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Abstract

Purpose Biophysical models of diffusion MRI have been developed to characterize microstructure in
various tissues, but existing models are not suitable for tissue composed of permeable spherical cells.
In this study we introduce Cellular Exchange Imaging (CEXI), a model tailored for permeable spherical
cells, and compares its performance to a related Ball & Sphere (BS) model that neglects permeability.

Methods We generated DW-MRI signals using Monte-Carlo simulations with a PGSE sequence in
numerical substrates made of spherical cells and their extracellular space for a range of membrane
permeability. From these signals, the properties of the substrates were inferred using both BS and CEXI
models.

Results CEXI outperformed the impermeable model by providing more stable estimates cell size and
intracellular volume fraction that were diffusion time-independent. Notably, CEXI accurately estimated the
exchange time for low to moderate permeability levels previously reported in other studies (κ < 25µm/s).
However, in highly permeable substrates (κ = 50µm/s), the estimated parameters were less stable,
particularly the diffusion coefficients.

Conclusion This study highlights the importance of modeling the exchange time to accurately quantify
microstructure properties in permeable cellular substrates. Future studies should evaluate CEXI in clinical
applications such as lymph nodes, investigate exchange time as a potential biomarker of tumor severity,
and develop more appropriate tissue models that account for anisotropic diffusion and highly permeable
membranes.

Keywords: Diffusion MRI, Tumor microstructure, Exchange, Monte-Carlo Simulations, Compartmentalized model, Lymph node

1 INTRODUCTION

Over the last decades, diffusion-weighted magnetic resonance imaging (DW-MRI) has been
used to characterize tissue microstructure, particularly with biophysical models of healthy white
matter (Alexander et al., 2010; Zhang et al., 2012; Jespersen et al., 2007; Tariq et al., 2016;
Kaden et al., 2016; Novikov et al., 2018, 2019), healthy gray matter (Palombo et al., 2020;
Jelescu et al., 2022; Olesen et al., 2022) and tumors (Reynaud et al., 2016a; Karunanithy et al.,
2019; Li et al., 2017; Jiang et al., 2017; Reynaud et al., 2016b). These models group the
biological entities into compartments with similar contributions to the diffusion signal and differ
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essentially by the number of geometric features, compartments and the targeted microstructure
features.

One of the challenges of biophysical models is their specificity to one particular tissue, which
requires rethinking the optimal model and assumptions that best capture its features. For
example, blood displacement inside the tumor vessels (Panagiotaki et al., 2014; Ianuş et al.,
2020; Sahalan, 2018; Iima et al., 2014) induces anisotropic diffusion, which usually is not
accounted for in the healthy white matter.

An important assumption of most biophysical models is negligible water exchange between
compartments, which might not be valid in unmyelinated tissue (Jelescu et al., 2022,
2020; Yang et al., 2018), urging for specific models that include the water exchange
between the intracellular and extracellular compartments, for example to model gray matter
(Jelescu et al., 2022; Olesen et al., 2022) or cancerous tissue (Zhao et al., 2008; Reynaud,
2017; Reynaud et al., 2016a; Jiang et al., 2022). The biophysical models that neglect the
effect of water exchange on the signal employ acquisition sequences with short diffusion time
(Palombo et al., 2020; Aggarwal et al., 2020; Reynaud et al., 2016a; Panagiotaki et al., 2014),
while the ones that account for exchange either use non-PGSE gradient sequences (Jiang et al.,
2017, 2022; Li et al., 2017; Lasič et al., 2011) or are based on the Kärger model of exchange
(Kärger, 1985; Stanisz et al., 1997; Jelescu et al., 2022; Olesen et al., 2022; Karunanithy et al.,
2019).

During the development of complex tissue models, their evaluation and validation in controlled
environments helps identifying the best microstructure model and designing the optimal
DW-MRI acquisition protocol. In this context, Monte-Carlo Diffusion Simulations (MCDS)
(Rafael-Patino et al., 2020; Lee et al., 2021; Hall and Alexander, 2009; Brusini et al., 2019) can
be used to simulate the diffusion signals in complex substrates with known ground truth and
without assuming an analytical equation, thus eliminating the comparison bias across different
models. Moreover, realistic substrates (Fieremans et al., 2010; Abdollahzadeh et al., 2019;
Lee et al., 2020; Andersson et al., 2020; Rafael-Patino et al., 2020) can be designed to study
various microstructure parameters, including the membrane permeability (Lee et al., 2021), in a
controlled manner.

