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Objects are the fundamental building blocks of how we create a representation of the external world. One major distinction among
objects is between those that are animate versus those that are inanimate. In addition, many objects are specified by more than a
single sense, yet the nature by which multisensory objects are represented by the brain remains poorly understood. Using represen-
tational similarity analysis of male and female human EEG signals, we show enhanced encoding of audiovisual objects when com-
pared with their corresponding visual and auditory objects. Surprisingly, we discovered that the often-found processing advantages
for animate objects were not evident under multisensory conditions. This was due to a greater neural enhancement of inanimate
objects—which are more weakly encoded under unisensory conditions. Further analysis showed that the selective enhancement of
inanimate audiovisual objects corresponded with an increase in shared representations across brain areas, suggesting that the
enhancement was mediated by multisensory integration. Moreover, a distance-to-bound analysis provided critical links between
neural findings and behavior. Improvements in neural decoding at the individual exemplar level for audiovisual inanimate objects
predicted reaction time differences between multisensory and unisensory presentations during a Go/No-Go animate categorization
task. Links between neural activity and behavioral measures were most evident at intervals of 100-200 ms and 350-500 ms after
stimulus presentation, corresponding to time periods associated with sensory evidence accumulation and decision-making, respec-
tively. Collectively, these findings provide key insights into a fundamental process the brain uses to maximize the information it
captures across sensory systems to perform object recognition.
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Our world is filled with ever-changing sensory information that we are able to seamlessly transform into a coherent and
meaningful perceptual experience. We accomplish this feat by combining different stimulus features into objects. However,
despite the fact that these features span multiple senses, little is known about how the brain combines the various forms of
sensory information into object representations. Here, we used EEG and machine learning to study how the brain processes
auditory, visual, and audiovisual objects. Surprisingly, we found that nonliving (i.e., inanimate) objects, which are more diffi-
cult to process with one sense alone, benefited the most from engaging multiple senses. /
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large measure, these studies have focused on manipulating stim-
ulus reliability and effectiveness through changing low-level stim-
ulus features, such as introducing differing levels of noise, to gauge
the effects on multisensory integration. However, emerging litera-
ture in vision and audition suggests that higher-level semantic fea-
tures, such as the binding of stimulus elements into objects, may
also play a key role in dictating reliability and effectiveness (Cappe
et al,, 2012; Ritchie et al., 2015). Given that many objects are speci-
fied through their multisensory features, an open question is how
might differences in object categorization lead to differences in
perceptual gains from multisensory integration.

One of the major categorical distinctions between objects is
animacy. In vision, animate objects offer substantial processing
and perceptual advantages over inanimate objects, including being
categorized faster, more consciously perceived, and found faster in
search tasks (New et al., 2007; Jackson and Calvillo, 2013; Carlson
et al, 2014; Ritchie et al, 2015; Lindh et al, 2019). Auditory
studies have similarly found faster categorization times for ani-
mate objects (Yuval-Greenberg and Deouell, 2009; Vogler and
Titchener, 2011). This difference may be a remnant of an evolu-
tionary need to rapidly recognize and process living stimuli that
could pose threats or be sources of sustenance (Laws, 2000).
Furthermore, many inanimate objects such as cars, trains, and
cellphones have not existed long enough for there to be specialized
brain areas to represent them. In contrast, a number of specialized
areas exist for the processing of categories of animacy, such as
faces in the fusiform face area, bodies in the extrastriate body area,
and voices in the temporal voice areas (Kanwisher et al., 1997;
Belin et al., 2000; Downing et al., 2001; De Lucia et al., 2010).

To study how perceptual differences in visual and auditory
categories influence their subsequent integration as audiovisual
objects, it is critical to quantify neural encoding differences
between objects. Representational similarity analysis (RSA;
Kriegeskorte et al., 2008a) constructs a representational space
quantifying relationships between stimuli with representational
distance indicating the difference in their neural signatures. A
greater distance in representational space signifies more distinct
neural signals between stimuli, while shorter distances signify
less distinct neural signals. Studies using RSA have shown that
visual and auditory objects have a clear encoding distinction
between animate and inanimate categories (Kriegeskorte et al.,
2008b; Giordano et al., 2013; Cichy et al., 2014), while also show-
ing that representational space can contract if stimuli are
degraded (Grootswagers et al., 2017b) or expand in cases of
increased attention (Nastase et al., 2017). Although RSA has
been increasingly used to study object representations, it has not
been fully leveraged to examine objects as they are often repre-
sented in naturalistic setting as multisensory entities.

In this study, we presented subjects with auditory, visual, and
semantically congruent audiovisual animate and inanimate
objects while we recorded high-density EEG. Our overarching
hypothesis was that greater behavioral benefits would be seen for
objects specified in a multisensory manner and that these gains
would be accompanied by an expansion in representational space
as measured using RSA. A secondary hypothesis was that greater
benefits would be observed for inanimate objects, given evidence
that multisensory integration benefits are greatest for weakly
effective stimuli (Stein and Meredith, 1993; Ernst and Banks,
2002; Wallace et al., 2004).

Materials and Methods

Participants. The experiment included 14 adults (9 males) with a mean
age of 27 = 4.2 years. All subjects had normal or corrected-to-normal
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vision and reported normal hearing. The study was conducted in accord-
ance with the Declaration of Helsinki, and all subjects provided their
informed consent to participate in the study. Each participant was com-
pensated financially for their participation. The experimental procedures
were approved by the Ethics Committee of the Vaudois University
Hospital Center and University of Lausanne. Behavioral data for all sub-
jects were used. However, EEG data for one subject was removed from
further decoding analysis due to poor signal quality in the evoked poten-
tial response.

