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Abstract 

Most evidence on the neural and perceptual correlates of sensory processing derives from 

studies that have focused on only a single sensory modality and averaged the data from groups of 50 

participants. Although valuable, such studies ignore the substantial inter- and intra-individual differences 

that are undoubtedly at play. Such variability plays an integral role in both the behavioral/perceptual 

realms and in the neural correlates of these processes, but substantially less is known when compared 

with group-averaged data. Recently, it has been shown that the presentation of stimuli from two or more 

sensory modalities (i.e., multisensory stimulation) not only results in the well-established performance 55 

gains, but also gives rise to reductions in behavioral and neural response variability. To better understand 

the relationship between neural and behavioral response variability under multisensory conditions, the 

present study investigated both behavior and brain activity in a task requiring subjects to discriminate 

moving versus static stimuli presented in either a unisensory or multisensory context. 

Electroencephalographic (EEG) data were analyzed with respect to intra- and inter-individual differences 60 

in reaction times (RTs). The results showed that trial-by-trial variability of RTs was significantly reduced 

under audiovisual presentation conditions as compared to visual-only presentations across all 

participants. Intra-individual variability of RTs was linked to changes in correlated activity between 

clusters within an occipital to frontal network. Additionally, inter-individual variability of RTs was linked to 

differential recruitment of medial frontal cortices. The present findings highlight differences in the brain 65 

networks that support behavioral benefits during unisensory vs. multisensory motion detection, and 

provide an important view into the functional dynamics within neuronal networks underpinning intra-

individual performance differences. 
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Introduction 70 

A large body of work has focused its effort on disentangling the general principles underlying 

perceptual processes (and ultimately behavior). Much of this work has focused on reporting behavioral 

and/or neurophysiological findings that result from group-averaged data analysis approaches (for reviews 

see: Grill-Spector, 2003; Peelen & Downing, 2007; Pulvermüller & Fadiga, 2010; Schmid & Maier, 2015). 

Although such group-average analyses represent a necessary initial step, they often fail to address the 75 

enormous (and important) variability that characterizes performance both within and across individuals 

(Dickman, 1985; Witkin, 1949, 1950). The importance of inter-individual differences is evident in behavior, 

perception and cognition (for reviews see: Kanai & Rees, 2011; Kane & Engle, 2002). In addition to inter-

individual variability, substantial intra-individual variability is a hallmark of many sensory, perceptual, and 

cognitive processes (Castellanos et al., 2005; Fiske & Rice, 1955; MacDonald, Nyberg, & Bäckman, 80 

2006; Morell & Morell, 1966; Simmonds et al., 2007). An exemplar account of such trial-by-trial 

fluctuations in regards to sensory processing was provided by Dehaene (1993). The author reported a 

periodic structure to the distribution of reaction times (RTs) in a series of auditory and visual 

discrimination tasks (Dehaene, 1993). The stochastic nature of the RT distributions suggested inter-trial 

fluctuations in the accumulation of sensory information and/or response generation. More recently, these 85 

trial-to-trial changes in performance have been linked to differences in state-dependent neural processing 

that in turn cascade into differences in the processing time of perceptual information (e.g. Bourgeois, 

Chica, Valero-Cabré, & Bartolomeo, 2013; Corbetta & Shulman, 2002). Additional evidence has been 

gathered regarding the neurophysiological mechanisms that may support these intra-individual 

differences (e.g. Chaumon & Busch, 2014; Romei, Gross, & Thut, 2010; de Graaf et al., 2013). One 90 

example is that trial-to-trial differences in the magnitude and latency of evoked gamma band responses 

(eGBR) can predict variability in response speed in visual detection tasks (Fründ, Busch, Schadow, 

Körner, & Herrmann, 2007). 

While these studies have produced important insights into the functional mechanisms 

underpinning intra-individual variability, lesion and hemodynamic imaging studies have provided 95 

additional evidence on the neuronal architecture supporting such variability. For example, lesions to 

frontal cortices, right inferior parietal cortex and regions of the thalamus can result in increased variability 

in intra-individual reaction time (RT) (Bellgrove, Hester, & Garavan, 2004; Stuss, Floden, Alexander, 

Levine, & Katz, 2001; Stuss et al., 2003). In a reexamination of neuroimaging data across a broad range 

of visual experimental tasks, Yarkoni and colleagues reported evidence for an extended network including 100 

visual cortices as well as cerebellum and additional subcortical structures to be related to RT variability 

(Yarkoni, Barch, Gray, Conturo, & Braver, 2009). Collectively, these studies have revealed a highly 

distributed network of brain regions that appears to play a role in trial-to-trial response variability, with a 

specific emphasis on RTs.  

Page 3 of 30 Journal of Cognitive Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4 

Although highly revealing as to the characteristics of inter- and intra-individual variability at both 105 

the behavioral and neural levels, it is important to note that these studies have largely been focused 

within a single sensory system – vision. As an extension of this work, there is a growing body of evidence 

showing both perceptual benefits and reduced behavioral variability when multiple redundant signals are 

presented within a single sensory modality (e.g., two redundant visual targets) (Los & Van der Burg, 

2013; Miller, 1982; Pérez-Bellido, Soto-Faraco, & López-Moliner, 2013). However, even under these 110 

unisensory redundant signal presentation conditions, substantial intra-individual response variability still 

exists (Iacoboni & Zaidel, 2003; Ivanov & Werner, 2009; Krummenacher, Grubert, Töllner, & Müller, 2014; 

Martuzzi et al., 2006; Miniussi, Girelli, & Marzi, 1998; Murray, Foxe, Higgins, Javitt, & Schroeder, 2001; 

Saron, Schroeder, Foxe, & Vaughan, 2001).  