In this work, the performances of compartment models excluding and including water exchange
between compartments were studied employing MCDS in packed spheres with finite membrane
permeability. More specifically, the work focused on the influence of non-negligible membrane
permeability on microstructure estimation (i.e. the cell sizes, extracellular and intracellular
diffusion coefficients and volume fractions) with a two-compartment model neglecting exchange
terms (Impermeable Ball & Sphere (Panagiotaki et al., 2012)) and a newly proposed Cellular
Exchange Imaging (CEXI) model that accounts for exchange (Permeable Ball & Sphere).

2 METHODS

Employing MCDS in numerical substrates with water exchange across cell membranes, we
investigated the effects of permeability on microstructure estimation by compartment-based
models. Section 2.1 details the simulation framework, the choice of the simulation parameters,
and the numerical substrate. Next, Section 2.2 compares the diffusion regime of impermeable
and permeable tissue. Finally, Section 2.3 describes the two-compartment models evaluated in
this simulation framework.

2.1 Monte-Carlo simulations

2.1.1 Simulations in permeable substrates

To simulate diffusion in permeable tissue (Lee et al., 2021; Szafer et al., 1995), we extended the
MCDC Simulator (Rafael-Patino et al., 2020). In non-exchanging media, the diffusion process
inside different biological structures is assumed to contribute independently to the DW-MRI
signal. Consequently, the intracellular and extracellular signals are usually generated individually
and summed to produce the total signal. In permeable substrates, some particles cross the
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membrane, which requires implementing multiple-diffusivity features to generate intracellular
and extracellular signals simultaneously (see supplementary materials for derivations). To
minimize the boundary effects, we used a large voxel size and periodic boundary conditions
when a particle crossed the voxel boundary (Rafael-Patino et al., 2020). After simulating the
particles’ trajectories, we generated the DW-MRI signals with a Graphics Processing Unit (GPU)
implementation for a PGSE sequence.

2.1.2 Lymph nodes imaging

The application that motivates this study is the discrimination of healthy from cancerous
lymph nodes using non-invasive imaging. Several studies investigated the potential of dMRI to
replace invasive procedures such as biopsy for lymph node metastases diagnosis, particularly
the apparent diffusion coefficient (ADC) in breast (Zaiton et al., 2016; Zhao et al., 2020),
neck (Suh et al., 2018), and colorectal (Yasui et al., 2009) cancer, or more advanced biophysical
models for benign and malignant tumor discrimination in lymph nodes (Ianuş et al., 2020).

Healthy lymph nodes (Figure 1, left magnification) are homogeneous tissues composed of
round lymphocytes that are known to be permeable (Cheung et al., 1982; Grinstein et al., 1983;
Wesselborg and Kabelitz, 1993). In the hematoxylin and eosin stain of Figure 1, we measured
using QuPath (ban, 2017) a cell area of 56 ± 24µm2, corresponding to a radius from 3 to
5µm in perfectly spherical cells, similar to previously reported values (Ianuş et al., 2020). In
tumors (Figure 1, right magnification), the tissue is more heterogeneous with the presence of
blood vessels and conjunctive tissue. We measured a larger mean cell area of 225 ± 102µm2,
corresponding to cell radii from 6 to 10 µm.

The present work focuses on membrane permeability in spherical cells to capture the effect
of exchange on microstructure estimation. Our substrates are isotropic, but a previous study
(Ianuş et al., 2020) showed that the biophysical model that accounts for anisotropic diffusion
had better results in lymph node discrimination. However, we decided to focus on the effect of
exchange, and future work will combine exchange and anisotropic diffusion to better capture the
complexity of lymph nodes’ microstructure.

2.1.3 Numerical substrates design

In addition to the rules of the particles’ dynamic, MCDS required a numerical substrate into
which the particles diffuse. As motivated in Section 2.1.2, we focus on numerical substrates
made of packed spheres with finite membrane permeability.

We settled the substrates as isotropic voxels of side-length 100µm, filled with randomly placed
spheres. These spheres had their radii normally distributed around a mean radius Rs equal to
{2; 3; 4; 5; 8}µm with a standard deviation of 1% of the radius. For all substrates, the intracellular
volume fraction ICVF reached 0.65, corresponding to the value reported in malignant lymph
nodes (Ianuş et al., 2020).

