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Introduction

We are all familiar with this situation, typical for conferences and other networking-
oriented professional meetings: you are a novice (e.g., a first-year graduate student in neuro-
science, psychology, etc.) and you decide to go to the preconference reception. Naturally, as
you do not know anyone there, you arrive to the event with another young colleague from
your lab, Casey. You nervously hold onto your drink and hover around one end of the table
with snacks. You comment on how busy the place is, list the presentations you are looking
forward to hearing, and discuss the places you would like to visit while in the conference
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city. Suddenly someone comments “apparently they have a fantastic museum of modern art
here.” You and Casey turn around and you both instantly recognize an internationally
renowned neuroscientist, Professor Alex Broderick. You are star-struck, but your friend
Casey quickly recovers and thanks the Professor for advice as the museum was not on
your list. Casey then introduces themselves, gesticulates at you to do the samedwhich
you do, hesitatingly and quietlydand goes on saying which laboratory you two work in
and the project you two are working on. Professor Broderick congratulates you two on an
interesting research program, stating that they quickly pursued it around 20 years ago, dur-
ing their graduate studies, but then stopped. A typical silence ensues, awkward smiles are
exchanged, and Professor Broderick excuses themselves saying they have to join their col-
leagues. Two days later, you and Casey bump into Professor Broderick again during the con-
ference breakfast. Whose name do you think Professor Broderick remembers more easily:
yours or Casey’s?

This is just one of numerous examples that one can provide to demonstrate a fundamental
principle regarding information processing and learning in the real world: they occur in con-
texts where information stimulating multiple senses at once is commonplace. Over the last
decades, many fundamental mechanisms and principles have been revealed with respect
to how memory-related processes support our abilities to perceive and interact with objects
and individuals in the outside world.1e5 However, these discoveries were based on unisen-
sory, typically visual or auditory, research. This leaves open the question of the extent to
which this knowledge generalizes to everyday environments, which, among possessing other
important attributes, such as unpredictability, or noisiness of stimulation, are inherently
multisensory. More recent research in this area demonstrated that processing stimulus attri-
butes, at least in the case of naturalistic objects (e.g., alphanumeric symbols, identities), acti-
vates the same regions in the brain regardless of the modality of stimulation (visual, auditory,
tactile, etc.), consistent with the brain inherently representing objects in a multisensory
fashion.6e8 However, even these studies are limited to the extent that they did not directly
measure the extent of improvements (or impairments, depending on the task context) elicited
in object recognition by multisensory relative to unisensory information.

In this chapter, we first review the interactions between multisensory processes and the
traditional processes involved in object recognition as well as learning. We then focus on
one such line of systematic investigation, that is, the processes governing the efficacy of single
multisensory experiences in influencing memory for both visual and auditory objects. We sum-
marize the main findings emerging from this research and situate them within the broader
context of literature on learning in multisensory contexts. We then identify the underlying
mechanisms and conditions sufficient for multisensory-induced memory improvements (at
least in some contexts) and the implications of these processes for information processing in
healthy individuals across the life span as well as in atypical and clinical populations.

Multisensory contributions to object recognition

What do we know about the interplay between multisensory and memory functions from
the point of view how they can interact to influence brain and behavioral responses in
everyday situations? Objects in the real world are typically complex and familiar, at least in
terms of their semantic categories: from voices and faces through animate and inanimate
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objects (animals and tools, respectively) to alphanumeric, symbolic objects such as digits, let-
ters, and words (see an equally broad definition of object in other reviews9). As such, the extent
to which our brains can detect, extract, and benefit from redundancies in object-defining attri-
butes within multisensory stimuli provides us with an important advantage during perceiving
and interacting with objects in everyday situations. Early studies in the area have confirmed
that long-term memory-dependent processes based on semantic congruence do improve
perception.10 Since then, multisensory processes associated with different categories of natural-
istic objects have been demonstrated to influence object recognition, selective attention, mem-
ory, and other cognitive functions (for detailed reviews see Refs. 9,11e14). As such, semantic
congruence seems to be an important principle governing multisensory integrative processes,10

