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Learning-Induced Plasticity in Auditory Spatial
Representations Revealed by Electrical Neuroimaging
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Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-
induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging
analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was
induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to ~75%.
Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a
more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to
the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More pre-
cisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position,
indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP
sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant
untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h,
did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateral-
izations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor
or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.
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Introduction
Cerebral plasticity can occur within short delays after injury, sen-
sory deprivation, or learning. Sensory representations can
quickly reorganize after peripheral denervation of touch (Calford
and Tweedale, 1988; Donoghue et al., 1990; Gerraghty and Kaas,
1991; Doetsch et al., 1996; Dinse et al., 1997; Faggin et al., 1997;
Huntley, 1997; Barbay et al., 1999) or vision (Gilbert and Wiesel,
1992; Sur and Leamey, 2001; Calford et al., 2003). Striking effects
on neural responses have also been observed in healthy animals
after training with tools (Iriki et al., 1996; Iwamura, 2000) or
specific auditory pitches (Edeline et al., 1993). Others have fur-
ther demonstrated that modifications of receptive field proper-
ties were correlated with behavioral performance (Fritz et al.,
2003, 2005; King, 2006).

Electrophysiological studies in humans have reported similar
learning-induced plasticity. Naidtinen et al. (1993) recorded
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auditory-evoked potentials (AEPs) during the time that and after
subjects were trained to discriminate the pitches of two complex
stimuli. AEP modulations, measured as a mismatch negativity
(MMN), were only observed in subjects whose performance im-
proved with training, whereas no changes were observed in sub-
jects already performing well above chance levels before training.
These results suggest that AEPs can be used as an index of
training-induced neurophysiological changes and may further-
more be directly related to performance improvement. This hy-
pothesis was further investigated by Gottselig et al. (2004), who
recorded AEPs to tone sequences varying in the pitch of a single
tone. Subjects actively discriminated tone sequences during a 6
min training session.

To date, studies investigating auditory plastic changes have
focused on spectrally differing stimuli, including speech (N&i-
tdnen et al., 1993; Tremblay et al., 1997, 1998; Kraus et al., 1995;
Menning et al., 2000; Atienza et al., 2002, 2005; Gottselig et al.,
2004). Given the mounting evidence in humans for partially seg-
regated brain networks mediating sound recognition and local-
ization functions (Rauschecker, 1998; Hackett et al., 1999; Tian et
al., 2001; Clarke and Thiran, 2004; De Santis et al., 2007), the
present study addressed whether comparable plasticity occurs
after learning to discriminate spatial features of otherwise iden-
tical acoustic stimuli. Psychophysical studies have shown that
subjects can rapidly improve their ability to discriminate between
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Training session
(Active discrimination with
visual accuracy feedback)

Pre-training session
(Passive listening & muted film)

Post-training session
(Passive listening & muted film)

years (mean age = SD, 24.6 = 2.7). Experiment
2 included 10 subjects (four females, one left-
handed) aged 19-30 years (25.5 = 3.3). Exper-

a. Experiment 1

b. Experiment 2

c. Experiment 3

iment 3 included six subjects (five females, one
left-handed) aged 24-27 years (25.7 £ 0.5).
Each subject provided written, informed con-
sent to participate in the study. No subject had
a history of neurological or psychiatric illness.
All reported normal hearing. All procedures
were approved by the Ethics Committee of the
Faculty of Biology and Medicine of the Univer-
sity of Lausanne. Each subject completed three
sessions that we refer to as pretraining, training,
and post-training (Fig. 1), which are detailed
below.

Stimuli

Auditory stimuli were 100 ms white-noise
bursts (10 ms rise/fall envelope to minimize
clicks; 44100 Hz digitization) generated using
Adobe Audition 1.0 (Adobe Audition 1.0;
Adobe Systems, San Jose, CA). Stimuli were lat-
eralized by means of ITDs. Experiment 1 in-
cluded two stimuli: with an ITD (right ear lead-

Pre-training session
(Active discrimination with
visual accuracy feedback)

Training session
(Active discrimination with
visual accuracy feedback)

Post-training sessions
(Active discrimination with
visual accuracy feedback)

ing in time) of either 385 or 500 ws (hereafter
termed R385 and R500, respectively). These
sounds were lateralized to the right hemispace

Figure 1.

sounds differing by small interaural time differences (ITDs) or
interaural intensity differences (IIDs); two binaural cues for
sound localization (Wright and Fitzgerald, 2001). Electrophysio-
logical studies, most using MMN as their dependent measure,
have shown that spatial information, like other acoustic features,
is processed preattentively (Paavilainen et al., 1989; Schroger and
Wolff, 1996; Nager et al., 2003; Altman et al., 2004; Tardif et al.,
2006). We combined psychophysical and electrophysiological
methods to investigate mechanisms mediating training-induced
plasticity in auditory spatial representations. Three experiments
investigated (1) the relationship between performance improve-
ments and post-training electrophysiological measures, (2)
whether training-induced plasticity in auditory spatial represen-
tations extends to untrained locations, and (3) whether it is the
spatial representations themselves or rather mechanisms for their
comparison that are modified through training.