Stimuli. The experiment took place in a sound-attenuated chamber
(Whisper Room), where subjects were seated centrally in front of a 20
inch computer monitor (LP2065, HP) and located ~140 cm away from
them (visual angle of objects, ~4°). The auditory stimuli were presented
over insert earphones (model ER4S, Etymotic Research), and the volume
was adjusted to a comfortable level (~62 dB). The stimuli were pre-
sented and controlled by E-Prime 2.0, and all behavioral data were
recorded in conjunction with a serial response box (Psychology Software
Tools; https://www.pstnet.com/). The auditory stimuli included 48 ani-
mate and 48 inanimate sounds from a library of 500-ms-duration
sounds, used in previous studies and have been evaluated in regard to
their acoustics and psychoacoustics as well as brain responses as a func-
tion of semantic category (Murray et al., 2006; De Lucia et al.,, 2010;
Thelen et al., 2012). The visual stimuli were semantically congruent line
drawings that were taken from a standardized set (Snodgrass and
Vanderwart, 1980) or obtained from an online library (http://dgl.
microsoft.com).

Experiment design. Participants performed 10-13 experimental
blocks (median, 10 blocks) of a Go/No-Go task. Each block contained 1
audio, visual, and audiovisual presentation for each of the 96 stimuli
exemplars, totaling 288 stimulus presentations per block. For half of the
blocks, subjects were instructed to press a button when they perceived
an animate object and for the other half when they perceived an inani-
mate object. Animate and inanimate blocks were randomized for each
subject. Auditory, visual, and synchronous audiovisual stimuli were pre-
sented for 500 ms, followed by a randomized interstimulus interval rang-
ing from 900 and 1500 ms, and participants had to respond within this
1.4-2 s window. Stimuli modality was randomized for each trial (Fig. 1,
schematic). To control for motor confounds, the block instructions alter-
nated between indicating whether the stimuli were animate or inanimate
(Grootswagers et al., 2017a). Reaction times (RTs) and accuracy were
measured for each response. Participants did not receive feedback during
the experiment.

Statistical inference. All statistical inference for behavior and neural
data were assessed with Bayes factors (BFs; Jeffreys, 1998; Wetzels et al.,
2011) using a JZS (Jeffreys-Zellner-Siow) prior (Rouder et al., 2009),
with a scale factor of 0.707. For decoding analysis, chance-level decoding
was estimated by randomly shuffling all trial labels for each subject once
before classification to construct a null distribution. The probability of
the group data assuming the alternative hypothesis relative to the proba-
bility of group data assuming chance-level decoding was computed to
calculate a Bayes factor at each time point. Bayes factors provide the
added advantage over frequentist inference because in addition to reject-
ing the null hypothesis, they can provide support for the null hypothesis
as well as determine whether the data are insensitive, and as a result help
avoid overstating the evidence against the null hypothesis (Edwards et
al., 1963; Berger and Delampady, 1987; Sellke et al.,, 2001; Johnson,
2013). The theoretical differences underlying Bayesian and frequentist
analyses have spurred debate on whether and how Bayes factors should
be corrected for multiple comparisons (Berry and Hochberg, 1999),
since they intrinsically already reduce type I errors (Gelman and
Tuerlinckx, 2000; Gelman et al., 2012; Johnson, 2013). In this study, we
report Bayes factors without additional multiple-comparison correction,
but provide Bayes factors with varying levels of evidence, consistent with
recent EEG decoding studies (Grootswagers et al., 2019; Robinson et al.,
2019). Using Jeffreys’ scheme, Bayes factors >3 and >10 indicate sub-
stantial and strong evidence for the alternative hypothesis, respectively,
anything between 3 and 1/3 indicates insufficient evidence, and Bayes
factors less than 1/3 and 1/10 indicate substantial and strong evidence
for the null hypothesis (Jeffreys, 1998; Jarosz and Wiley, 2014). We
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further compared Bayes factors with a clus-
ter-based sign permutation test (Maris and
Oostenveld, 2007) and found Bayes factors
to be more conservative. Therefore, we
report only Bayes factors in the Results.
EEG acquisition and preprocessing. A
continuous EEG was acquired from 160
scalp electrodes (sampling rate, 1024 Hz)
using a Biosemi ActiveTwo System. Data
preprocessing was performed offline using
the Fieldtrip toolbox (Oostenveld et al.,
2011) in MATLAB. Data were filtered
using a Butterworth IIR filter with 1Hz
high pass, 60Hz low pass, and notch at
50 Hz. All channels were rereferenced to an
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Following data preprocessing, we used
CoSMoMVPA (Oosterhof et al., 2016) and
custom scripts to perform cross-validated
RSA. We used a linear discriminate classi-
fier after default regularization (0.01) with
fourfold, leave-one-fold-out cross-valida-
tion, for all exemplar pair combinations across audio, visual, and audio-
visual stimuli presentations. In this procedure, trials are randomly
assigned to one of four subsets of data. Three of the four subsets (75% of
the data) are then pooled together to train the classifier, and then decod-
ing accuracy is tested on the remaining subset (25% of the data). This
procedure is repeated a total of four times, such that each of the subsets
is tested at least once. Decoding results are reported in the percentage
correct of classifications at each time point for each exemplar pair in the
time series [—100, 600 ms]. This analysis was conducted independently
to build representational dissimilarity matrices (RDMs) for each subject
and modality over 1 ms increments. The RDMs were then separated into
animate exemplar pairwise comparisons, inanimate exemplar pairwise
comparisons, and pairwise comparisons between categories. Using these
comparison groupings, mean decoding accuracies were then calculated
for each modality and subject. Significant above-chance accuracies were
assessed against a randomized trial shuffle control using Bayes factors.