Because the spheres in each substrate had different sizes, the apparent mean cell radius
was weighted by the cell size distribution within the voxel. In the case of small cells, the

apparent mean radius tends to Rsmall =
(

<R7>
<R3>

)
1

4

at long diffusion times while, in the narrow-

pulse approximation, the apparent mean radius becomes RNP =
(

<R5>
<R3>

)
1

2

(Olesen et al.,

2022). Table 1 summarizes the structural properties of the numerical substrates used in the
experiments, and Figure 1 shows illustrative examples of the substrate S2.

In addition to the structural properties, particles’ trajectories depend on the biological properties
of the substrates, which are the intracellular Di,0 and extracellular De,0 diffusion coefficients and
the membrane permeability κ. We chose their ranges in the simulations based on previously
reported values for tumors (Mukherjee et al., 2016) (Table 1).
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Figure 1. Lymph node histology and numerical substrate. Example of lymph node histology and a
numerical substrate (Table 1) with a mean radius R ≃ 3µm. The histogram shows the radii distribution
of the cells in the substrates. The solid red and dashed lines show the mean and the standard deviation of
R, respectively. Histology was provided by Prof. Dr. phil. nat. Inti Zlobec.

2.1.4 Sensitivity and reliability analysis of MCDS in permeable substrates

The first experiment aimed to evaluate the reliability and repeatability of the simulated signals
with the substrates’ biological properties (i.e. the permeability κ, the intracellular Di,0 and
the extracellular De,0 diffusion coefficients) described in the Section 2.1.3. We performed this
sensitivity analysis with the substrate having a mean cell size of 2µm (Table 1, S1), and we
fixed the maximal particle density to ρ = 2µm−3, i.e. two millions of particles. The membrane
permeability κ ranged from 0 to 50µm/s, while we set the intracellular Di,0 and extracellular

De,0 diffusion coefficients to 1 or 2µm2/ms. For all combinations of these parameters, we
calculated with bootstrapping the normalized mean square error (NMSEs) of the DW-MRI
signals generated with the PGSE sequence (Table 1) in 24 uniformly distributed orientations
on the unit sphere.

2.2 From impermeable to permeable tissue

2.2.1 Structural disorder in impermeable substrates

The apparent intracellular/extracellular diffusivities and kurtosis in impermeable tissue have
distinct time-dependency. In the intracellular space, the water molecules are confined in the cells,
and the apparent intracellular diffusivity ADCin(t) tends to 0. Conversely, the water molecules of
the extracellular space encounter obstacles but are free to diffuse. Therefore, the extracellular
diffusivity ADCex(t) converges to a non-zero long-time limit. Simultaneously, the kurtosis
AKCex(t) converges to zero, with a rate characterizing the mesoscopic disorder of the tissue
(Novikov et al., 2014; Burcaw et al., 2015). In our substrates, the structural-disorder theory
predicts that the impermeable ADCex(t) and AKCex(t) converge following ∝ t−1 (3-dimensional
diffusion within short-range disorder represented by random spheres). Therefore, we fitted the
equations ADCex(t) = ADC∞ + AD/t and AKCex(t) = AKC∞ + AK/t to the ADCex(t) and
AKCex(t) calculated from the diffusion propagator (estimated from the spins trajectories in
the media) for three substrates (Table 1 S1, S3, S5) and two extracellular diffusion coefficients
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De,0 = {1, 2}µm2/ms. We chose those values according to simulation experiments of previous
studies (Palombo et al., 2020; Olesen et al., 2022; Afzali et al., 2021; Karunanithy et al., 2019;
Bonet-Carne et al., 2019).

Because tracking the particles’ relative position in the substrate is possible with MCDS, we
independently calculated the intracellular and extracellular diffusion coefficients and kurtosis. To
this end, we assigned a particle to a compartment at initialization for the entire simulation. In
permeable substrates, the particles cross the cell membranes and therefore, the intracellular
and extracellular water interact, especially for high permeability values and long diffusion times.
In this regime, interpreting the model parameters, like the diffusivities, is more challenging
since they are defined for water molecules residing inside the same compartment during the
experimental time. Therefore, in the presence of exchange, we focused on the time-dependency
of the ADC(t) and the AKC(t) (Section 2.2.2).