Materials and Methods

Subjects

Twenty-six healthy volunteers participated and were divided in three
age-matched groups, each of which completed one of the three experi-
ments. Experiment 1 included 10 subjects (three females, two left-
handed using the Edinburgh questionnaire) (Oldfield, 1971) aged 21-28

s

Experimental paradigm. Experiments 1 and 2 entailed three sessions, such that training, which involved active
discrimination, was preceded and followed by passive listening sessions. a, b, The procedures for experiments 1and 2 differed only
in the loci of sound presentations during the pretraining (a) and post-training (b) sessions. For experiment 1, these sounds were
presented to the right hemispace (i.e., the same loci as during the training session). For experiment 2, these sounds were presented
to the left hemispace (i.e., the mirror-symmetric loci as during the training session). ¢, Experiment 3 entailed the same training
session as experiments 1and 2, as well as one pretraining and four post-training sessions (immediately after the training, 6, 24,
and 48 h later). Pretraining and post-training sessions required active discrimination between pairs involving nearby positions.

(see below). Experiment 2 included four stim-
uli. In addition to R385 and R500, which were
used exclusively during the training session,
mirror-symmetric lateralizations within the
left hemispace were used exclusively during the
pretraining and post-training sessions, corre-
sponding to ITDs of —385 and —500 us (here-
after termed L385 and L500). This was achieved
by reversing the headphones. ITDs of 385 and
500 ws led to perceived lateralizations ~40°
and 50° from the central midline, respectively
[according to Blauert’s complex formula
(Blauert, 1997)]. Experiment 3 included four
stimuli: R385, R500, and two additional posi-
tions with an ITD of either 270 or 615 us (here-
after termed R270 and R615, respectively),
which led to perceived lateralizations ~30° and
60° from the central midline, respectively. Each
sound was presented via insert earphones
(model ER-4P; Etymotic Research, Elk Grove Village, IL) at 86 = 3 dB
(measured using a CESVA SC-L sound pressure meter; CESVA Instru-
ments, Barcelona, Spain).

Procedure and task

The rationale for the three experiments was the following. To determine
whether spatial training in one hemispace generalized to the other hemis-
pace, subjects of experiments 1 and 2 underwent the same training within
the right hemispace, and effects of training on spatial discrimination
were then assessed either at trained (experiment 1) or untrained (exper-
iment 2) lateralizations. This design allowed us to ensure both groups
showed behavioral improvement for the same spatial locations and also
to control for the possibility of general repetition effects intertwined with
effects of training-induced plasticity. Both behavioral and EEG data were
collected throughout the length of experiments 1 and 2. Experiment 3
was conducted to better determine the basis of any training-related ef-
fects observed during experiments 1 and 2. Specific stimulus details are
provided below. Briefly, we included additional pairs of adjacent lateral-
izations to disentangle whether subjects were learning spatial discrimi-
nation specific to the trained locations (R385 and R500) or more gener-
ally the discrimination of a relative spatial separation between sounds
regardless of their specific lateralization. These pairings also allowed us to
assess whether training-induced effects followed from subjects specifi-
cally learning and forming a spatial “template” or “anchor” of the R385
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position; in which case, performance enhancement for all pairs involving
the R385 position would be predicted. Second, we included sound pairs
wherein the R500 lateralization was presented first (i.e., in contrast to the
order used during the training session) to assess whether training-
induced enhancement was sequence specific. Finally, participants in ex-
periment 3 were also tested at multiple delays after training to assess the
persistence of training-induced performance enhancements. Stimulus
delivery and response recording were controlled by E-Prime (Psychology
Software Tools, Pittsburgh, PA) while subjects sat in an electrically
shielded and sound-attenuated room.

Pretraining and post-training sessions
In experiment 1, pretraining and post-training sessions consisted of
pseudo-randomized presentations of R385 and R500 stimuli (Fig. 1a),
which were respectively presented 87.5 and 12.5% of the time with the
constraint that at least one R385 stimulus always preceded an R500 stim-
ulus. Stimuli were blocked into series of 360 trials with an interstimulus
interval of 1 s. Each participant completed five blocks before and five
after the training session while watching a muted film with subtitles in
their native language. They were given no instructions about the auditory
stimuli, except to ignore them and to watch the film. Experiment 2 fol-
lowed an identical procedure to that of experiment 1, except that L385
and L500 were presented instead of R385 and R500 (Fig. 1b).
Participants in experiment 3 underwent the same training session as
used in experiments 1 and 2. Pretraining and post-training sessions were
completed as follows: just before (H — 0), just after (H + 0), 6 h after (H
+ 6), 24 h after (H + 24), and 48 h after (H + 48) the training session.
These sessions also consisted of a two-alternative forced-choice task.
Stimuli duration, interstimulus and intertrial interval, response window,
and visual feedback were the same as during the training session. Subjects
discriminated whether the two items of the following stimulus pairs were
the same or different: R270-R270, R270-R385, R385-R385, R385-R500,
R500-R385, R500-R500, R500-R610, and R610-R610. Stimuli were
blocked into series of 192 trials (24 X 8 pairs), subjects underwent two
blocks per session. The procedure and calculation of sensitivity were the
same as in the training session (see below).

Training session

In experiments 1, 2, and 3, the training session consisted of a two-
alternative forced-choice task. Subjects discriminated whether the two
items of stimulus pairs R385-R385 or R385-R500 were the same or dif-
ferent. Subjects pressed the left response-box button when they perceived
the two stimuli of a pair at the same location and the right button if the
stimuli were perceived at different locations. Stimuli of each pair were
separated by 250 ms (from offset to onset) and were blocked into a series
of 200 trials. Subjects were required to respond within 750 ms after trial
offset. A fixed 1000 ms intertrial interval (ITI) followed response initia-
tion (or 750 ms after trial offset in the case of an absent response). Visual
feedback was given following responses, indicating whether the response
was correct (green square), incorrect (red square), or too slow (yellow
square). Participants completed five training blocks in a session that
lasted ~40 min. Behavioral data for each block were analyzed according
to signal detection theory (Green and Swets, 1966). Sensitivity (d") was
calculated according to the following equation: d' = z(H) — z(FA),
where z(H) and z(FA) represent the transformation of the hit and false-
alarm rates into z scores (Macmillan and Creelman, 1991). In experi-
ments 1 and 2, hits were the R385-R500 trials, reported as originating
from different locations, and false alarms were R385-R385 trials, re-
ported as originating from different locations.