complementingdin real-world environmentsdthe “classic” principles, focused on the spatial
and temporal coincidence of signals across the senses.15 Behavioral benefits of such memory-
based multisensory processes are typically accompanied by and/or are directly related to
the activity of a network centered around the superior temporal cortex (STC) and inferior pa-
rietal cortex (IPC) (e.g.,16e22). The dominating viewpoint is that these brain areas are them-
selves involved in and are the locus of the integration of object features into unified
representations (see also Refs. 23,24). Others posit that brain regions such as the superior tem-
poral sulcus (STS) serve as a relay of unisensory information to other brain areas where these
are finally integrated into a consolidated object representation.25,26 For example, some views
proposed that multisensory representations of object-related information are typically located
in the visual cortices, which is taken to indicate the predominance of vision in object processes
(e.g.,27,28; but see Ref. 29). Notably, other brain areas are also implicated, e.g., the planum tem-
porale (speech/script, e.g.,19) and lateral occipital cortex (LOC) (object recognition involving
touch; reviewed in, Ref. 9 see chapter by Lacey and Sathian, this volume). Frontal cortices (infe-
rior and dorsolateral prefrontal areas) are typically engaged only by incongruent and/or unfa-
miliar audiovisual associations (for a comprehensive review, see Ref. 30). We would emphasize
that these propositions are not mutually exclusive, and multiple circuits and varieties of repre-
sentations are likely to coexist.

However, in the large majority of these studies, multisensory information was central to the
task, i.e., participants were advised to use information across multiple senses to perform a
given task. This leaves open a crucial question as to whether multisensory processes can influ-
ence perception and behavior with objects when the multisensory information is not central to
the performed task. In one study on this topic, we have demonstrated that peripheral audio-
visual distractors interfere with an attention-demanding task such as visual search and do
so to the same extent when the search task is easy or difficult. We demonstrated that these find-
ings generalize across both simpler (color-defined objects) and more complex (letters) stimuli.31

Notably, in these studies, targets and distractors always shared their features, suggesting the
potential dependence of these effects on the goals of the observer. Furthermore, in real-
world settings, where stimuli are dynamic, the detection of semantic multisensory congruence
and consequent behavioral facilitation might be more dependent on the available attentional
resources. In a setup with multiple visual speakers and a single voice, Alsius and Soto-
Faraco32 showed that detection of audiovisual face/voice congruence is dependent on the
number of simultaneously presented faces, indicating the importance of available attentional
resources (see also Ref. 33). Similarly, the McGurk illusion (i.e., perceiving a novel auditory syl-
lable from mismatching auditory and visual syllables34) elicited by a task-irrelevant stimulus is
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reduced when attention is directed away, toward a concurrent attention-demanding task35,36

(see Ref. 37 for absence of event-related potential (ERP) indices of the McGurk illusion in
such contexts). To summarize, these findings provide evidence that multisensory processes
can influence object recognition, even in naturalistic, cluttered settings. At the same time, these
influences seem to be at least partly contingent on available attentional resources and/or goals
of the individual. This idea is supported by the relative late latency with which semantic
memory-dependent multisensory processes engage the brain (>100 ms poststimulus18,27,38e42)
and their strong dependence on the task.43e45 These effects have important clinical implications
in terms of utility of such processes in supporting recovery of neurocognitive functions during
rehabilitation. An area that has been relatively less researched is the extent to which memory-
dependent multisensory processes can influence learning.

Multisensory learning as the norm rather than an exception

The circumstances under which multisensory memory traces impact subsequent unisen-
sory retrieval is directly related to the extent to which multisensory processes can be utilized
to support learning in real-world settings, as well as in rehabilitation. However, the precise
nature of these circumstances remains largely unresolved. This question falls into the broader
research framework focusing on the general differences in learning across unisensory (visual,
auditory) and multisensory (audiovisual) settings (e.g.,46e48) (Fig. 6.1A). Research involving a
wide variety of stimuli has consistently demonstrated that learning in multisensory settings is
more effective and efficient than in comparable unisensory settings (reviewed in Ref. 47). For
example, during coherent motion detection and discrimination, perceptual learning involving
auditoryevisual stimuli is more effective than visual training.49 Individuals undergoing au-
diovisual training, compared with those undergoing purely visual training, learned faster not
only overall, across the whole training involving 10 sessions, but this advantage was already
visible within the first training session. These and other studies clearly demonstrate that the
brain’s perceptual skills and cognitive functions are particularly attuned to multisensory pro-
cesses. To the extent that multisensory attuning is a general property of brain functions,
fundamental memory processes, such as encoding, storage, and retrieval of information,
would all be facilitated in the context of multisensory information, whereas unisensory infor-
mation is typically suboptimal, to the extent that the computational brain architecture in
place is not utilized to its full extent under unisensory conditions. In another study involving
visual motion discrimination,50 benefits of audioevisual training over purely visual training
were found exclusively in a group that trained with congruent multisensory information
(auditory and visual stimuli were moving in the same direction) but not in the incongruent
condition group (two types of stimuli moving in opposite directions). While research on
perceptual learning has provided important insights into the efficacy and potential circum-
stances promoting the benefits elicited by multisensory processes in learning, simplified
and artificial stimuli were typically employed, thus leaving unclear whether these findings
generalize to settings involving more naturalistic objects.