Representational connectivity analysis. To characterize connectivity
changes for different modalities and object categories, we used a combi-
nation of a searchlight analysis and representational connectivity analy-
sis (Kriegeskorte et al, 2008b). Because of this analysis being
computationally intense, data were downsampled to 100 Hz. Electrode-
specific RDMs, using the same procedure described for the RSA, were
built by using a moving searchlight that included the electrode of interest
and every immediate adjacent electrode. Depending on the location of
the electrodes, the RDMs can potentially be more descriptive of lower-
level properties of the stimuli or contain higher-level object category in-
formation. Importantly, the analysis is not designed to distinguish
between any particular stimulus dimension, such as animacy, but rather
used to calculate the local representational geometry present at those
electrodes. Electrode-specific RDMs were then correlated to each other
in pairwise fashion for each electrode combination using a Spearman
correlation to form a matrix of RDM correlations between electrodes.
We then averaged the Spearman correlations from across all electrode
comparisons to compute a mean connectivity measure. If the representa-
tional geometry is distributed across several electrodes, then the expecta-
tion is that this value would increase, and, if it is unique to a particular
electrode, this value would decrease. This analysis was performed for vis-
ual, auditory, and audiovisual presentations. Additionally, to compare
the audiovisual response to the visual and auditory response more
directly, we also summed evoked responses for auditory and visual pre-
sentations for each specific exemplar and performed RCA on these
trials.
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Experiment schematic. A Go/No-Go discrimination task of animate and inanimate objects. The responses were coun-
terbalanced such that the number of responses for animate and inanimate objects was equivalent. The stimuli consisted of 96 vis-
ual line drawings and 96 environmental sounds of common animate and inanimate objects, as well as semantically congruent
pairings of these objects. The sounds of animate objects were nonverbal vocalizations. The stimulus duration was 500 ms with a
variable interstimulus interval of 9001500 ms.

Note that, in this calculation, the searchlight will change sizes
depending on the chosen electrode and searchlights will overlap for elec-
trodes leading to a nonzero baseline level of connectivity in neighboring
RDMs, regardless of the evoked responses to stimulus presentations.
Therefore, we repeated the analysis above, but shuffled all of the exem-
plar labels when calculating the RDMs to create a shuffled control. All
connectivity measurements were compared with their respective shuffled
labels control. This procedure was done for all exemplars as well as
within the animate and inanimate category along the time series [—100
600 ms] to compute time-resolved representational connectivity measures.

Distance-to-bound analysis. To link neural representational space
back to individual exemplar categorization times, we used a distance-to-
bound analysis (for review, see Ritchie and Carlson, 2016). Similar to
RSA, this analysis represents individual exemplars as points in represen-
tational space. A decision boundary for animacy is then fitted using a
linear discriminant analysis classifier to the representational space, defin-
ing an optimal decision boundary that separates animate and inanimate
exemplars. The distance to the decision boundary is determined for each
exemplar and subsequently pooled and averaged across subjects to calcu-
late average exemplar distance across subjects for each time point in the
time series [—100 600 ms]. Next, the median exemplar reaction time,
pooled across subjects, is calculated for each exemplar. We then per-
formed a time-varying Spearman correlation between mean exemplar
distance and median exemplar reaction time for each modality using a
fixed-effects analysis to reduce noise and improve statistical power. The
distance-to-bound analysis was performed across all electrodes as well as
on an electrode by electrode basis using a moving searchlight.

Model fitting. To account for low-level visual features in our visual
and auditory stimuli, we constructed model RDMs and calculated their
correlations to electrode-specific RDMs and the neural RDM from all
electrodes. The low-level feature auditory RDM was constructed using a
Welch’s power spectral density (PSD) estimate for each of the 96 sounds.
The resulting stimulus PSD was then organized into vectors, and pair-
wise nonparametric Spearman distance measurements were calculated
for all exemplar pair combinations to form a model RDM. We then cal-
culated the Spearman correlations between the PSD model RDM and
the modality-specific neural RDMs at each time point. An identical pro-
cedure was followed for the visual images, but instead of using PSD,
image contrast was used. Note that since the images were black and
white Snodgrass images, the contrast values will be equivalent to the
image intensity values. In addition to these low-level feature models, we
also constructed an abstract animacy category model. The animacy
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Behavior: advantage for animate objects for unisensory presentations but not audiovisual presentations. A, B, RT results for each modality (4) and broken down by animacy (B).

Bayes factors for substantial evidence (*BF > 3), strong evidence (**BF > 10), and very strong evidence (***BF > 30) ahove comparisons. C, Subject sensory bias and audiovisual RT Pearson
correlations across subjects for all exemplars, only animate exemplars, and only inanimate exemplars. Sensory bias is only significantly correlated to audiovisual RT for inanimate exemplars (BF

>3).

category model was constructed using a 0 to indicate no differences
between stimuli pairs for within-animacy category exemplars and a 1 to
indicate complete dissimilarity for between-category exemplars. This
model was then also tested across modality-specific neural RDMs.

Results

Behavior: advantage for animate objects on unisensory but
not multisensory (i.e., audiovisual) presentations

Subjects were shown 48 animate and 48 inanimate auditory, vis-
ual, and audiovisual objects while they performed a Go/No-Go
categorization task, as shown in Figure 1. Subjects performed
near ceiling on the categorization task for objects presented in
both visual (animate, 98%j; inanimate, 98%) and audiovisual (ani-
mate, 98%; inanimate, 99%) contexts, and were less accurate for
auditory presentations (animate, 86%; inanimate, 87%). A two-
way repeated-measures ANOVA for accuracy revealed a main
effect for modality (F 26 =27.14, p=0.00), but no main effect
for animacy (F(; 56)=0.64, p = 0.44).