EEG acquisition and preprocessing

Continuous EEG was acquired at 512 Hz through a 128 channel Biosemi
ActiveTwo system (Biosemi, Amsterdam, Netherlands) referenced to the
CMS-DRL ground (which functions as a feedback loop driving the aver-
age potential across the montage as close as possible to the amplifier
zero). Details of this circuitry, including a diagram can be found on the
Biosemi website (http://www.biosemi.com/pics/zero_refl_big.gif). All
analyses were conducted using CarTool software (http://brainmappin-
g.unige.ch/Cartool.htm). Epochs of EEG from 98 ms prestimulus to 486
ms poststimulus onset (i.e., 50 data points before and 250 data points

Spierer et al. @ Plasticity in Auditory Spatial Representations

after stimulus onset) were averaged for each of the stimulus position and
from each subject. To maintain equivalent signal-to-noise ratios for
AEPs in response to each condition, all trials in response to infrequent
stimuli (i.e., in experiment 1, R500; in experiment 2, L500) and only trials
from frequent stimuli (i.e., in experiment 1, R385; in experiment 2, L385)
that immediately preceded infrequent trials were considered during ep-
oching. In addition to the application of an automated artifact criterion
of =100 wV, epochs with blinks, eye movements, or other sources of
transient noise were also rejected. Baseline correction was applied to the
98 ms prestimulus period. Before group averaging, data at artifact elec-
trodes from each subject were interpolated (Perrin et al., 1987), and the
data were recalculated against the average reference and bandpass filtered
(0.68—40 Hz).

EEG analyses and source estimation

General analysis strategy. The main objective of this study was to examine
the spatiotemporal mechanisms mediating plasticity in the spatial repre-
sentation of sounds. Electrophysiological analyses, based on an electrical
neuroimaging approach, using both local and global measures of the
electric field at the scalp, were used. These allowed us to differentiate
effects following from modulation in the strength of responses of statis-
tically indistinguishable brain generators from alterations in the config-
uration of these generators (viz. the topography of the electric field at the
scalp) as well as latency shifts in brain processes across experimental
conditions. Because the electrophysiological methods have been exten-
sively detailed previously (Michel et al., 2004; Murray et al., 2004; De
Santis et al., 2007; for a recent publication of formulas, see Murray et al.,
2006), we provide only the essential details here.

AEP waveform analyses. As a first level of analysis and to minimize the
possibility of missed effects (type II errors), we analyzed waveform data
from all electrodes as a function of time after stimulus onset in a series of
pairwise comparisons (f tests). Correction was made for temporal auto-
correlation at individual electrodes (Guthrie and Buchwald, 1991)
through the application of an 11 contiguous data-point temporal crite-
rion for the persistence of differential effects. The results of this analysis
are presented as an intensity plot with the x-, y-, and z-axes, respectively,
representing time (after stimulus onset), electrode location, and the # test
result (indicated by a color value) at each data point. We would empha-
size that although these analyses give a visual impression of specific ef-
fects within the dataset, our conclusions are principally based on global
measures of the electric field at the scalp.

Topographic analyses. Topographic analyses were conducted in two
ways. The first was a topographic pattern analysis on the collective data-
set for each experiment (i.e., both as a function of time within each AEP
and also a function of stimulus position and pretraining vs post-training
sessions). This pattern analysis uses a hierarchical agglomerative cluster-
ing algorithm to identify the predominant topographies (i.e., maps) and
their sequence within a given dataset (these methods are implemented in
Cartool software) (see also Tibshirani et al., 2005). The optimal number
of maps (i.e., the minimal number of maps that accounts for the greatest
variance of the dataset) is determined using a modified Krzanowski-Lai
criterion (Krzanowski and Lai, 1985).

Importantly, the topography of the electric field is independent of
reference electrode (cf. Michel et al., 2004), and the pattern analysis is
insensitive to pure amplitude modulations across conditions because
normalized maps are compared. The pattern of maps observed in the
group-averaged data were statistically tested by comparing each of these
maps with the moment-by-moment scalp topography of individual sub-
jects” AEPs from each condition. In other words, the methods described
above generate a hypothesis concerning the sequence of maps observed
in the AEPs and any differences between stimulus positions and/or ses-
sions. To statistically assess this hypothesis, each time point of each AEP
from each subject was labeled according to the map with which it best
correlated spatially (Brandeis et al., 1995; Murray et al., 2006). We, here-
after, refer to this procedure as “fitting.” This fitting method determines
whether a given stimulus lateralization and/or experimental session is
more often described by one map versus another, and therefore if differ-
ent generator configurations better account for particular conditions/
sessions. In addition to testing for modulations in the electric field to-
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pography across conditions, this analysis also provides a more objective
means of defining AEP components. That is, we here define an AEP
component as a time period of stable scalp topography.