Predominantly two types of paradigms have been utilized to study the efficacy of multi-
sensory learning on the ability to recognize unisensory (typically visual) objects. In the first
paradigm, effortful and extended multisensory training preceded unisensory object
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FIGURE 6.1 (A) A general schematic of how the impact of multisensory encoding on later unisensory recognition
may be investigated. (B) A schematic of a continuous recognition task requiring participants to indicate whether the
image was presented for the first or repeated time. Whether or not the image was presented with a sound was task-
irrelevant. (C) Summary of behavioral findings. Accuracy for the various repeated presentations are displayed. Lines
with circular markers refer to studies where the task was performed in the visual modality, whereas lines with square
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stimuli that had been initially presented in a semantically congruent multisensory context result in higher accuracy
than stimuli that had only been experienced in a unisensory context. Other had-been multisensory contexts generally
result in no difference or even performance impairment relative to the unisensory context.
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recognition, with the two clearly separated into two sessions.51,52 Participants were required
to explicitly remember the unisensory versus multisensory context in which a stimulus
appeared during training. At the brain level, visual words presented previously with match-
ing sounds activated auditory cortices51 (see Ref. 52 for similar findings involving images of
naturalistic objects). These results were taken as supporting the so-called theory of reintegra-
tion.53 This theory postulates that networks active during encoding are reactivated during
retrieval. That is, presentation of a single element of a consolidated memory suffices to (re)
activate the representation of the whole experience. However, it is noteworthy that in these
studies, stimuli learned in a multisensory context were remembered less well than those
learned in unisensory, visual contexts. Other findings in this area are more in line with behav-
ioral benefits of multisensory learning on memory. For example, in a study by von Kriegstein
and Giraud,54 participants learned to associate semantically congruent multisensory pairings
(faces and voices) as well as arbitrary multisensory pairings (voices and written names, and
ringtones paired with cell phones or names). Subsequently, purely auditory voices were bet-
ter recognized when they were initially paired with faces rather than written names, and the
faceevoice associations elicited enhanced functional coupling between the anterior temporal
and fusiform brain regions involved in processing voices and faces, respectively. Sounds
(ringtones) from arbitrary pairings showed no similar results.

The other type of paradigm provides a more consistent picture on the circumstances facil-
itating multisensory memory improvements (Fig. 6.1B). The task requires the participants to
indicate whether the presented image (or sound, in the case of the auditory version of the
task), such as that of a cow, is being presented for the first time or is a repeated stimulus
(“old/new” task). On its initial presentation, the image is either presented alone (visual-
only trials) or together with a matching sound, such a “moo” for an image of a cow. This
paradigm, used extensively by our group over the past w15 years,55 has a number of distinc-
tive features that distinguish it from the first type of paradigm, while at the same time, in our
opinion, being closer to the settings in which multisensory processes exert their effect on
learning and memory in everyday situations. First and perhaps most crucially, encoding
and retrieval trials are randomly intermixed with each other within every block of trials. Sec-
ond, the encoding and retrieval are separated only by a short interval of time (up to 1 minute,
see below). Third, due to the focus on the episode (i.e., seeing an image or sound for the first
time or subsequently) rather than on the image, the memory processes engaged by objects
can be studied, without the potential confounds from focusing attention in a top-down
fashion on the object identity/category. Fourth and relatedly, the multisensory information,
similarly to the experiment of von Kriegsten and Giraud,54 is irrelevant to the task itself,
which allows for more rigorous investigation, unconfounded by top-down attentional pro-
cesses, of the effects of distinct multisensory processes.

To more closely emulate information processing in naturalistic environments, we manip-
ulated the type of senses engaged, their task relevance, and the relationship between the two
crossmodal stimuli, as well as a variety of other factors that could determine the efficacy of
multisensory memories.56 The mounting evidence from our group and, more recently, other
laboratories has provided novel insights into the behavioral and brain mechanisms guiding
memory and information processing in everyday situations. One take-home message from
this research, which we summarize in the following section, is that a single exposure to
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multisensory pairings suffices to improve subsequent recognition (i.e., memory) of a unisen-
sory stimulus and that these benefits generalize across vision and hearing.24,29,55,57e61

From multisensory learning to unisensory object memory

When is multisensory memory better than memory based on unisensory experiences?