2.2.2 Kärger assumptions validity in permeable substrates

The Kärger model of exchange is valid under two assumptions (Kärger, 1985), under which
water diffuses in the barrier-limited regime. First, the diffusion inside each compartment
is Gaussian, meaning the diffusion time is long enough for the particles to explore the
compartment. This implies a time-independent diffusion coefficient. The second assumption
links these characteristic times to membrane permeability by requiring slow exchange between
the compartments, i.e. the exchange time must be longer than the characteristic times of the
compartments.

We determined the range of validity of the Kärger model using a time-dependency analysis of
the ADC(t) and the AKC(t) of the same substrates as presented in Section 2.2.1 (Table 1,
S1, S3, S5) for different permeability values (κ = {0, 10, 25, 50}µm/s), spanning the parameter
range considered in this work. From their time-dependencies, we quantified the effect of
permeability on the estimated ADC(t) and AKC(t) for each experiment. Ultimately, we used
these observations to discuss the validity of the model’s assumptions (Section 4.2).

2.2.3 Diffusion regime in the presence of exchange

In impermeable tissue, the tissue structure governs the diffusion dynamics. In the presence
of exchange, the tissue structure and the exchange compete, producing different effects on
the signal (Olesen et al., 2022). At a fixed diffusion encoding, i.e. b-value, the evolution of the
signal with the diffusion time is different whether the water exchange through the membrane or
the restriction due to structure dominates. If the diffusion is barrier-limited, the Kärger model
predicts a decreasing signal with the diffusion time (Kärger, 1985; Fieremans et al., 2010).
Conversely, the signal increases if the restriction dictates the diffusion dynamics (Neuman, 1974;
Palombo et al., 2020).

To determine which effect dictates diffusion in our experiments, we generated DW-MRI signals
with the PGSE sequence of Table 1 for the same parameters of the previous experiment (Section
2.2.2).

2.3 Compartmentalized models of microstructure

From Section 2.2, we identified the different diffusion regimes in our set of parameters. In this
section, we describe two models of tumor microstructure: one designed for impermeable cellular
tissue (Section 2.3.1) and one for permeable tissue (Section 2.3.2).

Di(∆, δ, Rs) =
2

δ2Di,s

(

∆−

δ
3

)

[

∞
∑

m=1

α−4
m

α2
mR2

s − 2

[

2δ −

2 + e−α2

mDi,s(∆−δ)
− 2e−α2

mDi,sδ
− 2e−α2

mDi,s∆ + e−α2

mDi,s(∆+δ)

α2
mDi,s

]]

, (1)

2.3.1 Ball & Sphere diffusion: An impermeable model of tumors

Under the assumption of impermeable membranes, the extracellular and intracellular
compartments were modeled independently. Diffusion inside the compartments was assumed
to follow analytical equations that depended on their geometry (Panagiotaki et al., 2012). We
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modeled the intracellular compartment as an impermeable sphere of radius Rs and diffusivity
Di,s (Neuman, 1974) (Equation 1), where αm is the mth root of (αRs) J 3

2

(sαRs) = J 5

2

(αRs) with

Jn(x) the Bessel function of the first kind, and extracellular diffusion with Gaussian isotropic
diffusion of diffusivity De. Their respective volume fractions weighted the contribution of each
compartment to the signal: SBALL = (1 − fi)e

−bDe + fie
−bDi . This model had four parameters:

the diffusion coefficients Di,s, De, the cell size Rs and the intracellular volume fraction fi.

2.3.2 Cellular EXchange Imaging: A permeable model for spherical tumors

The model described in Section 2.3.1 is valid in impermeable substrates only. Conversely, our
Cellular EXchange Imaging (CEXI) model is a two-compartment model that includes exchange
based on the Kärger model (Kärger, 1985) between an intracellular compartment that models
spherical cells and an extracellular space. Similarly to the impermeable model, we modeled the
spherical cells of radius Rs and intra-diffusivity Di,s by a spherical compartment with an apparent
diffusion coefficient Di given by Eq. 1.