The second analysis of topography entailed calculation of the global
dissimilarity between two maps (Lehmann and Skrandies, 1980). Global
dissimilarity is an index of configuration differences between two electric
fields that is independent of their strength (normalized data are com-
pared). Values can range from 0 to 2, with 0 indicative of topographic
homogeneity and 2 indicative of topographic inversion. It is calculated as
the root mean square of the difference between two normalized maps and
is statistically assessed using a Monte Carlo nonparametric bootstrap-
ping procedure (Manly, 1991). This analysis is currently limited to pair-
wise contrasts. Thus, in the present study, dissimilarity was always mea-
sured between AEPs to the two lateralized stimuli from the pretraining
and post-training sessions, separately. Because electric field changes are
indicative of changes in the underlying generator configuration (Leh-
mann, 1987), this test provides a statistical means of determining if and
when the brain network activated by 385 and 500 ps ITD cues differ.

Source estimations. We estimated the sources in the brain underlying
the AEPs from each stimulus type and sessions using the local autore-
gressive averages (LAURA) distributed linear inverse solution (Grave de
Peralta Menendez et al., 2001; 2004; for a comparison of inverse solution
methods, see Michel et al., 2004). LAURA selects the source configura-
tion that better mimics the biophysical behavior of electric vector fields
(i.e., activity at one point depends on the activity at neighboring points
according to electromagnetic laws). The solution space was calculated on
arealistic head model that included 4024 nodes, selected froma 6 X 6 X
6 mm grid equally distributed within the gray matter of the average brain
of the Montreal Neurological Institute. The results of the above topo-
graphic pattern analysis defined time periods for which intracranial
sources were estimated. We emphasize that these estimations, in the
present study, provide visualization, rather than a statistical analysis, of
the likely underlying sources.

Results

Behavioral results

Training improved performance on auditory spatial discrimina-
tion during each of the three experiments (Fig. 2a). During ex-
periment 1, all but one subject had a d" value <1.0 on the first
training block, indicating that discriminating R385 and R500 lat-
eralizations was difficult. Performance accuracy on the first block
was 62.3 = 3.9% correct (mean = SEM) and on the fifth block
was 79.3 £ 3.9% correct. Performance improved significantly
across training blocks (d" submitted to a one-way repeated-
measure ANOVA showed a main effect of block; F, o) = 13.12;
p < 0.01). Performance was significantly better on the fifth block
than on either the first (¢4, = 4.681; p < 0.001) or the second
blocks (tg, = 4.944; p < 0.001). Performance was also better on
the fourth than either the first (4, = 4.048; p < 0.003) or the
second blocks (t4) = 3.862; p < 0.005). During experiment 2, all
but three subjects had d’ values <1.0 on the first block. Perfor-
mance accuracy on the first block was 63.6 * 3.9% correct and on
the fifth block was 72.2 * 4.0% correct. As in experiment 1,
submission of d’ values to an ANOVA revealed that performance
improved significantly across training blocks (main effect of
block; F(, ) = 14.60; p < 0.01). Performance was significantly
better on the fifth than the first block (¢4, = 2.843; p < 0.03) and
in the fourth than for the first block (¢, = 2.876; p < 0.03); this
pattern of results mirrors that observed for experiment 1. During
experiment 3, all but two subjects had d’ values <1.0 on the first
block. Performance accuracy on the first block was 65.2 * 7.7%
correct and on the fifth block was 75 * 6.5% correct. As in ex-
periments 1 and 2, submission of d’ values to an ANOVA re-
vealed that performance improved significantly across training
blocks (main effect of block; F(, 5y = 20.95; p < 0.05). Perfor-
mance was significantly better on the fifth than the first block
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Figure 2.  Behavioral results. a, Group-averaged sensitivity (¢" = SEM) in discriminating

sound lateralizations is plotted as a function of training block for experiment 1 (blue line),
experiment 2 (black line), and experiment 3 (red line). Sensitivity significantly increased with
training for both experiments, with no evidence of differences between participants in experi-
ments 1,2, and 3 (see Results for details). b, Group-averaged sensitivity (d’ == SEM) in discrim-
inating sound lateralizations is plotted as a function of pretraining and post-training sessions
for experiment 3. The training improved discrimination performance only for pairs involving the
two trained positions and did not persist over time. Exp, Experiment. *p << 0.05.

(t5) = 6.60; p < 0.003) and on the fourth than the first block
(tsy = 7.74; p < 0.01). This pattern of results was identical to that
of experiments 1 and 2. Sensitivity measures (d') from all three
experiments were submitted to a repeated-measures ANOVA us-
ing the experiment as a between subjects factor and the block as
the within subjects factor. The main effect of block was significant
(F1,26) = 3.319; p < 0.03) and the main effect of group failed to
meet the 0.05 significance criterion (F; ,5) = 1.962; p > 0.8).
These results indicate similar performance improvement with
training across all three experiments (Fig. 2a).