In our “old/new” continuous recognition task, the improvements from multisensory con-
texts on object memory are visible in discrimination accuracy, with no comparable benefits
found on response speed. For example, when an image is presented initially (and thus
encoded) in a multisensory context, its discrimination as “old” versus “new” is more accu-
rate, with these benefits found across all participants when the stimuli across two senses
are semantically congruent. Across experiments, the magnitude of multisensory benefits
imparted on memory by semantic congruence ranged between 2.5% and 9% compared
with performance for purely visual or auditory trials (Fig. 6.1C). In experiments where the
task design permitted the calculation of more direct measures of sensory processes as distinct
from decision bias (i.e., d’62), the benefits rose to 12% improvement.61 Statistically, these
multisensory benefits, reported until now in six published studies in >100 participants,
include effects ranging from small to large (h2

p ¼ 0.14e0.63; for similar size of effects in
studies involving setups with separate exposure and recall, see Refs. 63e67). The semantic
congruence-induced benefits seem robust against a variety of factors that can be considered
typical for everyday situations. For example, the multisensory benefits were reported in an
fMRI study57 where the usual lag between the initial and repeated presentations (5 seconds)
increased 10-fold to allow for intertrial intervals long enough to accommodate the require-
ments for the acquisition of fMRI data. Of particular note is that the multisensory, audiovi-
sual benefits were found despite the ubiquitous scanner noise.

We urge the reader to recognize the importance of these findings to applications in
everyday situations: benefits for episodic memory from long-term multisensory associations
of semantic features of naturalistic objects transpire without the explicit will of the individual.
That is, it is not necessary for the individual to focus explicitly on the multisensory nature of
the object for the benefits to be present. It seems that the crucial factor here is the established
and preserved multisensory representation of these features. In the case of pairings of attri-
butes that do not match the same object, in our paradigm, multisensory contexts are detri-
mental or at most highly variable in terms of their effect on object memory. Perhaps least
surprisingly, semantically incongruent initial multisensory contexts (e.g., image of a cow
with a barking sound) impair object recognition, relative to unisensory (both visual and audi-
tory) contexts, with these impairments being of similar magnitudes to the respective multi-
sensory benefits (4%e16.5% accuracy decrease). Multisensory contexts that involve
arbitrary, nonsemantically related pairings, such as an image of a cow with a simple
“pip,” overall also impair recognition, but these decrements are less strong (3%e4% accuracy
decrease). This can be explained by the fact that roughly half the participants benefit from
such meaningless multisensory contexts, while the other half are impaired by them, and
this proportion is similar irrespective of whether the task is visual or auditory.24 In the
case of multisensory contexts that involve arbitrary, nonsemantically related pairings, the
benefits (when observed) ranged between 0.5%e7% and 2.5%e10% performance
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improvement for visual and auditory conditions, respectively. We discuss these differences
and the potential mechanisms underlying the differential multisensory-induced memory ef-
fects in Section 3.2.

The demonstration of benefits from multisensory contexts involving semantically
congruent pairings for object memory provides important advances to our understanding
of how brain functional organization as well as how such crucial cognitive functions as mem-
ory and semantic knowledge likely operate in naturalistic, multisensory settings. These novel
insights are treated in detail elsewhere (see Ref. 56 for a comprehensive discussion). We suc-
cinctly summarize them here in Section 4, where we discuss potential applications of our
findings to developmental and clinical domains.

What do multisensory benefits for memory depend on and how/why do they vary across
individuals?

To summarize the main characteristics of the multisensory benefits in object memory
emerging from the work of our group and others, these benefits occur even following a single
exposure to a multisensory context. These memory effects remain present for approximately
1 minute, are robust to the intervening presentation of several other test items, and are most
uniformly present for multisensory pairings that are semantically congruent. There are
several factors that influence both the presence and strength of multisensory benefits.

Semantic congruence elicits benefits for both visual and auditory object memory. There is a
continued interest in how sensory and more higher-level cognitive processes differ between
hearing and vision, the two senses so critically determining our abilities to interact with the
environment.68e73 Consequently, research is increasingly focusing on how the task-relevant
sense influences multisensory processing in a bottom-up manner (e.g.,74e76). In one of our
studies,60 we have compared the strength of multisensory benefits in visual and auditory
tasks within the same individuals, as evidence generally points to memory for auditory ob-
jects being weaker than that for visual objects42,77,78: Consistent with previous research, mem-
ory for sounds was generally weaker than for images (67% vs. 92% accuracy, respectively).
However, as expected, auditory memory benefits from semantically congruent pairings
were fourfold larger than the visual benefits (8.8% vs. 2.2% accuracy improvement). As the
same individuals took part in the two tasks, which were quite similar to each other, these re-
sults are in line with the principle of “inverse effectiveness,” i.e., multisensory benefits are
often stronger in contexts where the inputs are weakly effective79e82 (see chapter by Stein
and Rowland, this volume), thus extending this principle from the originally studied context
of instantaneous perception to the context of memory function.