Under naturalistic circumstances, sensory information about an event is frequently conveyed 115 

through multiple sensory systems. Take as an example a bouncing ball, and in which the visual and 

auditory cues provide complementary information about the ball’s collision with the floor. Under such 

multisensory conditions, intra-individual response variability can be significantly reduced when compared 

with unisensory presentation conditions (reviewed in Murray & Wallace, 2011). Moreover, these 

investigations have provided robust evidence of significant decreases in variability of behavioral and 120 

neurophysiological responses to occur under multisensory presentation conditions, which exceed those 

observed under redundant unisensory trials (e.g. Gingras, Rowland, & Stein, 2009). Despite a growing 

number of circumstances in which such multisensory redundancy-mediated reductions in performance 

variability have been demonstrated, the neural correlates of these effects remain poorly understood. The 

aim of the current study was to address this open question.  125 

Several studies have provided some insight into this issue, and have shown that multisensory 

presentations that result in fast RTs are accompanied by increased power and phase coherence within 

early, low-level sensory cortices (Altieri, Stevenson, Wallace, & Wenger, 2015; Mercier et al., 2015; 

Senkowski, Molholm, Gomez-Ramirez, & Foxe, 2006; Sperdin, Cappe, Foxe, & Murray 2009). While 

these data provide some information about the temporal dynamics underpinning RT variability under 130 

multisensory conditions, hemodynamic imaging has provided additional insight into the important nodes in 

a putative network. For example, Noppeney and colleagues (2010) found activity within a widespread 

network, spanning occipital to frontal cortices, to be modulated by both the ambiguity of the auditory and 

visual stimuli as well as their congruency in a visual object categorization task. Moreover, these authors 

provided evidence that this network activation is linked to the efficacy of the behavioral responses 135 

observed (Noppeney, Ostwald, & Werner, 2010). Taken together, these previous studies provide a base 

of knowledge regarding the functional mechanisms and neuronal structures involved in response 

variability under multisensory presentations. Nonetheless, much remains to be elucidated, most notably 

how trial-by-trial changes in activity within the associated network(s) give rise to the striking variability 

observed in behavioral performance. 140 
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To this aim, in the current study, we re-analyzed previously published ERP data (Cappe, Thelen, 

Romei, Thut, & Murray, 2012). The initial study had been designed to investigate the neuronal 

mechanisms involved in the selective response facilitation observed under multisensory conditions for the 

detection of approaching (i.e., looming) versus receding motion cues. Specifically, subjects were asked to 

detect motion under unisensory (auditory or visual-only) and multisensory (audiovisual) presentation 145 

conditions. The present analysis specifically focused on determining the neuronal networks underlying the 

RT variability that accompanies behavioral performance on this task. 

Materials and Methods 

Subjects 150 

After applying criteria for the minimal number of accepted trials per condition (detailed below), the data 

from eight healthy individuals were included in the current analyses (aged 18-28yrs: mean = 23±3yrs; 3 

women and 5 men; 7 right-handed). All subjects reported normal hearing and normal or corrected-to-

normal vision. Handedness was assessed with the Edinburgh questionnaire (Oldfield, 1971). None of the 

subjects reported a history of neurological or psychiatric illness. Participants provided written, informed 155 

consent to the procedures that were approved by the Ethics Committee of the Faculty of Biology and 

Medicine of the University Hospital and University of Lausanne. 

Stimuli and procedure 

We performed quartile-by-quartile analysis on a previously published dataset (Cappe et al., 160 

2012). A quartile analysis was chosen because inter-quartile range (IQR) is considered a robust measure 

of the spread of data, particularly when they are non-normally distributed as if often the case for reaction 

time data from individual participants (Ratcliffe, 1993). Only the features relevant to the quartile-by-

quartile analysis will be detailed here. Briefly, participants were asked to perform a speeded detection 

task, and were asked to indicate the presence of moving versus static stimuli by a simple button press. 165 

Stimuli could be presented in a unisensory (i.e. visual or auditory only) or multisensory (i.e. audiovisual) 

manner. Visual and auditory motion was perceived as either approaching or receding from the observer. 

Additionally, the original design included static stimuli in both modalities. The experiment was composed 

of 15 conditions, consisting of 6 unisensory (auditory (A) and visual (V) only, static (s), receding (r) or 

approaching (looming=l) stimuli) and 9 multisensory pairings (the full set of possible auditory-visual (AV) 170 

combinations). Overall, we collected 252 trials for each condition over 18 blocks. In anticipation of our 

analysis strategy, comparing predicted versus empirically derived cumulative distribution functions (CDFs; 

see Methods section for Behavioral data), we here only considered multisensory stimuli that were 

composed of a combination of two unisensory motion cues (VlAl, VlAr, Vr, AL, VrAr, and their respective 

unisensory components: Vl, Vr, Al, Ar). 175 

Visual motion stimuli consisted of a disc (initial size: 7° of visual angle) dynamically contracting (to 

1°) or expanding (to 13°) over 500ms of stimulus duration. Auditory stimuli consisted of 1000Hz complex 
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pure tones (44.1kHz sampling; 500ms duration; 10ms rise/fall to avoid clicks), composed of triangular 

waveforms. To induce the perception of motion, the amplitude of the stimuli was linearly modulated (77 ± 

10dB SPL) over the stimulus duration period. After stimulus offset, a variable inter-trial-interval of 800-180 

1400ms was interleaved such that the onset of the next trial could not be anticipated by subjects. 

Additionally, all audiovisual stimulus pairings were presented synchronously. Stimulus delivery and 

response recording were controlled by E-Prime in conjunction with their Serial Response Box 

(Psychology Software Tools; www.pstnet.com). 

185 

Data Acquisition 

Concurrently to the behavioral task, we acquired continuous high-density (160-channel-BioSemi 

ActiveTwo; www.biosemi.com) EEG at 1024Hz. The low-impedance AD-box references the data online to 

the common mode sense (CMS; active electrode), while grounding the data to the driven right leg (DRL; 

passive electrode). This functions as a feedback loop, driving the average instantaneous potential over 190 

the whole montage to the amplifier zero (for a more detailed description of the setup see: 

(http://www.biosemi.com/faq/cms&drl.htm). 

Data Processing and Analyses 

The aim of the current study was to investigate the neuronal correlates underpinning intra-195 

individual RT variability observed at the behavioral level. To this end, only task-relevant conditions 

requiring subjects to respond to either sensory modality were included in the analyses (Vl, Vr, Al, Ar, VlAl, 

VrAr, VrAl, VlAr). To investigate the neuronal networks underpinning response speed variability, we 

ranked RT data for each of these eight conditions separately into four quartiles and calculated the mean 

response speed for each bin. Further, the present analyses sought to assess the neuronal networks 200 

underpinning multisensory benefits of behavioral responses over unisensory events. To this end, 

behavioral and EEG data were subsequently averaged across conditions, leading to three grand 

averages independently of motion direction (A, V, AV).  In what follows, we only considered trials where 

RTs fell within the first and last of the quartiles, in order to compare behavioral and neuronal responses 

upon the fastest and slowest trials within each subject. Consequently, the data analyses carried out here 205 

specifically tested 1) differential processing under unisensory versus multisensory presentations and its' 

impact on behavior, and 2) the neural correlates underpinning response variability in terms of RTs. 