Inspection of d’ values from experiment 3 suggests that train-
ing improved discrimination performance only during the ses-
sion immediately after training (i.e., H + O and not H + 6, H +
24, and H + 48) and only for pairs involving both of the trained
positions. Training effects did not persist 6 h after training and
did not generalize to adjacent untrained positions (Fig. 2b). Sen-
sitivity (d') values from the pretraining and post-training ses-
sions were submitted to an ANOVA. There was a significant in-
teraction between the within-subjects factors of stimulus pair and
session (F(, ) = 2.364; p < 0.05). We therefore conducted addi-
tional ANOVAs that were limited to each stimulus pair. Signifi-
cant main effects of session were observed only for pairs involving
both of the trained positions (R385-R500: F(, 5 = 8.42, p <
0.003; R500-R385: F, ¢) = 4.47; p < 0.05), for all other pairs, the
effect of session failed to meet the 0.05 significance criterion. Post
hoc analyses revealed that sensitivity improved significantly be-
tween H — 0 and H + 0 for the R385-R500 and R500-R385 pairs
(t5)=6.73,p <0.003 and t5, = 3.89, p < 0.03, respectively). But
this effect declined significantly within 6 h after the training [i.e.,
H+ 0vs H + 6 (R385-R500: £ 5, = 4.90, p < 0.005; R500-R385:
ts) = 3.17,p < 0.03); H + 0vs H + 24 (R385-R500: £ 5, = 2.72,
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p < 0.05; R500-R385: t5, = 4.86, p <
0.005); H + 0 vs H + 48 (R385-R500:
fs) = 3.24, p < 0.03; R500-R385: 15, =
486, p = 0.055)]. To test whether
training-induced performance benefits al-
ready began to decline during the course
of the H + 0 session itself, we split the data
from this session in half chronologically
and submitted them to a 2 X 4 ANOVA
using session portion (first vs second half)
and stimulus pair as within subjects fac-
tors. The main effect of session portion
failed to meet the 0.05 significance crite-
rion (F, ) = 0.926; p = 0.38), suggesting
that sensitivity did not decline over the
course of the H + 0 session.

Despite the short duration of plasticity
(<6h), such a procedure may be useful in
a clinical setting for training-based reha-
bilitation. Indeed, previous studies have
shown that repetitive application of treat-
ment with transient effects may lead to
long-lasting changes (Schindler et al,
2002).

AEP waveform analyses

Figure 3 shows group-averaged AEPs in
response to each session, stimulus condi-
tion, and experiment from an exemplar
frontal electrode. This figure also illus-
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trates the results of paired contrasts across
the entire electrode montage separated be-
tween pretraining and post-training ses-
sions for experiments 1 and 2. These con-
trasts reveal that AEP differences between
the two stimulus positions were observed
only for experiment 1 during the post-
training session. Significant differences
were widespread over the electrode mon-
tage during the ~200-300 ms poststimu-
lus onset interval. No robust differences were observed in the
pretraining session of either experiment. Nor were differences
observed during the post-training session of experiment 2. Given
this apparent selectivity of effects when the data from each elec-
trode and session were separately analyzed, we focus our discus-
sion on the analyses of the global electric field on the data from
experiment 1, although all analyses were conducted on both ex-
periments. As noted in Materials and Methods, analyses of the
global electric field were prioritized because they are reference
independent and also provide statistically based information on
whether effects stem from topographic and/or strength
modulations.

Figure 3.

Frontal electrode.

Topographic pattern analysis and global

dissimilarity analysis

The output of the topographic pattern analysis of the collective
data from experiment 1 is displayed in Figure 4a. Multiple maps
were identified in the group-averaged data over the 0-39 ms
interval, and these were differentially observed across sessions
but not lateralizations. That is, there was a significant interaction
between session and map over 0—-39 ms after submitting these
maps observed at the group-average level to the fitting procedure
at the individual subject level (F(, o) = 7.19; p = 0.025). Addi-

Electrophysiological results comparing responses to sound lateralizations. a, Results from experiment 1 during the
pretraining (left) and post-training (right) sessions. Group-averaged (n = 10) AEPs from an exemplar scalp site (frontal electrode)
are plotted (voltage as a function of time). Below is an intensity plot, illustrating statistical tests across the entire electrode
montage. The x-, y-, and z-axes, illustrate, respectively, time, electrode, and p value of a paired t test. The bottom-most plot within
each panel displays the result of the test of global dissimilarity, which assessed topographic differences between conditions as a
function of time. b, Results from experiment 2 during the pretraining (left) and post-training (right) sessions; same conventions as
ina. Note that only the post-training session from experiment 1 exhibited robust response differences (see Results for details). Fz,

tional ANOVAs were therefore conducted for each session, sep-
arately. Although both maps were equally often observed during
the pretraining session (i.e., no main effects or interactions were
observed), the map framed by a dotted line was significantly more
often observed during the post-training session, as indicated by
the main effect of the map (F, 5, = 10.24; p = 0.011). Single maps
were identified in common across both lateralizations and both
sessions over the 41-72, 74-135, 137-193, and 301-488 ms
periods.

In contrast, over the 195-250 ms poststimulus period, differ-
ent maps described AEPs in response to the R500 and R385 con-
ditions during the post-training but not pretraining session.
These maps are framed in black and dark green, respectively, in
Figure 4a. The global dissimilarity between these maps is 0.374.
As above, this pattern observed in the group-averaged data were
tested in the data of individual subjects, using the above-
mentioned fitting procedure (see Materials and Methods). The
values of the fitting procedure (i.e., the amount of time over the
195-250 ms interval when each of the framed maps in Fig. 4a
better correlated spatially with the data from each subject and
condition, hereafter termed “map presence”) were then submit-
ted to a repeated-measures ANOVA using session, stimulus lat-
eralization, and map as within-subject factors (Fig. 4b). There
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a. Topographic pattern analysis
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different configurations of intracranial