We assumed Gaussian and isotropic diffusion in the extracellular space with a diffusivity Dex.
The water exchange rates from the intracellular to extracellular compartments ki and from
extracellular to intracellular kex satisfied the spin conservation relation kifi = kex(1 − fi), where
fi is the intracellular volume fraction. In spherical cells, the exchange rate ki and the membrane
permeability κ are linked by the relation ki = (1−fi)(3κ/Rs) (Fieremans et al., 2010). Within this
framework, the magnetization of the extracellular Mex and the intracellular Mi compartments
follow the differential equations (Stanisz et al., 1997)











dMex

dt
= −(q2De + kex)Mex + kiMi,

dMi

dt
= kexMex − (q2Di + ki)Mi,

(2)

with the initial conditions Mex|t=0 = (1− fi) and Mi|t=0 = fi, and where q2 was the wavenumber
of the PGSE sequence. Ultimately, the signal was the weighted sum of these magnetizations
SCEXI = (1 − fi)Mex + fiMi. With this formulation, CEXI had five parameters: the intracellular
Di,s and extracellular De diffusion coefficients, the membrane permeability κ, the intracellular
signal fraction fi and the cell radius Rs.

Under Kärger assumptions, Eqs.2 have an analytical solution (Jelescu et al., 2022;
Karunanithy et al., 2019). However, the time-dependency of the intracellular diffusivity in large
cells might invalidate this model. For this reason, we integrated Eqs.2 for each diffusion time
separately with an intracellular diffusion coefficient Di calculated with Eq.1 for each particular
diffusion time, and one extracellular diffusion coefficient De common to all signals. This approach
allowed us to consider the time dependency of Di empirically. We acknowledge that the Kärger
formulation is technically invalid in the case of time-dependent diffusion in one compartment,
and our approach constituted an approximation similarly to previous studies (Jelescu et al.,
2022; Fieremans et al., 2010; Karunanithy et al., 2019). This approximation was supported by
the previous experiments (Section 3.2, Figure 4), where we showed that the ADCex(t) in
impermeable tissue converged quickly to its long-time limit to a value nearly independent of the
cell size, conversely to the intracellular diffusivity, which converged more slowly to its long-time
limit.

2.3.3 Performance in permeable tissue

In this last experiment, we compared the performance of the impermeable Ball & Sphere model
to the CEXI model. Because the numerical substrates of this work were made of spheres only,
we did not include three-compartment models such as VERDICT (Panagiotaki et al., 2014)
nor gray matter models that account for neurites (Palombo et al., 2020; Olesen et al., 2022;
Jelescu et al., 2022).
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From the simulations described in Section 2.1, we selected the subset having an extracellular
diffusivity of 2µm2/ms. We generated the DW-MRI signals with the PGSE sequence described
in Table 1. From the noise-free signals, we generated using the DIPY software library
(Garyfallidis et al., 2014) 30 corrupted signals with Rician noise with a signal-to-noise (SNR)
ratio of 30 and 80.

We fitted the models for all ∆ simultaneously and accounted for the noise Alexander (2008)
with the constrained least squares implementation of the python optimization library LEVMAR
(Lourakis, 2004). We constrained the signal fractions to sum up to 1. We imposed boundaries on

the value of the parameters to avoid unrealistic estimations: R ∈ [0.1, 20]µm, ICVF ∈ [0.1, 0.9],
(Di, De) ∈ [0.01, 3]µm2/ms, and κ ∈ [0,∞[µm/s. We performed ten optimizations with random
initialization and selected the estimation that minimized the cost function.

We compared the models based on their estimates of the mean cell radius R, intracellular

volume fraction ICVF and extracellular De and intracellular Di diffusion coefficients. We
calculated the ground truth values of the intracellular volume fraction ICVF and the volume-
weighted mean cell radius R from the substrates (Table 1). In Section 2.2, we showed that
the apparent extracellular diffusion coefficient ADCex(∆) deviated significantly from De,0 due to
the obstacles encountered by the particles. Therefore, we considered as ground truth the De
calculated from the propagator of the extracellular compartment at the longest diffusion time in
the impermeable substrates (i.e., De = ADCex(t = ∆max, κ = 0)).