Behavioral data 

Intra-individual effects 210 

To assess the occurrence of multisensory facilitation, response accuracy and reaction times were 

initially computed for each condition, separately. Race models were calculated to evaluate the occurrence 

of redundant signal effects (RSEs) under multisensory versus unisensory conditions (Ulrich & Miller, 

1997; Ulrich, Miller, & Schröter, 2007). The race model assumes that auditory and visual information is 
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processed independently upon multisensory presentations, and that responses are triggered by the faster 215 

unisensory process. Therefore, cumulative distribution functions (CDFs) of RTs for multisensory events 

can be computed based on the observed unisensory CDFs. These multisensory CDF predictions are then 

compared to the empirical CDFs from the observed RTs. If the empirical CDFs show significantly faster 

RTs for 20-50% of the percentiles, this is considered as race model violation and suggests that 

multisensory information was integrated prior to motor response initiation (Miller & Ulrich, 2003). Note, 220 

however, that neural integration can occur in the absence of evidence for race model violation in 

behavioral data (Murray et al., 2001). 

Inter-individual effects and response facilitation 

In addition to investigating the response variability within subjects, and across conditions, we also 225 

addressed how individual differences in response variability affect neuronal processing. To this end, we 

computed the difference in response speed between the mean RTs within the first and the last quartile for 

each subject and each condition (i.e. the IQR). IQRs have been considered a more robust quantification 

of the width of RT distributions as compared to central tendency measures, such as standard deviations, 

due to the fact that these distributions are non-normal by nature (see Ratcliff, 1993 for further detail). 230 

Thus, the index chosen here reflects the width of the individual response distributions, and serves as 

descriptor of the response variability for each subject. 

Furthermore, this RT difference also served as a variable when directly testing the assumption 

that RT distributions were narrowed rather than broadened under multisensory conditions as compared to 

unisensory conditions. In recent years, there has been a debate as to whether RT distributions are 235 

skewed or broadened under multisensory as compared to unisensory presentation conditions (see Otto, 

Dassy, & Mamassian, 2013). Although not the central focus of the present study, our data contribute to 

the resolution of this debate by providing evidence that RT distributions are significantly skewed, rather 

than broadened, under multisensory presentation conditions. 

240 

EEG data preprocessing 

EEG data were imported into MATLAB (http://www.mathworks.com), and preprocessing was 

performed using functions derived from the free EEGLAB toolbox and its ERPLAB plug-in (Delorme & 

Makeig, 2004; Lopez-Calderon & Luck, 2014). After import, a conventional 40Hz FIR low-pass filter was 

applied to the data. Subsequently, epochs from 200ms pre-stimulus to 700ms post-stimulus onset were 245 

extracted for each of the experimental conditions and from each subject to calculate ERPs. Epochs 

containing ±80µV artifacts, eye blinks or other noise transients were rejected by trial-by-trial visual 

inspection. Remaining epochs were binned according to RTs into fast (first quartile of the RT distribution) 

and slow (last quartile of the RT distribution) trials, and single-subject averages were computed for each 

condition separately. The single-subject ERPs were then exported to CARTOOL (Brunet, Murray, & 250 

Michel, 2011; https://sites.google.com/site/cartoolcommunity/files) for further processing. Data at artifact 

Page 7 of 30 Journal of Cognitive Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8 

electrodes were interpolated using 3-D splines before creating the single-subject supra-condition 

averages (Perrin, Pernier, Bertrand, Giard et al., 1987). Baseline-corrected group averaged ERPs were 

computed over 100ms pre-stimulus to 600ms post-stimulus onset. When calculating ERPs, we equated 

the number of trials from the various contributing stimulus pairings, in the case of AV trials, and the 255 

number of artifact-free trials from each quartile. These criteria resulted in the exclusion of data from 6 of 

the original 14 participants because a reliable ERP was not evident upon visual inspection of their data 

after equating the number of trials. 

General ERP Analysis Framework 260 

Differences in neuronal activity were identified within an electrical neuroimaging framework, 

implemented in a variety of freeware and toolboxes (CarTool: Brunet et al., 2011; RAGU: Koenig, Kottlow, 

Stein, & Melie-García, 2011); STEN toolbox developed by Jean-François Knebel 

(http://www.unil.ch/line/home/menuinst/about-the-line/software--analysis-tools.html). This particular 

framework allows us to differentiate between modulations in response strength (GFP) and/or 265 

configuration (topography of the electric field) of neuronal networks recruited between conditions (for a 

review see Murray, Brunet, & Michel, 2008). Ultimately, we estimated and statistically assessed the 

neuronal sources involved, by using the local auto-regressive average distributed linear inverse solution 

(LAURA; Michel et al., 2004). 

Lastly, in order to further investigate the neuronal correlates of inter-individual differences of response 270 

variability (i.e. differences in the spread of RTs between subjects), we submitted the data to an additional 

ANCOVA design, using the IQR as a covariate. 

ERP waveform modulations 

In a first step, we entered ERPs into a repeated-measures ANOVA, in order to analyze the 275 

waveforms from all electrodes as a function of time post-stimulus onset. We specifically tested for 

differences due to response speed (i.e. first versus forth quartile) and possible interactions with condition 

(i.e. A, V, AV). Temporal auto-correlation at the level of individual electrodes was corrected by applying a 

threshold criterion of ≥11 consecutive data-points (~11ms) (Guthrie & Buchwald, 1991). Additionally, only 

effects present at >5% of channels (i.e. ≥8) were considered reliable. This was implemented as a way to 280 

account for spatial correlation, which also varies as a function of time and thus cannot be set a priori. 

This mass univariate analysis of voltage waveforms was chosen to provide an overview of the 

spatiotemporal dynamics and distribution of the statistical effects. We emphasize that our analyses of 

interest were those based on reference-independent and global measures of the electric field at the scalp. 

Because these are global measures, no correction for spatial correlation was necessary. 285 

Additionally, the analyses of voltage ERP waveforms at each electrode revealed a minimal 

influence of auditory ERPs to the overall observed statistical results pattern. Thus, although the full 

experimental design including auditory trials was considered throughout the analyses, we re-analyzed 
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and focused the present report on results derived from a 2×2 ANOVA design, with the factors of response 

speed (fast, slow) and condition (V, AV). This approach led to the added advantage of increasing the 290 

observed effect sizes, by reducing the number of factors considered in our statistical analyses. 

Electrical Neuroimaging 

As mentioned above, analyses of ERP voltage waveforms are reference-dependent, with the 

consequence that statistical effects (and interpretations thereof) will also depend on the choice of the 295 

reference location (Murray et al., 2008). Consequently, our analyses focus instead on reference-

independent global measures of ERP strength and topography that were analyzed within a so-called 

electrical neuroimaging framework (Michel & Murray, 2012). The first measure is global field power 

(GFP), which is the root mean square of the voltage data across the scalp (Lehmann & Skrandies, 1980). 