While semantic congruence and the specific task- or goal-relevant sense are factors deter-
mining the efficacy of multisensory benefits in object memory, there seem to exist relatively
important interindividual differences in the benefits exhibited in our paradigm within
healthy adults and across populations. In a study from our laboratory, Thelen et al.24 system-
atically analyzed the bimodal distribution of benefits versus impairments from initial, multi-
sensory, meaningless contexts. We found this bimodal distribution in two separate samples
that each performed either the visual or the auditory version of the old/new task. As we
recorded EEG activity and analyzed ERPs within the electrical neuroimaging framework in
these as well as other studies (see Section 3.3), we were able to shed some light on the poten-
tial differences in the two subpopulations (i.e., those benefitting or not from multisensory
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contexts). When we analyzed responses (separately for participants in the visual and those in
the auditory task) to the initial multisensory meaningless stimuli, we found that multisensory
benefits versus impairments were associated with enhanced versus reduced strength of brain
response to the multisensory stimuli, respectively. Additionally, despite differences in la-
tency, the same brain area, that is the IPC, differentiated between those improving and
impaired across both visual and auditory memory tasks. Notably, the two groups did not
show any differences in processing unisensory visual or auditory information. The two
groups also did not differ in terms of their performance metrics (accuracy and response
speed), suggesting that the differences did not emerge from general distractibility. At the
same time, the relatively long latency of the differences at the brain level (>150 ms poststim-
ulus25) suggests the involvement of selective attention processes (e.g., see Refs. 83,84 for ev-
idence of audiovisual modulation of unisensory responses at these latencies). Also the
localization of the origin of these differences to IPC, an area to be involved in multisensory
processes as well as top-down attentional control (e.g.,21), suggests the differences may lie
in the way multisensory processes influence selective attention processes linked to encoding
of the object information. One line of current efforts in the lab is to determine whether inter-
individual differences, such as those demonstrated here, originate because some individuals
have a higher propensity to integrate multisensory information, irrespective of the stimulus
type, stimulus combination, or even task. As will be discussed in Section 4.1, such differences
do seem to be present in the population and also emerge relatively early in life.

What are the cognitive and brain mechanisms governing multisensory benefits in memory?

Our paradigm provides an access point for a particular example of memory processes. Our
paradigm focuses on episodic memory (are you seeing this object for the first time or was it
shown earlier?). As the task uses naturalistic objects (tools, animals), the involvement of se-
mantic (multisensory) object memory is expected. Finally, the multisensory processes that we
are investigating are those activated outside of the individual’s attentional focus and goals, as
the task is always unisensory (e.g.,41,85 for studies of similar effects of task-irrelevant multi-
sensory processes on selective visual attention). In this section, we will first discuss results
related to the brain responses and mechanisms accompanying the discussed behavioral ben-
efits, and will then contrast these with the mechanisms for multisensory benefits in memory
proposed by studies involving paradigms that facilitate effortful and explicit, rather than inci-
dental and implicit, encoding of multisensory stimuli.

Brain correlates of implicit multisensory benefits in memory

Most of our research on the brain mechanisms governing the observed multisensory ben-
efits pertains to visual memory. Besides the study on interindividual differences in adults,86

all of our analyses focused on the brain responses to repeated stimuli. Across studies involving
ERPs and fMRI, we found consistently that the LOC responds more strongly to repeated pre-
sentations of images of naturalistic objects that initially appeared with semantically
congruent sounds, relative to images always presented alone. Using ERPs,55 we demon-
strated two different topographies, indicating that statistically distinct brain networks are
activated in response to the two types of repeated images, as early as in the first
60e135 ms poststimulus (with later differences found as well; at w210e260 ms and
318e390 ms). Using source localization techniques, we revealed these effects to be driven
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by enhanced responses within the LOC for images previously seen in a multisensory versus
visual-only context.

We have also determined the brain loci of differences in impaired recognition for images
that were previously presented in meaningless multisensory contexts. Images were paired
with one and the same tone58 or, in later studies, with a distinct tone (with tones modulated
in their spectral composition, amplitude envelope, and waveform type29). ERP differences
underlying the behavioral impairments were observed as early as 100 ms poststimulus
and, as reviewed above, were driven by changes in ERP topography and changes in the un-
derlying configurations of brain sources. Importantly, these effects were yet again localized to
a small cluster within the LOC (right), as well as a larger cluster in the posterior STS. Notably,
the LOC activity was now weaker for multisensory contexts, while STS activations were stron-
ger, for previously multisensory compared with visual conditions. There were also topo-
graphic differences in responses at 270e310 ms, with these differences now localized to the
right middle temporal cortex; the strength of the response of this area was directly related
to the magnitude of memory impairment. Thus, the exact brain areas activated during a vi-
sual memory task are determined not by the mere presence of multisensory contexts but
rather the “sign” of their effect on visual object memory.