When examining RTs, a two-way repeated-measures
ANOVA revealed main effects for modality (F(,,6)=238.18,
p=0.00) and animacy (F(; ) =10.39, p=0.01), as well as an
interaction effect (Fp54)=3.68, p=0.04). We then performed
post hoc tests across sensory modalities and categories, as shown
in Figure 2. Figure 2A shows median RTs for the Go/No-Go task
across participants for the three sensory conditions. Using Bayes
factors to compare median RTs across subjects, we found very
strong evidence (BF > 30) that the auditory condition was
slower than the visual and audiovisual conditions. Next, behavior
was split by animate and inanimate categories to investigate the

effects of animacy on RTs. Figure 2B shows that there was strong
evidence (BF > 10) for faster RTs for animate objects compared
with inanimate objects when presented in either the auditory or
visual modalities, consistent with the results from previous stud-
ies (Murray et al, 2006; Yuval-Greenberg and Deouell, 2009;
Vogler and Titchener, 2011; Carlson et al., 2014). However, there
was inconclusive evidence (BF = 0.75) for the audiovisual
condition.

To further investigate this surprising lack of a difference in
audiovisual performance, we created an index of sensory bias for
each participant, operationalized as the difference in reaction
times to the auditory and visual stimuli, and correlated this bias
score to audiovisual RTs on a subject-by-subject basis using a
Pearson correlation. Figure 2C shows that the only significant
correlation between sensory bias and audiovisual RTs was for in-
animate objects. The positive correlation indicates that subjects
whose RTs for visual and auditory stimuli were more similar had
faster multisensory RTs. Note, that these correlations included
all subjects, since there were no outliers for sensory bias or
audiovisual reaction times.

Representational similarity analysis: the influence of sensory
modality on between and within animacy category decoding

To investigate the neural correlates of the behavioral differences
noted across conditions, we used RSA (Fig. 3A-C). Specifically,
we built RDMs for each subject and modality over 1 ms intervals
using linear discriminant analysis for each exemplar pair. From
each RDM, we explored the effect of sensory modality on the
distinction between animate and inanimate exemplars by
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Representational similarity analysis: sensory modality influences between-animacy category and within-animacy category decoding. A, RSA schematic for pairwise decoding. Linear

discriminate analysis with a fourfold leave-one-fold-out cross-validation was used for all exemplar pair combinations. B, Dissimilarity matrices for each of the modalities was built across time
in T ms increments from pairwise exemplar classifications. €, Mean between-category and within-category exemplar decoding accuracies were averaged across exemplars at each time point. D,
E, Resulting time series and summary bar plots for between (D) and within (E) categories for each of the modalities. Shaded area around lines indicates standard error across subjects. Asterisks
indicate thresholded Bayes factors for alternative and null hypotheses (see inset). Mean decoding across time (50-500 ms) for each modality with Bayes factors for substantial evidence (*BF
> 3), strong evidence (**BF > 10), and very strong evidence (***BF > 30) above comparisons.

calculating the mean pairwise decoding for between-category
pairs (e.g., dog vs bell, dog vs cannon). As can be seen in Figure
3D, before stimulus onset, decoding is close to the shuffled label
control at chance level (i.e., 50%), because the classifier does not
have any meaningful neural data that will distinguish between-
category pairs. However, shortly after stimulus onset, decoding
performance becomes significantly above the shuffled label con-
trol (BF > 3) across all three modalities. The latency of the onset
of these decoding differences, defined as at least 20ms of sus-
tained significant decoding (Carlson et al., 2013), was 183 ms for
auditory, 91 ms for visual, and 65ms for audiovisual stimulus
conditions. Visual and audiovisual decoding peaked at 162 and
154 ms, respectively, with higher absolute peak decoding for
audiovisual presentations (61%) compared with visual presenta-
tions (58%). Decoding of auditory stimuli was comparatively
poorer, peaking at 53% at 190 ms. Note that while there were dif-
ferences in significant decoding onsets, caution should be taken
when comparing decoding onsets across conditions with differ-
ent maximum decoding peaks (Grootswagers et al., 2017a, their
Fig. 14). Collectively, the results of these decoding analyses illus-
trate the temporal emergence of distinct neural representations
for auditory, visual, and audiovisual objects when subjects are
performing an animacy/inanimacy categorization.

To statistically compare decoding performance across modal-
ities, we computed the mean decoding for the interval spanning
50-500 ms post-stimulus presentation. When comparing mean
decoding values across subjects, audiovisual stimuli were signifi-
cantly higher when compared with both visual and auditory
decoding (BF >30), and visual decoding was higher than audi-
tory decoding. These modality-focused RSA results suggest that
the audiovisual presentation of an object creates a more distinct
representation between animate and inanimate objects when com-
pared with either of the corresponding unisensory presentations.

We further explored whether audiovisual presentations
expanded exemplar distinctions within animacy categories by
calculating the mean within category pairwise decoding accura-
cies (Fig. 3E). In this analysis, onset latencies for significant
decoding for auditory, visual, and audiovisual stimuli were 184,
91, and 79 ms, respectively. The corresponding peak decoding
latencies were 189, 139, and 152 ms. The modality-specific com-
parisons for within-category decoding mirrored those seen for
between-category decoding, with higher audiovisual decoding
when compared with visual and auditory decoding, and higher
visual decoding than auditory decoding (BF > 30). A compari-
son of between-category decoding and within-category decoding
demonstrated higher between-category decoding for auditory,
visual, and audiovisual stimulus presentations (BF > 3) during
the stimulus period (50-500 ms). In sum, when compared with
unisensory presentations, audiovisual stimulus presentations not
only expand the representational space between animacy catego-
ries, but also make exemplars within the animacy categories eas-
ier for a classifier to distinguish.