\
4

generators (Lehmann, 1987), this pattern
of results indicates that training lead to the
activity of (partially) distinct brain net-
works in response to each of the two stim-
ulus positions. We also tested for a linear
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v

correlation between map presence over
the 195-250 ms interval and sensitivity at

o |

= - > L —— 015V the onset of training to assess whether per-
,,,,,,,,,,,,,,,,,,,,,,, : w formance measures could be used to pre-
dict electrophysiological plasticity, which

would be particularly important for

0-39 4172 74135 137-193 195-250 252-299 301-488ms planned extension of this research to clin-

b. Fitting procedure (195-250ms interval) d.
50

Predictive value of initial training

ical populations. We observed a signifi-
cant negative correlation between sensi-
tivity at the onset of training and the
presence of the “black” map post-training

=
% 40 L (rigy= —0.564; p < 0.05), suggesting that
g o L (r,e= -0.564; p<0.05) the more a subject has room to improve
2 20 2 ” his/her performance, the more the black
g B iy * e oo map will account for his/her post-training
= 2 Eg | AEPs in response to the R500 stimulus
@ > . . .
R385 RS00 R385 RE00 g & e o (Fig. 4d). We would note thatc thls a1.1a1y51s
Pre-training session Post-training session 2 s does not account for how training directly
& . .
g T impacted a subject’s performance. Rather,
c. Fitting procedure (252-299ms interval) = ‘i i . this analysis would suggest that pretrain-
0 % s T ing performance is predictive of post-
2 40 2 " - e training AEP topography, and by exten-
£ 20 - sion, configurations of intracranial
g 20 @ - . : generators.
& y Over the 252-299 ms poststimulus pe-
o g ” < riod, different maps described AEPs in re-
RBS ~ RS00  R3BS  RS500 05 00 05 10 15 20 25 30 sponse to the R500 and R385 conditions
Pre-training session Post-training session d’ at onset of training during the post-training but not pretrain-
. ) o ) o i ) ing session. These maps are framed in gray
Figure 4. Electrical neuroimaging results. a, The topographic pattern analyses identified seven time periods of stable topog-

raphy across the collective 488 ms poststimulus period from the four conditions of experiment 1. All topographies are shown with
the nasion upward and left scalp leftward. For some of these time periods, multiple topographies were identified in the group-
average AEPs. These topographies are framed. The reliability of this observation at the group-average level was then assessed at
the single-subject level using the fitting procedure (see Materials and Methods). b, Over the 195—-250 ms poststimulus period,
different maps (framed in black and dark green) described AEPs in response to the R500 and R385 conditions during the post-
training but not pretraining session. There was a significant three-way interaction between session, stimulus lateralization, and
map. Additional analyses further revealed a significant two-way interaction between stimulus lateralization and map. Error bars
indicate SEM. ¢, Over the 252—-299 ms poststimulus period, different maps again described AEPs in response to the R500 and R385
conditions during the post-training but not pretraining session (framed in gray and light green). As above, there was a significant
three-way interaction between session, stimulus lateralization, and map. Additional analyses further revealed a significant two-
way interaction between stimulus lateralization and map. Error bars indicate SEM. d, The presence of maps in response to R500
after training significantly correlates with the initial discrimination performance (d'1) (rgy = 0.567; p < 0.05).

was a significant interaction between session, stimulus lateraliza-
tion, and map (F(, ) = 6.98; p < 0.03) over the 195-250 ms
poststimulus period. There was also a significant interaction be-
tween stimulus lateralization and map (F, ¢y = 6.99; p < 0.03).
None of the other main effects (stimulus lateralization or map) or
any other interaction reached our 0.05 significance criterion. We
therefore conducted additional ANOVAs for each session, sepa-
rately. For the pretraining session, neither main effect nor the
interaction reached the 0.05 significance criterion. For the post-
training session, there was a significant interaction between stim-
ulus lateralization and map (F, ) = 8.39; p = 0.018). That is, the
map framed in black was more often observed in response to the
R500 condition, whereas the map framed in dark green was more
often observed in response to the R385 condition (Fig. 4b). Be-
cause different topographies at the scalp forcibly follow from

and light green, respectively, in Figure 4a.
The global dissimilarity between these
maps is 0.469. After the fitting procedure,
analysis of map presence over this period
revealed significant interactions between
session and map (F(, o) = 5.17; p = 0.049)
and between stimulus lateralization and
map (F(, oy = 8.15; p = 0.019). Additional
ANOVAs were therefore conducted for
each session, separately. For the pretrain-
ing session, there was a main effect of map
(F9y = 5.33; p = 0.046). Neither the
main effect of stimulus lateralization nor
the interaction between factors reached the 0.05 significance cri-
terion. This pattern of results indicates that the map framed in
light green predominated responses during the pretraining ses-
sion (Fig. 4c, bar graphs). For the post-training, there was a sig-
nificant interaction between stimulus lateralization and map
(F1.9) = 9.77; p = 0.012), whereas neither main effect reached
our 0.05 significance criterion. Similar to the effects over the
195-250 ms interval, this pattern indicates that during the post-
training session, the map framed in gray predominated responses
to the R500 lateralization, whereas the map framed in light green
predominated responses to the R385 lateralization (Fig. 4c, bar
graphs).

To complement the classification approach of the topo-
graphic pattern analysis and fitting procedure, we conducted a
time-point by time-point statistical contrast of the global dissim-
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Group-average LAURA source estimations (195-250ms)

Pre-training Session

R385

Post-training Session

Pre- vs. Post- Difference

3-10-3pA/mm?3

R500

R385 vs. R500
Difference

Figure 5.