Consistent with the marked differences in the extent of behavioral benefits for visual and
auditory memory,60 quite different networks of brain areas as well as mechanisms seem to
orchestrate the multisensory benefits in auditory versus visual memory. In a study where
EEG was recorded from participants performing the old/new task on sounds,61 the ERP dif-
ferences associated with previous multisensory semantically congruent contexts on auditory
memory were found at 35e85 ms poststimulus. Notably, right IPC, right STC, and the right
inferior occipital cortex and left frontal cortex supported multisensory-induced benefits in
auditory memory. Crucially, right IPC and right STCdthe two areas whose activity modu-
lated in a manner consistent with the pattern of observed behavioral benefitsdshowed sup-
pressed responses to previously multisensory semantically congruent sounds compared with
sounds just presented alone, despite the former eliciting behavioral benefits. This direction of
brain responses suggests potential involvement of a response suppression mechanism, pro-
posed to govern short-term learning within auditory cortices.87,88

Multisensory representations of objects in the brain

Collectively, the results discussed in Section 3.3.1 bear important implications for our un-
derstanding of the way in which naturalistic objects are represented in the brain and how
these representations are accessed. A consistent finding emerging across our fMRI and
EEG studies is that the representations of task-relevant objects were affected early during
brain processing by whether previous object presentations involved multisensory contexts
or not. That is, networks responsible for the processing of unisensory stimuli have access
to multisensory memory representations early on in sensoryecognitive processing. Notably,
using source estimation techniques, we demonstrated that this access is reflected by brain ac-
tivity within nominally unisensory object-recognition brain areas (accompanied by IPC activ-
ity in a task involving memory for sounds).

Our proposal is that these early ERP modulations reflect rapid reactivation of distinct multi-
sensory (audioevisual) and visual or auditory object representations affected in the course of
encoding during initial stimulus presentation. Several lines of evidence support this idea. First,
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it is now well established that unisensory objection-recognition regionsdLOC in the case of
vision and STC in the case of hearingdexhibit auditoryevisual convergence (e.g., reviewed
in Refs. 13,14,30). Second, multisensory object representations are present in these areas and
are distinguishable from their unisensory counterparts. Studies recording frommicroelectrodes
in monkey posterior inferotemporal (IT) cortex (LOC is believed to be the human homologue of
IT), as well as visual area V4, show selective delay-period responses on a delayed match-to-
sample task for specific multisensory and unisensory pairings (e.g.,89e92; see also Refs. 93e95).
The IT and V4 neurons were selectively responsive to unisensory stimuli as a function of the
learned association, i.e., whether a given visual stimulus appeared with another visual stim-
ulus or rather an auditory stimulus. Notably, these neurons were selectively responsive to a
given learned association.89 While we recognize that our findings can be influenced by the
initial multisensory experiences impacting unisensory representations (which may not be
mutually exclusive with our proposal above), these single-cell recordings support the idea
that there are distinct representations of unisensory and multisensory associations within
patches of the IT cortex (see Ref. 96 for findings of “patchy,” uni/multisensory organization
of areas bordering between multisensory and unisensory areas of STC).

Our work extends this body of knowledge in several important ways. First, the multisen-
sory representations can be accessed in a fashion largely independent of the goals of the
observer, to the extent that only one sensory modality was ever important to perform the
task in our paradigm, while the sensory signals from the task-irrelevant modality would
not be expected consciously to provide an advantage in the task. Second, these multisensory
representations are established or accessed within the cortices of the sense relevant to the
task. Third, these representations and/or their activation (i.e., memory traces) can be accessed
after a time delay. In other words, object categorization based on past experiences, at least at
early brain processing stages, is supported by processes within the task-relevant cortices that
likely operate on multisensory representations.