GFP is larger for stronger ERPs, but provides no information about the spatial distribution of the ERP. 300 

Here, GFP was analyzed with a 2×2 ANOVA using within-subject factors of RT speed (fast vs. slow trials) 

and condition (V vs. AV). ANOVA was performed on a millisecond-by-millisecond basis. Correction for 

temporal auto-correlation was achieved by considering as reliable only those effects lasting for at least 11 

consecutive data-points (~11ms) (Guthrie & Buchwald, 1991). The second global measure is global 

dissimilarity (DISS), which is the root mean square of the difference between two GFP-normalized vectors 305 

(Lehmann & Skrandies, 1980). DISS can be analyzed in a factorial design using the Randomization 

Graphical User interface (RAGU) (König et al., 2011). Furthermore, in an additional ANCOVA design, we 

tested the impact of individual behavioral response variability, quantified here as the IQR for each 

experimental condition, on brain responses to the AV and V conditions leading to slow and fast reaction 

times. Subsequently, significant effects were assessed by submitting the data to post-hoc t-tests. 310 

A topographic clustering analysis was also performed on the four group-averaged ERPs using 

CarTool . Specifically, we applied an atomize and agglomerate hierarchical clustering (AAHC) approach 

that uses measures of global explained variance alongside spatial correlation (see Murray et al., 2008 

and Brunet et al., 2011 for detailed descriptions of the methods). By way of summary, topographic 

clustering is a data-driven and largely assumption-free means for identifying the minimal number of ERP 315 

topographies that explains a maximum of variance in the cumulative dataset (here the four group-

averaged ERPs). Once this set of topographies and their sequence in time post-stimulus onset was 

identified, they were used as template maps for the fitting to single-subject ERPs. This fitting is based on 

the spatial correlation between a given template map and the single-subject ERP at a given moment post-

stimulus for each condition and RT speed. As output, the fitting procedure yields the total amount of time 320 

a given template map was associated with responses to a given condition and/or RT speed. 

Source Estimations 

We estimated the neuronal sources of the electrical activity measured at the level of the scalp 

using a distributed linear inverse solution (minimum norm) together with the LAURA regularization 325 

Page 9 of 30 Journal of Cognitive Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10 

approach (Grave de Peralta Menendez, Gonzalez Andino, Lantz, Michel, & Landis, 2001; Grave de 

Peralta Menendez, Murray, Michel, Martuzzi, & Gonzalez Andino, 2004; Michel et al., 2004). LAURA 

selects the source configuration that best mimics the biophysical behavior of electric vector fields (i.e. 

according to electromagnetic laws, activity at one point depends on the activity at neighboring points). In 

our study, homogenous regression coefficients in all directions and within the whole solution space were 330 

used. LAURA uses a realistic head model, and the solution space included 3005 nodes, selected from a 

6x6x6mm grid of equally distributed nodes within the gray matter of the Montreal Neurological Institute’s 

average brain (courtesy of R. Grave de Peralta and S. Gonzalez Andino; http://www.electrical-

neuroimaging.ch/). Prior basic and clinical research from members of our group and others has 

documented and discussed in detail the spatial accuracy of the inverse solution model used here (e.g. 335 

Gonzalez Andino, Murray, Foxe, & de Peralta Menendez, 2005; Martuzzi et al., 2009; Michel et al., 2004). 

The results of the above topographic pattern analysis defined time periods for which intra-cranial 

sources were estimated and statistically compared between conditions (here 183–250ms post-stimulus). 

Prior to calculation of the inverse solution, the ERPs were down-sampled and affine-transformed to a 

common 111-channel montage. Statistical analyses of source estimations were performed on a single 340 

average data point over the 183-250ms post-stimulus onset epoch. This procedure increases the signal-

to-noise ratio of the data from each participant. The inverse solution was then estimated for each of the 

3005 nodes. Consequently, the data were entered into a two-by-two ANOVA with the factors of response 

speed (i.e. fast versus slow trials) and condition (i.e. AV, V). Additionally, the data were submitted to an 

ANCOVA, using the difference in RTs between the first and the forth quartile as a covariate for each 345 

condition. Statistical results were corrected using a spatial extent criterion of at least 12 contiguous 

significant nodes. This spatial criterion was determined using the AlphaSim program (available at 

http://afni.nimh.nih.gov) and assuming a spatial smoothing of 2 mm FWHM and cluster connection radius 

of 8.5 mm. After 10000 Monte Carlo iterations, a cluster of 10 nodes was observed with a probability of 

0.034, yielding a corresponding node-level p-value of p ≤ 0.001 (see Sperdin, Cappe, & Murray, 2010; 350 

Thelen et al., 2012; Toepel, Knebel, Hudry, le Coutre, & Murray, 2009 for similar criteria). Results have 

been rendered on the Montreal Neurologic Institute's average brain with the Talairach & Tournoux (1988) 

coordinates of the largest statistical differences within each cluster indicated. 

Cluster Correlations 355 

In a last exploratory step, we investigated the relationship between activity within a left lateralized 

occipital cluster and the activity between the clusters identified by the main effect of quartile (i.e. fast 

versus slow RTs) in order to shed light upon the neuronal network interactions underpinning our results. 

This was predicated by a recent hemodynamic study by Noppeney et al. (2010), which revealed a linear 

relationship between activity within visual and frontal areas and trial-by-trial response efficacy (Noppeney 360 

et al., 2010). 
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11 

 To extract the activity within the most prominent occipital cluster while minimizing the contribution 

of weakly responsive sources, we only considered nodes with current density values exceeded two 

standard deviations above the whole brain volume's mean in each condition (here, mean + 2SD: 

Vslow=0.0008 + 0.0011µA/mm
3
; Vfast=0.0008 + 0.0012µA/mm

3
; AVslow=0.0008 + 0.001µA/mm

3
; and365 

AVfast=0.0007 + 0.001µA/mm
3
; see Thelen et al., 2012 for a similar procedure). A cluster within left visual

cortices extending to middle temporal cortex (MTG) was identified showing the strongest activations 

during the 183ms - 250ms post-stimulus onset period in all conditions (coordinates of nodes with 

maximum CSD values: Vslow=-48, -61, 1mm; Vfast/AVslow/AVfast=-49, -67, 6mm; MTG, BA37). No 

further nodes exceeding our statistical threshold were found. 370 

Consequently, mean current density values for the cluster within the occipital cortex and each of 

the clusters yielding a main effect of RT quartile were extracted (i.e. first versus last quartile of the 

response distribution). More precisely, the mean activity across all voxels within three separate clusters, 

situated within the left Inferior Frontal Gyrus, the right Angular Gyrus/MTG, right Inferior Parietal Lobule 