Category-specific RSA: audiovisual presentations selectively
enhance inanimate object decoding

We further investigated representational space broken down by
animacy categories to study the neural underpinnings for the
observed reaction time differences between animate and inani-
mate categorization (Fig. 4). The decoding curves for animate
and inanimate exemplars did not differ for auditory conditions
(Fig. 4A) with evidence for the null hypothesis present through-
out the time course. However, this was not the case for visual
exemplars, which have higher decoding performance for animate
exemplars when compared with inanimate exemplars from 160
to 184ms and from 220 to 228 ms after stimulus presentation
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Category-specific RSA: audiovisual presentations selectively enhance inanimate object decoding. A-C, Audio, visual, and audiovisual within-category decoding for animate and in-
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dence for a difference between animate and inanimate objects. D, The audiovisual-visual within-category decoding difference for animate and inanimate exemplars, with asterisks indicating

evidence (see inset) for differences from the shuffle control.

(Fig. 4B). Surprisingly, this difference is no longer apparent for
audiovisual conditions with in fact a few sporadic timepoints
with substantial evidence (BF > 3) that inanimate objects have
higher decoding than animate objects.

Since the audiovisual condition had overall higher within-cat-
egory pairwise decoding than the visual condition (Fig. 3E), we
additionally wanted to explore whether the lack of an animate
and inanimate within-category decoding difference for audiovi-
sual presentations was due to visual inanimate objects incurring
a special benefit from audiovisual presentation. Figure 4D shows
the difference between audiovisual decoding and visual decoding
for animate and inanimate exemplars. Notably, the difference is
significantly above a shuffle control subtraction of visual and
audiovisual presentations for a sustained period of time extend-
ing from 137 to 216 ms post-stimulus onset for inanimate objects
(BF > 3) but is much sparser for animate objects without a sig-
nificant sustained difference ever exceeding 20 ms.

Representational connectivity analysis: response patterns
between areas in the brain are influenced by modality and
object category

Given that different sensory modalities and different object
classes have been shown to engage different brain networks
(Hillebrandt et al., 2014; Braga et al, 2017), we investigated
whether the pairwise decoding differences we found using RSA
would also be associated with differences in mean connectivity.
To carry out this analysis, we constructed electrode-specific
RDMs and performed Spearman correlations across all electrode
combinations to calculate a mean representational connectivity
measure between electrodes. The mean representational connec-
tivity measure is an index of how similar the representational
space is between electrodes. This value is driven by the following

two factors: spatial proximity (i.e., neighboring electrodes will
have higher connectivity) and representational similarity due to
stimulus features. As a control, we performed the analysis on
shuffled labels for each of the respective stimulus modalities,
which will account for the shared signal due to spatial proximity
of neighboring electrodes, but not for the evoked responses to
the specific stimuli. The shuffled control served as our compari-
son for all statistical comparisons.

We found that auditory, visual, and audiovisual presentations
all diverged from the shuffled control (BF > 3), beginning at
97, 107, and 78ms after stimulus presentation, respectively.
Averaging across the 50-500 ms stimulus period, we found that
audiovisual presentations had more mean connectivity than vis-
ual presentations (BF >10) and auditory presentations (BF
>30), but there was inconclusive evidence between visual and
auditory connectivity (BF = 0.52). In addition, to compare the
audiovisual response to the visual and auditory response more
directly, we summed the evoked potentials for auditory and vis-
ual stimuli for each individual exemplar and then used this
summed potential as input to the RCA. We found that the
summed unisensory mean connectivity was significantly lower
(BF > 30) than the mean audiovisual representational connectiv-
ity. These results suggest that shared representations across areas
that lead to an increase in the mean connectivity for audiovisual
presentations is due to the simultaneous processing of auditory
and visual stimuli, and not simply due to visual and auditory sig-
nals collectively activating more (or at least a more extensive set
of) areas in the brain.

Similar to the RSA findings, we also found that the animate
and inanimate category selectively affected connectivity meas-
urements across the different sensory modalities. For auditory
objects, connectivity diverged from the shuftled control for ani-
mate and inanimate exemplars at 156 ms. Mean connectivity



5610 - J. Neurosci., July 15, 2020 - 40(29):5604-5615

B Electrode 1

D

Exemplar number

Electrode 1

Exemplar number

102030405060708090
Exemplar number

Exemplar number

Electrode 160 .

Exemplar number

Within Animate

Within Inanimate
102030405060708090
Exemplar number

ithin Animate

Within Inanimate

102030405060708090
Exemplar number

Tovaretal. e Selective Enhancement of Multisensory Objects

Electrode 1

Cc

102030405060708090

Electrode Exemplar number

ithin Animate

160k .
204060 801001201
Electrode number

Within Category

Exemplar number ™ Exemplar number

Electrode 160

10 310
€20 ithin Animate £ 2088
S308 S 30/
- Sa0 < 40
1020 708090 g% & 50
260 sen - [ Between
Exemplar number £70 EEtERY Within Inanimate £ 70|
BN Category £ 80
W g0 S8 2 W gof e £ 1601 - $
102030405060708090 102030405060708090 '20 4060 80100120140 160 N
o
Exemplar number Exemplar number Electrode number &é‘
S
RSA Connectivity Auditory Connectivity Visual Connectivity AV Connectivity A + V Connectivity
Bayes Factor —— Audio
_ * BF>10 —— Visual . N
—— Audiovisual —— Animate
2 2uR- Mo Viewal 2 —— Inanimate A
4 Tor zmc —— Shuffle Control O —— Shuffle Control Mo
c g /; c AR \
£ o1 MI\\\ = g€ o1 /\Ir\ AL 0.1 I\,\/f\\,.\‘j\.\f\ 0.1 /l AL 0.1 VBNAT N
£ ¢ AW T £ A NANA AN XA Vi MR < 2 g AN Ry \
2 1 2 4 }
& g | ~
:; et h G, } sttt ww, SH I, W e —— W e Mt ity th o +
£ £
£ 005 PR . 2005, . - 005f PR S T 0.05f S 0.05 .
3 3
c T 0 5 + + o+ +
8 0w ® 8 o apamm o 0 o amo ®o @@ 00 @ bwoo ommo  © o @» ®amooo o apoo @ @o cmmamme @ @ o ® omo @ @® omn ocom®
4 R e aes 4
@ ofmeme @ 0 0 0 0
lid id
0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6

Time (seconds) Time (seconds)

Figure 5.