+1.2:10-3pA/mm3

Source estimations. Group-averaged (n = 10) LAURA distributed linear source estimations were calculated over the 195—-250 ms time period pretraining and post-training and are

shownin response to the R385 and R500 conditions. The mean difference between these source estimationsis also shown. Both the R385 and R500 lateralizations exhibited prominent sources within
the parietal cortex bilaterally. Weaker sources were also observed in the prefrontal cortex. The difference revealed weaker activations to the R500 stimulus within the left inferior parietal cortex.

ilarity between responses to stimulus lateralizations of each ses-
sion. The results of this analysis appear in Figure 3. This analysis
confirmed that there was a significant topographic difference
over the 195-215 ms and 271-307 ms intervals between re-
sponses to each lateralization during the post-training session.
No significant differences were observed for the pretraining ses-
sion of experiment 1.

To assess both the generalization of these effects to other lat-
eralizations and also to rule out an explanation of these results in
terms of general repetition, we conducted an identical topo-
graphic pattern analysis and analyses of global dissimilarity on
the AEPs from experiment 2. No time period showed a significant
interaction between session, condition, and map (all p values
>(.25). Nor was there evidence of effects on global dissimilarity for
either the pretraining or post-training session of experiment 2.

Source estimations

The likely intracranial generators of these effects were visualized
using the LAURA distributed linear inverse solution. Source es-
timations were calculated using the data from experiment 1 over
the 195-250 ms interval (i.e., when topographic modulations
were observed). Data from each subject were averaged across the
195-250 ms interval to generate to a single data point per subject
for each session and lateralization, separately. Source estimations
were then calculated and group averaged (Fig. 5). Both the R385
and R500 lateralizations exhibited prominent sources within the
parietal cortex bilaterally. Weaker sources were also observed in
the prefrontal cortex. The group-averaged difference between
source estimations for these conditions (scaled at one-third the
current density of the original source estimations) was also cal-
culated for the pretraining and post-training sessions, separately.

This difference revealed weaker activations to the R500 stimulus
within the left parietal cortex (maximal differences at —50, —62,
24 mm and —18, —78, 36 mm using the coordinate system of
Talairach and Tournoux, 1988). These maxima correspond to
Brodmann’s areas 7 and 39, respectively.

Discussion

Auditory processing is thought to be mediated by partially segre-
gated “what” and “where” pathways involved in sound recogni-
tion and localization, respectively (Rauschecker, 1998; Hackett et
al., 1999; Clarke et al., 2000, 2002; Tian et al., 2001; Clarke and
Thiran, 2004; De Santis et al., 2007). Previous studies have dem-
onstrated plastic changes within the “what” stream as subjects
learned to discriminate between frequency, duration, or intensity
of sounds or between semantic features of complex environmen-
tal sounds or speech (Tremblay et al., 1998; Jincke et al., 2001;
Syka, 2002; Bergerbest et al., 2004; Gottselig et al., 2004). To our
knowledge, ours is the first demonstration in humans that
learning-induced plasticity is also observed for spatial “where”
functions; the electrophysiological manifestations of which can
be predicted by pretraining performance measures. In addition
to providing insights on the neurophysiological mechanisms of
auditory spatial representations, our results open possible
training-based neurorehabilitation strategies (Bellmann et al.,
2001; Spierer et al., 2007) involving repeated training sessions to
induce long-lasting effects (Schindler et al., 2002).

Training for 40 min improved spatial discrimination perfor-
mance and changed neurophysiological responses during subse-
quent passive listening. The time course of auditory perceptual
learning is highly variable and depends on factors including the
type of task and its difficulty as well as the complexity of the
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trained auditory stimuli (Watson, 1980). In our experiments,
most subjects performed poorly during the first training block
and showed significant improvements after completing the train-
ing. Such rapid modification of auditory spatial processing has
been previously shown using similar stimuli (Wright and Fitzger-
ald, 2001) and has also been demonstrated by Recanzone (1998),
in which visually driven alteration of auditory spatial representa-
tions occurs after a 20-30 min training period. Wright and
Fitzgerald (2001) had subjects indicate whether a target sound
location was presented in the first or second position in a pair of
sounds lateralized with different ITDs or IIDs. Extending the
training over days led to further improvement in discriminating
stimuli lateralized with IID but not with ITDs. Similarly, experi-
ment 3 provides no evidence for long-lasting training effects with
ITD-defined lateralizations. Effects of training on AEPs recorded
subsequently during passive listening were also specific to the
more lateral and less frequently presented location (R500), indic-
ative of a learning-induced MMN. Such a pattern of results is not
readily explained by a general learning or practice effect. Before
training, subjects were unable to discriminate reliably between
the two spatial positions (R385 and R500), and there was no
evidence of neural response differences. Rather, responses to
both positions engaged indistinguishable parietotemporal net-
works bilaterally. Effects on AEPs were in terms of the electric
field topography and by extension the configuration of the un-
derlying brain generators. Source estimations localized these
changes to the left inferior parietal cortices.