These processes are unlikely to be similar to those engaged by the effortful encoding para-
digms utilized by early studies, which provided discrepant findings on the benefits of seman-
tically congruent multisensory processes in unisensory memory (e.g.,51,52,97). Across these
studies, the areas activated during memory encoding and retrieval closely overlapped. The
findings from these studies were regarded as evidence for the “reintegration” account53 pro-
posing that consolidated memory leads to the reactivation of both the task-relevant cortices
(here, visual) as well as the task-irrelevant cortices (here, auditory) despite the presence of
only task-relevant stimuli. However, these findings need to be qualified. For one, in the study
of Nyberg et al.,51 the absence of activations in other than in the auditory cortices can be due
the fact that the brain areas activated during the encoding stage in this study served as regions
of interest for analyses of brain responses at retrieval. Second, given the tasks explicitly
required the participants to recall if a given word was learned with a sound, the activation
of auditory cortices is consistent with the participants utilizing mental imagery to aid their
memory recall. Notwithstanding, the paradigms involving effortful encoding and recall, and
those utilized by us, focusing on the implicit activation and influence of multisensory processes
on continuous encoding/retrieval, are likely to rely on different types of object representations.
These paradigmatic differences could help to reconcile our findings with those proposing the
critical role of the medial temporal cortices (especially perirhinal cortex) in governing the bind-
ing of semantic multisensory features into coherent object representations.25,94 This notion is
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based predominantly on lesion studies, showing that disconnection of the perirhinal cortex re-
sults in impaired performance in the delayed match-to-sample task, in line with both encoding
and retrieval relying on the integrity of this particular area. What characterizes all of these dis-
cussed studies is the likely (yet uncontrolled) role in individuals’ abilities to attend to and
encode into memory the crossmodal feature pairings. In contrast, in our task, encoding was
focused solely on the one, task-relevant sense. As such, these other studies might be building
or engaging much richer representations than those targeted by the continuous recognition
task. Repetition priming may be another mechanism at play within a continuous recognition
task (see, in vision, e.g.,98; in hearing. e.g.,70,88). However, we would contend that repetition
priming alone could not account fully for our effects (cf.55). Instead, we reiterate, our findings
are likely to be driven by multisensory representations of naturalistic objects, residing in the
early cortices of the task-relevant sense that can be activated by task-irrelevant but semantically
congruent stimuli, with this activation improving memory for the unisensory task-relevant
counterparts of these objects during repeated presentations.

There are several lines of evidence against the multisensory benefits we have observed be-
ing driven predominantly by the initial multisensory experiences impacting unisensory rep-
resentations. First, there were no accuracy differences when initial trials were unisensory or
multisensory, when all multisensory conditions (including semantically incongruent and
congruent) were considered, that would indicate the presence of multisensory perception
benefits. In fact, reaction times were consistently and significantly slower for multisensory
than unisensory initial trials, suggesting some performance costs of initial multisensory pre-
sentations, despite the later accuracy improvements during unisensory recognition. The same
pattern was observed in both visual and auditory tasks (cf. Figure 2 in Ref. 59). Second, while
the initial-presentation responses did not modulate reliably according to the manipulated
conditions, these manipulations were highly effective in influencing both behavioral and
brain responses to repeated presentations. Third, the topographic ERP differences and the dif-
ferential modulation across visual29,55 and auditory cortices61 in response to repeated-
presentation stimuli as a function of the initial multisensory contexts goes against a generic,
increased top-down (memory-/goal-driven) attention and/or salience mechanism influ-
encing the processing of the initial-presentation stimuli. Lastly, the study of Thelen et al.99

clearly demonstrated that the extent to which the initial meaningless multisensory contexts
benefitted versus impaired participants was predicted only by brain responses to the multi-
sensory, not unisensory, initial stimuli. If perceptual processing was the driver of the memory
enhancements, one would have predicted an overall stronger response to both multisensory
and unisensory stimuli in the individuals exhibiting multisensory memory benefits versus
impairments, yet no such general group differences were found.

Broader implications: multisensory processes scaffold cognition across the life
span

We now first succinctly summarize the theoretical implications of our findings for models
of multisensory processing as well as those of memory. We then focus on their potential prac-
tical applications for supporting development, education, and well-being across the life span
within the healthy population as well as their rehabilitative potential in atypical and clinical
populations.
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Theoretical implications of the interplay between multisensory processes and memory
functions

First, we demonstrate that the products of multisensory processes persist over time. This
research fits with and extends the larger body of research focused on learning in multisensory
contexts, based on congruencies across features from simple object categories.22,47,100 This
work points also to the importance of an individual’s sensory experience, both long- and
short-term, in influencing responses to unisensory and multisensory objects, a topic that
we have treated in detail elsewhere.14,101 This framework is consistent with other research
aiming to clarify the interplay of stimulus-driven and top-down attentional control processes
that jointly shape memory performance.102

Second, our findings challenge some of the most fundamental principles proposed to
govern memory functions that have been derived from research based on purely visual stim-
ulation. Traditional research suggests that memory performance is maximal when we retrieve
information in similar contexts to those in which we have encoded it.2,103 These principles
may not generalize beyond visual contexts to naturalistic contexts, where notions such as
conceptual novelty versus physical familiarity come into play.104 When considered together
with the implicit nature of the multisensory benefits that we have observed, multisensory
processes based on the detection of semantic congruence and thus based on the activation
of long-term memory associations might be particularly ubiquitous in their influences in
everyday environments. Furthermore, the observed benefits are likely specific to multisen-
sory processes, rather than any particular object-related feature (e.g., visual) redundancy. Ef-
fects of multisensory versus unisensory redundancy are confirmed by research, across both
humans and nonhuman animals, focused on perception105,106 as well as memory.63,89