Time (seconds)

Time (seconds) Time (seconds)

Representational connectivity analysis: response patterns between brain networks are influenced by object category. A, Moving searchlight to create electrode-specific RDMs. The

searchlight included the electrode of interest and every immediate surrounding electrode to produce an electrode-specific ROM for each modality. B, Each electrode was correlated in a pairwise
fashion using a Spearman correlation. , This procedure was performed for all exemplars as well as within the animate and inanimate categories along the time course (—100 to 600 ms) to
build time-resolved electrode similarity matrices of representational space. The mean value of these matrices is the representational connectivity across all electrodes. D, E, Representational
connectivity was measured across modalities and summed unisensory responses (D) as well as within the animate and inanimate categories across modalities (E). Colored asterisks indicate sub-

stantial and strong evidence (see inset) compared with the shuffled control.

over the stimulus period between groups showed substantial evi-
dence for the null hypothesis (BF < 1/3), indicating no animacy
difference for representational connectivity in audition. For vis-
ual objects, mean connectivity for animate objects and inanimate
objects began to diverge from the shuffled control at 137 and
107 ms, respectively. However, visual animate exemplars had a
greater mean representational connectivity than inanimate
exemplars from 176 to 186 ms and summed over the stimulus
period (BF > 3). For audiovisual presentations, inanimate
objects diverge from baseline earlier at 107 ms compared with
127 ms for animate objects. In contrast to visual presentations,
audiovisual animate and inanimate categories showed inconclu-
sive evidence over the stimulus period (BF = 0.39). Last, for the
summed unisensory responses, animate and inanimate objects
diverged from the shuffled control at 146 and 107 ms, respec-
tively. Averaged over the stimulus period, there was inconclusive
evidence (BF=0.71) for group differences. In summary, these
results build off of the RSA analyses, and suggest that the presen-
tation of objects in an audiovisual manner increase the represen-
tational connectivity when compared with when they are
presented in a unisensory context, and furthermore that these
connectivity measures increase to a greater extent for inanimate
exemplars (Fig. 5).

Distance-to-bound analysis: behavior can be predicted by
exemplar distance to the decision boundary in
representational space

Having found both behavioral and neural differences between
the modality of presentation and animacy categories, we next
considered whether the two measures were associated with one
another. To do this, we computed the distance to the classifier

decision boundary for all exemplars and correlated these distan-
ces with behavioral performance (i.e., reaction times). A negative
correlation would denote that the exemplars that are furthest
away from the classifier decision boundary are those that are
most rapidly categorized. Indeed, Figure 6A shows substantial
evidence for a significant negative Spearman correlation (BF >
3) between representational distance and reaction time at several
timepoints between 100 and 200 ms post-stimulus onset for both
visual and audiovisual presentations, and between 270 and
400 ms post-stimulus onset for all sensory modalities. Below the
time course, we show the results from the topographic results
from applying the distance-to-bound analysis using a moving
searchlight. We found that for visual and audiovisual presenta-
tions, occipital and temporal electrodes were most correlated to
behavior for the time period spanning 100-200 ms post-stimulus
onset. In contrast, frontoparietal electrodes were most correlated
with behavior for the interval spanning 270-400 ms post-stimu-
lus onset across all modalities. Figure 6B shows the correspond-
ing scatter plot for the highest negative correlations in the 100-
200 ms time window for visual and audiovisual presentations.
These plots show that for both visual and audiovisual presenta-
tions, inanimate objects had slower categorization times than
animate objects and were also closer to the decision boundary.
Additionally, consistent with our behavioral and RSA results, in-
animate exemplars appeared to show a greater shift along the
reaction time and representational axes than animate exemplars
when comparing between visual and audiovisual scatter plots.

In Figure 6C, we quantified this observation by using a
Spearman correlation to link the reaction time difference for
audiovisual versus visual exemplars with the representational dif-
ference for animate and inanimate exemplars. A negative
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the mean exemplar representational distance from the animacy discriminate bound and the respective average exemplar reaction time for each modality. Asterisks indicate substantial and
strong evidence for the alternative hypothesis (BF > 3 and >10) of a nonzero correlation and null hypothesis (BF << 1/3 and <<1/10). Below the x-axis, results from the topographic results
from applying the distance-to-bound analysis using a moving searchlight for select timepoints. B, Scatterplot for mean exemplar visual and audiovisual representational distance and RT at a
time point with substantial evidence for the alternative hypothesis for both modalities. €, Time-varying Spearman correlation between mean representational enhancement (AV-V distance)
and median reaction time enhancement (AV-V RT), with asterisks indicating evidence for the alternative and null hypothesis. D, Scatterplot for audiovisual representational distance and RT
enhancement at a time point with substantial evidence for the alternative hypothesis for inanimate exemplars.

correlation denotes the following: (1) exemplars that were fur-
ther away from the decisional boundary for audiovisual presenta-
tions when compared with visual presentations [positive
audiovisual-visual (AV-V) distance value] are also the exemplars
that demonstrated either more of an audiovisual RT bias (posi-
tive AV-V RT value) or less of a visual bias (negative AV-V RT
value); and (2) exemplars that were further away from the deci-
sion boundary for visual presentations when compared with
audiovisual presentations (negative AV-V distance value) are
also the exemplars that demonstrated less of an audiovisual RT
bias (positive AV-V RT value) or more of a visual bias (negative
AV-V RT value). We found significant timepoints between 100
and 200 ms and 370-450 ms post-stimulus onset supporting the
alternative hypothesis (BF > 3) for inanimate exemplars, but
only evidence for a null correlation (BF < 1/3) for animate
exemplars. If we pool the correlations across the entire stimulus
analysis epoch (50-500ms poststimulus), we find very strong
evidence for a negative correlation for inanimate exemplars (BF

> 30) but inconclusive evidence for animate exemplars (BF =
2.00). Figure 6D shows the corresponding scatterplot with the
highest negative correlation in the 100-200 ms window for visual
and audiovisual presentations at 137 ms (Fig. 6B). Collectively,
these results show associations between neural decoding differ-
ences, and behavioral performance differences between audiovi-
sual and visual stimulus presentations, but only when these
stimuli are inanimate.