(see Results for further details) were considered. We then 1) correlated the mean activity within each of 375 

these clusters with the activity within the occipital cluster and 2) the mean activity of between each of the 

three clusters as a function of time. Although we are hesitant to over interpret correlational relationships 

between activity patterns, this approach can at least reveal the basic interactions within a functional 

network. Given the small sample size, we used Spearman’s non-parametric rank-ordered correlation 

coefficient and a bootstrapping procedure with 2000 iterations to assess statistical reliability.  380 

Results 

Behavioral data 

For the original analyses of the RT data, we refer readers to the previously published manuscript 

(Cappe et al., 2009). In the current study, we replicate the central behavioral result of speeded RTs under 385 

combined audiovisual stimulation, even with the smaller sample size dictated by the EEG analyses 

(significant main effect of condition F(2, 6)=43.898; p<0.001; ηp
2
=1; Post-hoc t-test confirming faster RTs to

audiovisual presentations; median ± SEM: AV=427 ± 30ms; V=473 ± 20ms; A=624 ± 28ms; AV versus V: 

t(7)=-2.532; p=0.039;  AV versus A: t(7)=-9.823; p<0.001; see Figure 1a). 

We first sought to determine whether the audiovisual response speeding exceeded race model 390 

predictions (Ulrich & Miller, 1997; Ulrich et al., 2007). To this end, we modeled multisensory cumulative 

density functions (CDFs) based on the empirically derived unisensory CDFs and compared these to the 

empirically derived multisensory CDFs. We then entered the data from the modeled and the empirically 

derived multisensory CDFs into a repeated-measures ANOVA with the factors of data type (empirical 

versus modeled) and CDF percentile. This analysis revealed a main effect of percentile (F(5,3)=142.5; 395 

p=0.001; ηp
2
=1), and a significant data type by percentile interaction (F(5,3)=9.6; p=0.046; ηp

2
=0.66).

Subsequently, we performed post-hoc one-tailed t-tests on each percentile, which revealed significant 

race model violations for trials within the first ~40 percentiles (p=0.026). Note that 1-tailed tests were 
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conducted as we specifically tested for facilitation beyond race model predictions (i.e. a unidirectional 

effect). Furthermore, we divided the RT distributions into the fastest (first) and slowest (last) quartiles. 400 

Figure 1b plots the median RTs for the first and the last quartiles on the right of the CDFs. This figure 

illustrates the main effect of quartile (F(1,7)=142.919; p<0.001; ηp
2 

=1), the main effect of condition

(F(2,6)=47.649; p<0.001; ηp
2
=1), and the condition by quartile interaction (F(2,6)=8.627; p=0.017;

ηp
2
=0.816).

In a final step of the behavioral analyses, in order to assess response variability between 405 

conditions and at the inter-individual level, we computed the RT difference between the means of the first 

and the fourth quartiles for each condition and for the group (Figure 2a) and for each subject (i.e., 

approximation of the Inter Quartile Range; see Figure 2b). The one-way ANOVA on these RT difference 

scores revealed a significant main effect of condition (F(2,6)=8.51; p=0.018; ηp
2
=0.81) (Figure 2a). Post-

hoc t-tests showed that the difference score for audiovisual RTs was significantly less variable than for 410 

either the visual or auditory conditions (median difference score ± SEM: AV=227 ± 21.6ms; V=261 ± 

24.2ms; A=428 ± 50.5ms; AV versus V: t(7)=-2.441, p=0.045; AV versus A: t(7)=-4.106, p=0.005). 

Additionally, the difference score for visual RTs was significantly less variable than for auditory RTs (t(7)=-

3.443, p=0.011). Together, the behavioral data strongly support the presence of reduced variability under 

redundant (audiovisual) presentation conditions.415 

ERP data 

ERP analyses were structured in order to reveal the neuronal networks underlying response 

variability observed at the behavioral level. Thus, we will refrain from reporting statistical differences 

between conditions (i.e., audiovisual vs. visual-only) since non-linear multisensory interactions were not 420 

the focus of the present manuscript (i.e. as compared to analyses presented by Sperdin et al., 2009 and 

Mercier et al., 2015; or prior analyses of the same dataset in Cappe et al., 2010, 2012). The same 

statistical design was applied to all ERP measures and source estimations. 

To address differential processing according to inter-quartile variability of RTs and presentation 

condition (i.e., intra-individual variability), 2 x 2 repeated measures ANOVAs with the factors of quartile 425 

(first versus fourth) and condition (V and AV) were performed. Note that this analysis was structured to 

specifically contrast brain responses during trials in which there was evidence for multisensory facilitation 

exceeding probability summations (first quartile of the RT distribution) from those in which no evidence for 

such race model violations was found (fourth quartile). The choice of limiting our analyses to contrasting 

AV and V trials only was motivated by the facts that: 1) adding auditory-only conditions to the statistical 430 

design did not significantly alter the results, and 2) by reducing the number of conditions entered into the 

statistical design matrix, we increased the power in our analyses.

Analyses of the visual and audiovisual ERP waveforms (see Figure 3a for ERPs at a 

representative midline occipital electrode) as a function of time revealed a main effect of quartile (i.e. 

intra-subject RT variability) starting at 188ms post-stimulus onset (see Figure 3b). Additionally, there was 435 
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a significant quartile by condition interaction starting at 184ms post-stimulus onset. Analyses of inter-

subject differences (i.e. ANCOVA) revealed a three-way interaction between quartile, condition and 

between-subject differences in RT spread (i.e. IQR) starting at 196ms and 284ms and post-stimulus 

onset. These analyses of the ERP waveforms highlight significant differences found at single electrodes 

over time and serve as an initial indicator of differential neural processing. Nonetheless, these statistical 440 

results are reference-dependent and cannot distinguish between activity differences due to changes in 

response strength from those due to differences in the topographic configuration of the scalp potentials; 

the latter of which is indicative of a change in the underlying neuronal generators (Murray et al., 2008).