Lastly, our findings bear important implications for models of functional brain organiza-
tion, by providing independent evidence for the inherently multisensory nature of object rep-
resentations.8,14,101 Moreover, our findings would suggest that simultaneity may be a
sufficient condition for reaping multisensory benefits for learning and memory with objects
in the real world (at least in the case of semantically congruent information). The majority of
models of multisensory processing is based on simple stimuli and their spatiotemporal cooc-
currence (see chapter by Stein andand Rowland, this volume; cf.,13,14,107,108 for reviews on the
role of audiovisual simultaneity detection in modulating instantaneous perception and selec-
tive attention). Our findings suggest that in everyday life the efficacy of these processes to
benefit behavior might be limited (but see Refs. 15,85,109,110). To better understand the
importance of multisensory processes in supporting cognitive functions in everyday environ-
ments, research in our laboratories for some time has been focused on understanding how
multisensory processes influence cognitive functions in populations other than healthy
typical adults.

Outlook: the importance of multisensory processes in public health

One significant line of active research by our group focuses on the idea that a person’s ca-
pacity to integrate multisensory information, such as during a simple detection task, may
scale up directly to the extent to which this person utilizes multisensory experiences to facil-
itate object recognition and memory. That is, does one’s ability to benefit from multisensory
contexts in a memory task rely on a more general capacity to integrate multisensory signals,
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including even simple beeps and flashes presented simultaneously at the same location? One
shortcoming of our extant work is that all responses were related to different components
within the same paradigm (i.e., initial vs. repeated exposures during a continuous recognition
task). It thus remains unclear whether links between multisensory processes are still found
when measured using two or multiple tasks (each with their own stimulus set, goals, and
attentional demands).

The extent to which multisensory integrative capacity maps onto specific behavioral met-
rics and brain mechanisms is equally unclear. Thus far, in the continuous recognition para-
digm, we have reported a link between brain activity at one point in time and behavior at
a subsequent time point on the same task. We are now enriching those findings by studying
relationship between multisensory processes and other metrics of behavior. We have recently
explored directly the scaling of multisensory benefits across separate laboratory tasks of
detection and recognition memory as well as the links of such benefits with clinical metrics
of working memory and fluid intelligence (Denervaud et al., under review). In schoolchil-
dren, like the adults described above, we observed that the magnitude of multisensory ben-
efits on a simple detection task positively predicted the magnitude of benefits of multisensory
encoding on the continuous recognition task we have described throughout this chapter. In
addition, such multisensory benefits also predicted working memory scores on the ascending
digits’ tasks and fluid intelligence scores as measured using Raven’s Progressive Matrices.
Our findings show that the scaffolding that low-level multisensory processes provide for
higher-order memory and cognition is already established during childhood. One conse-
quence is that typical models of cognitive development will surely need to better incorporate
the role of multisensory processes; with a likely impact on education practices. They might
also open exciting opportunities to facilitate early learning through multisensory programs.
More generally, these data suggest that simpler and more resource-effective sensory-based
methods can provide direct insights into the integrity of cognitive functions in schoolchildren.

We have likewise applied a similar approach in aging. Behavior on a simple multisensory
detection task can predict memory performance measured with a standardized questionnaire
indexing memory function (the Mini-Mental State Examination).111 Specifically, we have
demonstrated that an index combining the extent of an older person’s sensory preference
for auditory or visual stimuli (i.e., sensory dominance) and the extent of their multisensory
benefits, both of which are derived from the same audioevisual detection task, can accurately
diagnose a person as belonging to the healthy elderly versus mild cognitive impairment
group. Crucially, our task requires no specialist or trained personnel, is fast (<5 minutes),
and requires no calibration of stimuli (sensory dominance and multisensory gain were line-
arly correlated suggesting that alternations in stimulus effectiveness would have comparable
effects on both metrics). Nonetheless, it provided diagnostic values similar to more traditional
neuropsychological tests that were designed specifically for such assessments and which
require both financial and human infrastructure to administer and interpret.

Conclusion

We hope the reader has gained a sense for how the common understanding of learning
and memory must be expanded into a multisensory framework.101 Multisensory processes
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are not limited to instantaneous perceptions, though certainly important for such perceptions.
Rather, they also extend over time and can impact what is typically viewed as a strictly uni-
sensory perception. Similarly, the manner in which we have traditionally conceived of mental
representations of objects, and how these representations are established and maintained, has
been expanded to incorporate multisensory processes and crossmodal plasticity. In these
regards, a multisensory framework can facilitate attempts to link laboratory-based research
with more realistic and ecological settings and applications (for a broader discussion see
Ref. 15). This emerging research includes, but is not limited to, two crucial domains of
everyday life, i.e., education and rehabilitation of sensory and cognitive functions.
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