the experts’ definition of “possible cortical lesion”.
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