Thus, to quantify statistical differences over the entire electrode montage, we analyzed both 

global field power (GFP) and topographic dissimilarity (DISS) (Brunet et al., 2011; Michel et al., 2004; 445 

Murray et al., 2008). GFP analyses did not reveal any statistically reliable differences. In contrast, the 

DISS analyses revealed a significant main effect of RT difference (from 142ms - 239ms post-stimulus 

onset; see Figure 3c). Further, we found a significant IQR by condition interaction at 93ms – 155ms post-

stimulus onset, as well as at a subsequent time period (253ms - 280ms). Next, we sought to determine 

whether these topographic effects stemmed from stable differences in map configurations in each 450 

condition, or from latency shifts of map onsets between conditions. To this end, we entered the group-

averaged ERPs into an AAHC analysis (Murray et al., 2008). The procedure identified 17 maps that could 

account for 95.7% of the variance over the four group-averaged ERPs (i.e., AV and V conditions resulting 

in fast and slow responses) over the entire post-stimulus onset time period. These template maps are 

shown in Figure 4. During the 183 - 250ms post-stimulus onset period, three maps (framed in black, light 455 

gray, and dark gray in Figure 4) differentially characterized group averaged ERPs across conditions. 

This pattern observed at the group-averaged ERP level was next statistically assessed in the 

single-subject ERPs using a spatial-correlation fitting procedure over the 183-250ms post-stimulus period, 

using within-subject factors of condition (AV and V), RT quartile (slow and fast), and map (Murray et al., 

2008). We observed a significant condition × map interaction (F(2,14)=11.38; p<0.001; ηp
2
=0.62). No other460 

main effect or interaction was statistically reliable (p’s>0.10). Given this interaction, we then performed 

separate ANOVAs for the AV and V conditions. For the AV condition, there was a non-significant trend for 

a main effect of map (F(2,14)=3.65; p=0.053; ηp
2
=0.34), but neither main effect of RT quartile nor the

interaction was statistically reliable (p’s>0.10). This suggests that one template map (i.e. that framed in 

black) predominated the responses to the AV conditions irrespective of the resultant RT and that the 465 

patterns were statistically indistinguishable for responses leading to slow and fast RTs. For the V 

condition neither main effect was statistically reliable, yet there was a significant interaction between RT 

quartile and map (F(2,14)=5.53; p=0.017; ηp
2
=0.44). Post-hoc analyses revealed that for the visual-only

condition leading to slow responses, the template map framed in dark grey predominated. By contrast, for 

the visual-only condition leading to fast responses, the template map framed in light gray predominated. 470 

In accordance with our behavioral findings showing a significant reduction of response variability under 

multisensory conditions, these results revealed a single stable map configuration (and by extension likely 
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a stable neuronal generator configuration) underpinning multisensory processing within the 183ms – 

250ms post-stimulus onset window. In addition to quantifying the total duration of a given template map, 

the fitting procedure also provided output concerning the first onset of a given template map. Analysis of 475 

this output indicated an earlier switch between template maps to occur for visual-only presentations 

resulting in faster RTs than slower RTs (304ms versus 319ms; p-value < 0.001).  

Source estimations 

The time-window revealed by this clustering analysis (i.e. 183ms – 250ms post-stimulus onset) 480 

served as basis for determining the time-window of analysis for the source estimations. Source 

estimations were carried out in order to identify the networks likely contributing to the effects observed at 

the scalp level. While the topographic clustering analyses revealed the presence of two distinct template 

maps under visual-only presentation conditions, one template map predominated the responses under 

audiovisual conditions. Nonetheless, we chose to collapse over the whole period of interest when 485 

computing source estimations. This choice was mainly motivated by our relatively small sample size 

(N=8) and to increase the signal-to-noise ratio of our scalp recordings. 

During the time period of interest identified by the clustering procedure (183ms - 250ms post-

stimulus onset), all four conditions (i.e. fast and slow responses for visual and audiovisual conditions) 

included prominent sources within occipital and temporal cortices. Statistical analyses revealed a main 490 

effect of RT quartile (i.e. fast versus slow responses) that included several clusters located within bilateral 

inferior frontal gyrus, the right parietal cortex and the right superior occipital cortex extending to the 

middle temporal cortex (see Figure 5a and Table 1 for more detailed description). Further analyses 

revealed a distinct network showing a significant quartile by condition interaction which included sources 

within the right IFG, right middle frontal gyrus, right superior temporal gyrus, as well as a cluster within left 495 

posterior PC (see Figure 5b). There was also a significant three-way interaction between quartile, 

condition and RT difference located within frontal cortex, extending from the superior frontal cortex to the 

medial frontal gyrus (see Figure 5c). 

Cluster correlations 500 

In a final step, we sought to shed light on the patterns of functional connectivity (in terms of 

correlated activations) within the brain network showing differential responses as a function of RTs. To 

this end, we first extracted mean activity across all voxels within the cluster in the left visual areas 

showing the greatest activity (i.e., 2 standard deviations above the mean activity of whole brain activity) 

during the 183ms - 250ms post-stimulus onset window (see Methods and Materials). Second, we 505 

extracted mean activation values across voxels within each of the three clusters that showed a Main 

Effect of RTs within the same period of interest (see prior section). Subsequently, we computed student t-

values of Spearman's rank-ordered correlation coefficients over time. Due to the relatively small sample 

size, the reliability of the correlation coefficients was assessed using bootstrap estimations (2000 
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samples). Subsequently, we estimated differences in correlated activity patterns between visual cortices 510 

and the three clusters revealed by the Main Effect of RTs. This analysis sought to extend prior 

hemodynamic imaging results suggesting differential connectivity within a very similar neuronal network 

(including visual cortices) to be associated with differences in RTs (see Noppeney et al., 2010). More 

precisely, correlations were computed as a function of time between the mean cluster activity within left 

visual cortices (i.e. the cluster showing the greatest activity) and the three clusters identified by the 515 

statistical analyses in the source space (i.e. the Main Effect of RTs): 1) a cluster containing the right 

Angular Gyrus (AG), extending to the posterior Middle Temporal Gyrus (MTG), 2) a cluster in the right 

inferior Parietal Lobule extending to the superior Occipital Cortex (SOC), and 3) a cluster within the right 

inferior Frontal Gyrus (IFG).  

Correlations between occipital cortices and the three clusters investigated here were significantly 520 

less pronounced under multisensory presentation conditions (within the 183ms – 250ms post-stimulus 

onset time-window). In contrast, response speed under visual-only presentations was facilitated when 

activity within occipital cortices was correlated with activity within all three clusters (see Figure 6a.i). 

In a last step, we sought to further elucidate how the connectivity between nodes beyond visual 

cortices differentially contributed to RT variability. To do this, we directly correlated activity from each of 525 

the three clusters shown to be differentially recruited as a function as RTs with one another (see Figure 

6a.ii). Again, we computed t-values of Spearman's rank-ordered correlation coefficients (bootstrap 

estimation with 2000 samples; time-window 183ms – 250ms; statistical criteria: t(6)>2.44; p<0.05; >12 

contiguous time frames). These analyses showed that during the 183ms – 250ms time-period, inter-

cluster correlations between the Angular Gyrus and the inferior parietal lobule were most robust for those 530 

conditions that led to faster RTs (i.e. AV fast, AV slow, and V fast; see Figure 6a.ii). Similarly, only trials 

resulting in fast responses within each condition revealed significant correlations between all three 

clusters.  