Model testing: abstract category models predict neural
activity better than low-level feature models

To account for the potential contribution of low-level features to
the neural RDMs, we constructed contrast dissimilarity matrices
for images and power spectral density dissimilarity matrices for
sounds, as shown in Figure 7. The models were correlated using
a Spearman correlation to each subject’s neural RDM across
channels and neighborhoods of electrodes using a moving
searchlight to build topographic maps. Along the time series, we
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Model testing: abstract category models predict neural activity better than low-level feature models. A, Category and low-level visual and auditory feature models. The animacy

category model was constructed using a “0” for within-animacy category exemplars and “1” for between-animacy category exemplars. For the image contrast RDM, since all images were black
and white drawings, the contrast vector consisted of the intensity values of each image. The power spectral density RDM was built using a Welch’s power spectral density estimate and con-
verted to a single vector for each sound. Each RDM was then constructed by taking the Spearman distance of each respective pairwise stimulus comparison. B, Each model RDM was then tested
with the auditory, visual, and audiovisual time-resolved RDMs on a subject-hy-subject basis. Shaded area around lines indicate SE across subjects, with asterisks indicating substantial and strong
evidence for the alternative hypothesis (BF > 3 and >10) of a correlation >0 and null hypothesis (BF << 1/3 and <<1/10). €, Model testing performed on electrode-specific RDMs using a

searchlight analysis.

tested for significance using Bayes factors (BF > 3). The contrast
model and power spectrum model only had sporadic time points
that had substantial evidence for the alternative hypothesis. The
power spectrum model was most correlated with the auditory
RDM with time points between 170 and 200 ms post-stimulus
presentation, while the contrast model was most correlated with
the visual RDM from 90 to 170 ms post-stimulus presentation.
Further, as shown in Figure 7C, at early times, such as 107 ms,
the occipital electrodes are most correlated with the contrast
model. Similarly, for the auditory RDMs, temporoparietal elec-
trodes correlate most with the power spectrum model early at
78 ms and late in the time course at 400 ms. In contrast, when we
used an abstract model that ignored low-level features and
instead separated stimuli based on object animacy category, we
found a significant correlation (BF > 3) with the visual RDMs
beginning at 150 ms and audiovisual RDMs at 158 ms. Occipital
and temporal electrodes for visual and audiovisual presentations
were most correlated with the animacy model at timepoints such

as 176 ms, but not later at 400 ms. The animacy model did not
show a sustained correlation with the auditory RDM, implying
that the animacy distinction is not as prominent in audition.

Discussion

In this study, we leveraged the visual and auditory encoding bias
that has been observed for animate objects over inanimate
objects (Murray et al., 2006; Vogler and Titchener, 2011; Tzovara
et al,, 2012; Guerrero and Calvillo, 2016; Grootswagers et al.,
2017b) to study how perceptual biases across object categories
influence the multisensory enhancement of audiovisual objects.
Using behavioral measures and neural decoding, we found addi-
tional support for previous findings showing visual and auditory
perceptual advantages for animate objects over inanimate
objects. However, and somewhat surprisingly, we found that the
advantage for animacy was not evident when objects were pre-
sented as audiovisual objects. Using RSA, we show that the lack
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of an animacy bias in audiovisual objects is in the context of an
overall expansion of representational space when compared with
visual and auditory objects. Further analysis showed that audio-
visual presentations preferentially enhanced neural decoding of
inanimate objects. A searchlight analysis and representational
connectivity analysis showed that the presentation of inanimate
objects in an audiovisual context may improve their encoding
through increased representational connectivity between brain
areas. We finally linked neural decoding and behavioral perform-
ance by using a distance-to-bound analysis and found that
improved neural decoding for visual and audiovisual objects was
associated with faster reaction times in the animacy categoriza-
tion task. Furthermore, the decoding differences between visual
and audiovisual objects were also predictive of their reaction
time differences. Together, the results of our study provide new
insights into the encoding of unisensory and multisensory
objects, establish critical links between neural activity and behav-
ior in the context of object categorization, as well as explore
potential mechanistic differences in multisensory integration for
weakly and strongly encoded objects.

Although stimulus features clearly contribute to the forma-
tion of object categories, including the distinction between ani-
mate and inanimate objects, there is ample evidence that the
animate-inanimate distinction transcends stimulus features and
can be thought of as an abstract category distinction. The distinc-
tion is present for stimuli presented in both the visual and audi-
tory modalities, suggesting that animacy is a general organizing
principle. Furthermore, category-specific deficits in naming ani-
mate objects have been found in patients who have experienced
brain damage (Vignolo, 1982, 2006; Warrington and Mccarthy,
1987; Clarke et al., 2002; Kolinsky et al., 2002; Capitani et al.,
2003). The category distinction is preserved across species; being
present in both monkey inferotemporal (IT) cortex and human
IT cortex. Furthermore, the use of carefully controlled stimuli
that account for stimulus features have reinforced the categorical
nature of animacy (Bracci et al,, 2017; Ritchie and Op De Beeck,
2019). Similarly, auditory studies have also provided evidence for
animacy as an abstract category distinction (Murray et al., 2006;
De Lucia et al., 2010; Giordano et al., 2013). In the current study,
we corroborate these findings by showing a significant correla-
tion between an animacy model and neural response patterns,
but a lack of consistent correlations between low-level stimulus
features such as visual contrast and auditory power spectrum
with neural response patterns.