In addition to the post-training AEP effects being limited to
one of the trained positions, there was no evidence of generaliza-
tion of training-induced effects to either the symmetrical posi-
tions in the opposite hemispace (experiment 2) or to equidistant
spatial separations either medially or laterally within the same
hemispace (experiment 3). The extent of generalization is typi-
cally interpreted as indicative of the level of processing that is
affected by training (Fahle, 2005). In animal models, learning-
induced changes in neuronal tuning at relatively early processing
stages are believed to reflect specific effects of training (Irvine et
al., 2000). Several psychophysical studies in humans have dem-
onstrated improvements in perceptual discrimination that were
specific to the trained stimuli (Karni and Sagi, 1991; Ahissar and
Hochstein, 1997; Hawkey et al., 2004; Fitzgerald and Wright,
2005) or stimulus feature (Wright et al., 2001). However, other
studies reported some generalization to untrained stimuli [tone
sequences and synthetic phonemes, in Gottselig et al. (2004) and
Tremblay et al. (1997), respectively]. Effects in our study were
restricted to the trained positions but did not depend on the
specific order in which stimuli at these positions were presented
or depend on whether this order matched that used during train-
ing. This pattern is consistent with mechanisms involving the
refinement of spatial representations and/or coding for the
trained locations, rather than the establishment of spatial an-
chors, mnemonic templates, or general improvement in discrim-
inating ITD cues. The specificity of our effects suggests that train-
ing affected relatively low-level process. This is further supported
by the fact that training modified AEP responses passively re-
corded after training.

Differences between neural responses to the two positions
during the post-training recordings occurred over the 195-250
ms poststimulus interval. Two lines of evidence suggest that this
period entails the encoding of cortical representations of auditory
space, rather than higher order process. First, it corresponds to
the time period over which the MMN response has been observed
to changes in the position of a sequence of sounds, particularly
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when behavioral discrimination is difficult and/or when there is
minimal separation in terms of the physical features of the stimuli
(Néidtdnen and Escera, 2000). We interpret the response change
during the MMN temporal window as indicating that training-
induced plasticity of the cortical representations of the two posi-
tions and/or the cortical mechanisms involved in position dis-
crimination (Nédtdnen et al., 1978). It is worth noting that
similarly early (and often earlier) effects have been observed on
auditory processing (Woldorff and Hillyard, 1991), suggesting
that the responses over the 195-250 ms period are not simply
exogenous but rather also subject to endogenous processes. Sec-
ond, the timing of the present effects are consistent with a mul-
tiphase model of auditory spatial processing proposed by our
group (Ducommun et al., 2002; Tardif et al., 2006), wherein dif-
ferent spatial cues are integrated over the ~140-255 ms period
and wherein spatial information is consolidated within different
reference frames over the ~255—-400 ms period.

The electrical neuroimaging analyses conducted in this study
permit some speculation on the likely mechanism mediating
training-induced plasticity of auditory spatial representations,
beyond simply invoking the emergence of the MMN. Several
types of neurophysiological modifications are conceivable, in-
cluding alterations in the quantity of neurons recruited to re-
spond to stimulation of a particular spatial location, in the syn-
chrony of such neural responses, and in the spatial tuning of
neural populations (for review, see Gilbert et al., 2001; Ohl and
Scheich, 2005). Effects in our study were limited to topographic
changes in the response to the more lateral and less frequently
presented of the two simulated positions, with no evidence of
modifications in response strength, indicative of generator
changes that result in an MMN. Such results run counter to what
would have been predicted had either neuronal recruitment or
response synchrony been modified. For one, these mechanisms
would likely not have specifically affected just one of the stimu-
lated positions. Likewise, responses to both positions would be
affected in the case of a general attention or arousal mechanism
or a general learning-induced change in spatial coding. Second,
these mechanisms would likely have resulted in a change in the
strength of responses, rather than the configuration of underly-
ing brain generators.

Our results are consistent with the refinement of neuronal
spatial tuning at a population level. Previous studies have shown
that pitch training was accompanied by an increase in neuronal
selectivity and decrease of the corresponding cortical representa-
tion (Weinberger et al., 1990; Edeline et al., 1993; Recanzone et
al., 1993). The present study revealed that training selectively
changed the topography of the electric field yielded by the target
stimulus by decreasing the activity of sources within left inferior
parietal cortices (Fig. 5). A putative neural mechanism may in-
volve inhibitory processes in generating plasticity via the exclu-
sion of the activity of less specific neurons (Ghose, 2004; Ohl and
Scheich, 2005) or noise-related responses (Rainer et al., 2004).
Others have further extended this notion in terms of refining a
perceptual template (Li et al., 2004), wherein those neurons that
respond most strongly might not actually convey the greatest
amount of information regarding a learned discrimination.
Rather, greater differential responses to the spatial positions may
instead occur in neurons exhibiting weaker response magnitude.
In which case, it would be beneficial to inhibit such strongly
responding neurons to produce a more informative response
profile (Ghose, 2004). On the whole, our results lend additional
support to the concept of auditory spatial representations based
on population coding, which have been proposed in animal mod-
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els (Recanzone et al., 1993; Rauschecker and Tian, 2000; King et
al., 2001; Middlebrooks et al., 2002; Woods et al., 2006).

Source estimations localized the present effects to regions
of the left inferior parietal cortex (Fig. 5). Parietal and poste-
rior temporal cortices have been shown to be implicated in
auditory spatial functions in man (Griffiths et al.,, 1998;
Bushara et al., 1999; Maeder et al., 2001; Weeks et al., 2001;
Ducommun et al., 2002; Deouell et al., 2006; Sonnadara et al.,
2006; Tardif et al., 2006; De Santis et al., 2007) and nonhuman
primate (Stricane et al., 1996; Schlack et al., 2005). Previous
studies on ITD processing have shown that left hemisphere
responds more specifically to stimuli lateralized in the right
hemispace whereas right hemisphere respond to stimuli in the
left or right hemispace (Kuwada and Yin, 1983; Caird and
Klinke, 1987).
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