Generally, when participants’ RTs were fastest (i.e. in under audiovisual presentation conditions), 

occipital cortices did not exhibit significant correlation with the posterior parietal lobule and the IFG. In 535 

contrast, these clusters showed significant activity correlations with occipital cortices, with increased RTs 

(i.e. under slow responses to audiovisual stimuli and both visual-only presentations). We tentatively 

hypothesize that this difference in correlation patterns reflects more efficient stimulus processing (i.e., a 

decrease of the necessity of sustained functional connectivity) between visual cortices and the identified 

network clusters.  In terms of between-cluster correlations, the data clearly showed that faster responses 540 

to both audiovisual and visual-only conditions were supported by stronger between cluster activity 

correlations within the higher-level network (i.e. not including lower-level visual cortices).  

Discussion 

The current study provides an important link between behavioral and neural data focused on 545 

examining intra- and inter-individual differences (i.e., variability) in multisensory processing. The 
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behavioral data support the presence of multisensory integrative processes as evidenced by violations of 

the race model; a result consistent with a number of prior studies (e.g. Mercier et al., 2015; Pomper, 

Brincker, Harwood, Prikhodko, & Senkowski, 2014; Sperdin et al., 2009; Stevenson, Fister, Barnett, 

Nidiffer, & Wallace, 2012). In addition, the behavioral analyses illustrate a reduction in response variability 550 

in audiovisual trials, again consistent with prior work (Sarko, Ghose, & Wallace, 2013). Analyses of the 

scalp recorded EEG data show that differences in RT variability between visual and audiovisual 

conditions are related to the presence of different stable ERP topographies. Specifically, these analyses 

revealed the recruitment of a single stable topography to occur under multisensory conditions (which 

characterized both fast and slow responses). In contrast, two stable network configurations characterized 555 

visual-only trials where a greater RT distribution variability was observed. We hypothesize that this 

apparent stability in the ERP topography under multisensory presentations reflects the more efficient 

(faster and less variable) processing of audiovisual stimuli. Source estimations suggest that the intra-

individual (trial-by-trial) RT variability observed at the behavioral level is linked to differences in the 

recruitment of an extensive cortical network, which includes occipital, parietal and frontal cortices. 560 

Additionally, the analyses suggest that inter-individual differences in the variability of RT distributions can 

be related to activity within middle frontal cortices. Finally, correlational analyses between clusters within 

this network revealed that greater behavioral benefits (under both visual and multisensory conditions) 

appear linked to more correlated (i.e., more efficient) interactions within the clusters of this network. In 

what follows, we discuss these findings within the framework of the existing literature. 565 

In the current study, our measure of intra- and inter-individual response variability is the mean 

difference in RTs between the first and the fourth quartiles of the individual RT distributions. These results 

provide strong evidence that RTs under multisensory conditions are less variable when compared to 

unisensory visual conditions (for similar results see Altieri & Hudock, 2014; Zehetleitner, Ratko-Dehnert, & 

Müller, 2015), and are of interest in the context of recent work that has distinguished between the 570 

concepts of sensory integration and cue interactions (Otto & Mamassian, 2012). Under circumstances of 

cue interactions, there should be an accompanying increase in sensory noise from a stimulus in a second 

modality, thus resulting in a broadening of RT distributions under multisensory conditions in tasks like 

those used in the current study. In contrast, our observation of a less variable response distribution under 

multisensory conditions argues for a decrease in sensory noise, suggestive of an active integration 575 

process between the visual and auditory cues and supporting concepts of cue reliability (Ernst & Banks, 

2002; Morgan, DeAngelis, & Angelaki, 2008).  

To date, only a few studies have directly investigated the neuronal loci and networks that are 

associated with variability in behavioral responses to multisensory stimuli (Noppeney et al., 2010; Sperdin 

et al., 2009; Tyll et al., 2013). Sperdin and colleagues (2009), reexamining a previously published data 580 

set from Murray and colleagues (2005) stemming from an audiotactile detection task, specifically 

addressed the neuronal interactions that accompanied response time facilitations under multisensory 

versus unisensory conditions, but did not specifically address the neuronal correlates of RT variability 
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under multisensory conditions. In particular, these authors found a facilitation of RTs under multisensory 

conditions and that was associated with differences in activation strength over the left posterior superior 585 

temporal cortex. Nonetheless their analyses focused only on testing differences in non-linear 

multisensory interactions as a function of RTs, rather than specifically addressing the neuronal correlates 

of RT variability per se.  

Our findings also help to bridge results from electroencephalography with those from 

hemodynamic imaging (Noppeney et al., 2010; Tyll et al., 2013). We provide the first evidence that trial-590 

to-trial RT variability within an individual subject is linked to quantitative differences in terms of correlated 

activity within an occipital-to-frontal network. It has been argued that such correlations of neuronal activity 

can be highly informative about the functional connectivity (FC) between (relatively) distant cortical 

regions (Salinas & Sejnowski, 2001). Compared to simple correlation analyses, functional connectivity 

measures represent a more detailed analysis of the cross-correlation patterns between neural nodes as a 595 

function of experimental conditions (see Friston, 2011 for a review). The present results suggest the 

existence of a strong correlational relationship between the amount of neural activity within this occipito-

to-frontal network and both presentation condition (i.e. audiovisual versus visual-only) and response 

speed (i.e. fast versus slow responses). Moreover, significant changes in activity correlations between 

neural nodes have been linked back to trial-by-trial fluctuations (i.e. intra-individual performance 600 

variability) reflected in behavior (e.g. Hansen, Chelaru, & Dragoi, 2012).  Further investigations are 

needed to provide more detailed information concerning the links between connectivity patterns and their 

relationship to neural activation patterns and behavioral variability.