Our study showed overall magnitude and temporal enhance-
ment for audiovisual objects over visual and auditory objects
consistent with recent findings (Brandman et al., 2019; Mercier
and Cappe, 2019), and we additionally provide new insights into
how audiovisual benefits selectively enhance the category of in-
animate objects. Specifically, we found that the animacy bias for
auditory and visual objects is absent in audiovisual objects. We
hypothesized that the brain may be preferentially integrating the
visual and auditory components of the more weakly encoded in-
animate objects. Thus, greater multisensory integration for inani-
mate objects may serve to close the perceptual gap between
animate and inanimate objects, consistent with the concept of
inverse effectiveness (Stein and Meredith, 1993; Wallace et al.,
2004). To test whether there were behavioral differences in mul-
tisensory integration across categories, we examined our behav-
ioral data for a prediction made by maximum likelihood
estimate models (Ernst and Banks, 2002), as follows: there is
stronger multisensory benefit when the unisensory reliability or
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other measure of variability between senses is closer (i.e., smaller
differences between visual and auditory reaction time). In agree-
ment, we found that smaller RT differences between visual and
auditory objects led to faster multisensory reaction times for in-
animate objects, but not for animate objects. In the same vein,
the neural decoding bias for animate over inanimate objects was
no longer present for audiovisual presentations. When we sub-
tracted audiovisual decoding from visual decoding, we found that
decoding was only enhanced for inanimate objects, lending further
evidence that audiovisual presentations selectively improved the
encoding of inanimate objects.

To investigate the potential mechanism by which audiovisual
presentations asymmetrically enhance the decoding of inanimate
objects, we used representational connectivity analysis across all
EEG sensors. Representational connectivity analysis has been
previously used in a more limited way to assess representational
similarity between two brain areas (Kriegeskorte et al., 2008b). In
our analysis, we used a moving searchlight consisting of each
electrode and its immediate surrounding neighbors to measure
the different patterns of activity for each given stimulus. By doing
so, we are able to use RCA as a tool to acquire a data-driven mea-
sure of how similar response patterns are topographically
arranged across the brain. We predicted that animate and inani-
mate exemplars might demonstrate differences in connectivity
measures, as previous studies have shown increased connectivity
for biologically plausible motion over mechanical motion
(Hillebrandt et al., 2014). Note that in this analysis, neighboring
electrodes will have shared signals simply due to proximity.
Therefore, the importance of these connectivity measures is the
relative difference between animate and inanimate categories.
We found increased representational connectivity for animate
objects when presented in vision and when compared with inani-
mate objects. However, much like for our RSA results, these con-
nectivity differences were no longer present for when these
objects were presented in an audiovisual context. Additionally,
the connectivity increase for inanimate objects occurs within the
100-200 ms time epoch that we have previously noted as the
time period in which audiovisual presentations showed the great-
est enhancement over visual presentations. One possible expla-
nation for these results is that there may be increased audiovisual
integration for inanimate objects relative to animate objects,
leading to greater spread of neural representation across brain
areas. However, the current analysis cannot exclude the possibil-
ity that the increase in inanimate connectivity for audiovisual
presentations may also be due a more localized spread within
electrodes in close proximity.

Next, we directly linked the neural results to behavioral
results at the exemplar level by using a distance-to-bound
approach (Carlson et al., 2014; Ritchie et al., 2015; Grootswagers
et al., 2017b). This approach is a data-driven way of determining
the relationship between neural representational space and be-
havioral measures (i.e., reaction times). In this analysis, we found
a significant relationship between visual and audiovisual decod-
ing distances and reaction times during two distinct poststimulus
time epochs. One corresponded to peak decoding in our RSA
analysis (i.e., 100-200 ms) and the other emerged ~150 to 200
ms later. These intervals and the corresponding topographic
analyses in Figure 6A correspond to periods and electrodes asso-
ciated with sensory evidence accumulation and decision-making,
respectively (Murray et al., 2006; Tzovara et al., 2012). We next
directly correlated multisensory neural decoding enhancements
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to reaction time improvements. Interestingly, we found that, de-
spite an overall neural enhancement for audiovisual presenta-
tions, some exemplars showed possible effects of audiovisual
interference effects. In these cases, visual decoding distances were
greater than audiovisual decoding distances. These effects were
largely reflected in the reaction time differences between audiovi-
sual and visual presentation, with an overall significant negative
correlation between behavioral audiovisual enhancement and neu-
ral audiovisual enhancement. These results provide evidence that
the added sensory information in audiovisual presentations did
not just provide the classifier with more information, but in fact
provide further value for the object categorization task
(Grootswagers et al., 2018). However, it does not eliminate the
possibility that added neural information was also used for other
aspects of the perceptual response not tapped in the current para-
digm (e.g., response confidence).

In conclusion, our study introduces new insights into the rep-
resentation by the brain of sensory and multisensory information
as it relates to object encoding. The greater neural encoding ben-
efits for inanimate stimuli seen under audiovisual conditions
compliments prior work, where sensory information was selec-
tively removed from object stimuli, resulting in a selective con-
traction of the representational space of animate objects
(Grootswagers et al., 2017b). Collectively, these findings show
that neural representational space and the encoding of objects
are impacted by both semantic congruence and stimulus modal-
ity (stimulus combinations) in a dynamic fashion. Future direc-
tions of our current work include approaches to investigate the
interplay between parametrically reducing neural encoding by
degrading visual stimuli, while simultaneously using audiovisual
presentations to enhance neural encoding. Understanding the
computational framework the brain uses to maximize the sen-
sory information it captures across sensory systems has broad
implications for how stimuli perturbations and sensory integra-
tion affect object encoding.
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