Although the current study focused on intra-individual RT variability, our analyses also revealed 

an important relationship between the neural correlates of intra-individual differences and inter-individual 605 

variability. A distinct cluster within frontal cortices exhibited differential activation patterns as a function of 

response speed (fast versus slow trials), presentation condition (visual-only versus multisensory) and the 

individual, within-subject RT differences (see Figure 2b). Activity within these areas has been linked to 

task difficulty and cognitive control mechanisms (Desai, Conant, Waldron, & Binder, 2006; Ridderinkhof, 

Ullsperger, Crone, & Nieuwenhuis, 2004) and sensory evidence accumulation in decision related 610 

processes (Filimon, Philiastides, Nelson, Kloosterman, & Heekeren, 2013; Heekeren, Marrett, & 

Ungerleider, 2008). Here frontal areas showed stronger activations when subject's RT was slower under 

multisensory conditions, suggestive of less efficient evidence accumulation as compared to trials resulting 

in faster responses. Middle frontal areas have been related to individual differences in RT observed in 

attentional tasks and to aspects of behavioral control (Kelly, Uddin, Biswal, Castellanos, & Milham, 2008; 615 

Simmonds et al., 2007). Similarly, it has been suggested that the recruitment of premotor circuits is linked 

to more efficient behavioral performance (Ionta, Ferretti, Merla, Tartaro, & Romani, 2010; Simmonds et 

al., 2007), similar to what we have observed for visual-only trials and that resulted in shorter RTs. In other 

words, previous studies propose that frontal cortices are more strongly recruited under conditions of 

greater sensory uncertainty and higher cognitive demands. We propose that this increased activity within 620 
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frontal cortices could reflect greater effort to maintain performance (see Stuss et al., 1989 for a similar 

proposal; see Figure 6b for an illustration). Stated a bit differently, differential recruitment of frontal areas 

is linked to inter-individual differences in the ability to maintain performance throughout the task. Such 

variability across individuals has been linked to differences in the maturation of executive functions as 

well as personality traits in both clinical and healthy cohorts (Alvarez & Emory, 2006; Barkley, 1997; 625 

Stuss, 1992). Thus, our results extend these prior findings by partially dissociating neuronal activation 

patterns responsible for intra-individual response variability from those related to between-subject 

differences in response times.  

630 

Conclusions 

The current behavioral and electrical neuroimaging data provides important insights into the 

spatiotemporal dynamics involved in RT variability in response to visual-only and audiovisual stimuli. Our 

results show that RT variability is related to differences in correlated activity of a distributed network 

involving occipital, temporal, parietal and frontal cortices. Furthermore, our data suggest that the 635 

significant reduction of trial-to-trial variability under audiovisual presentations is related to the differential 

activation of superior and medial frontal cortex, and which account for differences in RTs as a function of 

race model predictions (i.e. violation versus non-violation). In contrast, for visual-only trials a more 

extensive occipito-to-frontal network must be considered to explain RT variability.  
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Figure 1. Group-averaged reaction times (RTs). a. Median RTs for multisensory (blue), visual-only (green) 
and auditory-only (red) conditions. b. Left column: Cumulative distribution functions derived from the RTs. 
The dashed black line represents the predicted RTs from the Race Model. The actual RT distributions are 
shown for multisensory (blue), visual-only (green) and auditory-only (red) conditions. The light blue bars 
highlight the first and the last quartiles of the distribution. Right column: Group-averaged median RTs for 

the multisensory (blue), visual-only (green) and auditory-only (red) conditions of the first and forth quartile. 
Asterisks indicate significant differences. Error bars represent the standard error of the mean (SEM).  
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Figure 2. Inter-quartile reaction time differences. a. Group-averaged inter-quartile ranges (IQRs) between 
the first and the fourth quartiles of the cumulative distribution functions for each condition. Asterisks 

indicate significant (p<0.05) differences between all conditions. Error bars represent the SEM. b. The RT 

difference between quartiles for each individual subject. The dots indicate the difference of median RT for 
each subject for the multisensory (blue), visual-only (green) and auditory-only conditions.  
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Figure 3. Exemplar group-averaged event-related potentials (ERPs) as well as results of voltage waveform 
and topographic analyses. a. Group-averaged ERP waveforms from an exemplar midline occipital electrode 
(Oz) for the fast and slow multisensory (black and gray) as well as fast and slow visual-only (dark and light 

blue) conditions are shown. Below are the results of the ANCOVA analysis at each electrode that was 
performed at each time frame. Only effects persisting in time (>11ms consecutively) and space (>5% of the 
electrode montage) were considered reliable (shown in red). b. Results from the ANCOVA analysis using 

Global Map Dissimilarity.  
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For Review Only

Figure 4. Results from the topographic agglomerative hierarchical clustering (AAHC) analyses are shown. a. 
Template maps from the AAHC analysis. During the 500ms post-stimulus onset period 17 maps explained 

96% of the variance of the data (i.e.  audiovisual fast and slow responses, visual-only fast and slow 

responses). Three maps appeared to differentially account for audiovisual (black framed map) and visual-
only (light and dark gray maps) conditions over the 183-250ms post-stimulus period. b. The results of the 
fitting procedure are displayed in the bar graph, which indicates the percentage of time that each template 
map characterized each ERP over the 183-250ms period. The black-framed map predominated responses to 

the AV condition irrespective of RT speed, whereas different and distinct template maps predominated 
unisensory responses as a function of RT speed. 
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For Review Only

Figure 5. The results from the 2×2 ANOVA on source estimations (averaged over the 183-250ms post-
stimulus onset period) are shown. Only results satisfying the statistical threshold of p<0.05 and kE>12nodes 
are shown (coordinates of maximal F-values indicated below). a. The main effect of RT quartile yielded four 

clusters: the IFG bilaterally (left= -50, 19, 8mm; right= 54, 13, 8mm), the right parietal cortex (64, -32, 
31mm) and the right superior occipital cortex extending to the middle temporal cortex (44, -68, 28mm). b. 
Clusters exhibiting a significant condition × quartile interaction included the right IFG (52, 31, -1mm), the 
right MFG (26, 30, 48mm), the right STG (57, 2, 0mm), and the left PPC (-46, -51, 46mm). c. A single 
cluster within the superior frontal cortex extending downwards and medially exhibited a significant three-

way interaction (-14, 6, 20mm).  
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Figure 6. Presumptive models of the differences in connectivity and strength of connectivity between the 
experimental conditions and their relationship to within-subject (a) and between-subject (b) connectivity. 
The representations are constructed based largely on the cluster correlation analyses. Columns depict the 

results as a function of fast (left) versus slow (right) response trials, and are divided based on AV (top) 
versus V (bottom) conditions. The rows labeled i. depict the correlation analyses between occipital cortices 
(black) and clusters identified by the main effect of quartile including the right angular gyrus (light blue), the 
right posterior parietal lobule (red) and the inferior frontal gyrus (purple). The rows labeled ii. depict the 
between-cluster correlations of these three nodes. The model illustrated in b. is derived from the results of 
the between-subject analyses as a function of response variability (ANCOVA). We hypothesize that greater 

activity within superior medial frontal cortices (green) as a function of individual RT variability further 
modulates activity patterns within the three nodes of interest.  
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