3 RESULTS

3.1 Influence of the substrate properties and the simulation parameters on the
Monte-Carlo simulated DW-MRI signals

Figure 2 shows the evolution of the bootstrapped NMSE on the DW-MRI signals. For the given
diffusion coefficients (Figure 2A), the NMSE increased with b and, at large b (b > 4ms/µm2), the
error became also dependent on ∆ and κ. At fixed (b = 2.5ms/µm2,∆ = 40ms) (Figure 2B),
the diffusion coefficients had a distinct effect on the error. Indeed, the NMSE was dependent on
De,0 (colors) while it seemed independent on Di,0 (symbols). Figure 2C shows the decreasing
rate of the NMSE with the particle density used in the simulations. Even with a particle density
of 0.5µm−3, the maximal error reached with the largest b, the longest ∆ and the most permeable
membrane remained under 1% with the chosen simulation parameters.

3.2 Mesoscopic disorder: Time-dependency of ADCex(t) and the AKCex(t) in
impermeable tissue

Figure 3 shows the time-dependency of the extra-cellular diffusion coefficient ADCex(t) and
kurtosis AKCex(t) of the impermeable substrates S1, S3 and S5, and the fitted parameters are
summarized in Table 2. The rate of convergence of the ADCex(t) depended on the cell size
(symbols). In contrast, the long-time limits (ADC∞ and AKC∞ in Table.2) depended on the
genuine extra-cellular diffusion coefficient De,0 (colors)(Figure 3A and Table 2, D∞). Conversely,
the AKCex(t) showed a convergence rate that depended more on De,0 than the cell size (Figure
3D).

Figure 3B, C, and D show the ADCex(t) and AKCex(t) against t−1, respectively, and the MSE
is reported in Table 2.

3.3 Kärger model: Time-dependency of ADC(t) and the AKC(t) in permeable tissue

Figure 4 shows the evolution of extracellular ADCex(t) and intracellular ADCin(t) diffusion
coefficients of the impermeable substrates S1, S3 and S5 along each other (A) and their
derivatives (B). As pointed out in Section 3.2, the ADCex(t)’s converged quickly to the same
long-time limit. Conversely, the convergence rate of the intracellular ADCin(t)’s depended on the
cell size of the substrates. The difference in decaying rate was confirmed by a large derivative of
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A B C

Figure 2. Normalised mean squared error on the signal. Normalised mean squared error (NMSE)
on the signal with the permeability κ from bootstrapping for all pairs of b and diffusion time ∆ (A), for
all diffusion coefficients ∆ (B) and different particle density (C). (A) The NMSE is shown for De,0 =
1µm2/ms and Di,0 = 2µm2/ms. The error increased with κ for all b - ∆ pairs, and its range for different

∆ broadened as b increased. (B) The NMSE is shown for the pair (b = 2.5msµ/m2,∆ = 40ms), for
different De,0 (color) and Di,0 (symbol). The error increased with De,0 but seemed independent on Di,0.
(C) The NMSE is plotted against the particle density used in the simulations for different permeability
levels (color). Simulations with a faster permeability had a larger NMSE for all particle densities. The√

NMSE with the chosen simulation parameters never exceeded 1%.

the intracellular diffusion coefficient for a longer diffusion time, in comparison to the extracellular
ADCex(t) (Figure 4B).

Figure 5 shows the results of the time-dependency analysis of the ADC(t) and the AKC(t) in
impermeable and permeable substrates. In larger cells (symbols), the ADC(t) converged to its
long-time limit slowly (Figure 5A). This long-time limit of the ADC(t) increased for an increasing
permeability (colors).

In impermeable substrates, the AKC(t) increased over the range of simulated time (Figure 5B).
As soon as the membranes were permeable, the AKC(t) exhibited a time dependency that
could be split into two phases. The AKC(t) increased to a peak value before decreasing to its
long-time limit. This peak’s location and intensity depended on the cell size and the membrane’s
permeability.

3.4 Diffusion regime: Barrier-limited or structure-limited?

Figure 6 shows the evolution of the signal with the diffusion time at a fixed b value. In the case
of impermeable membranes (red), the signal increased with the diffusion time for all substrates
and b values (symbols), as expected from restriction. Each substrate had a different diffusion
regime as soon as the membranes were permeable. In the smallest spheres S1 (Figure 6A), the
signals of all b decreased with the diffusion time for all non-zero permeability values κ (colors),
an exchange-dominated regime. In contrast, the signals of the largest spheres S5 (Figure 6C)
increased for all b and κ, a restriction-dominated regime. Finally, the signal of the substrate
S3 exhibited an intermediate regime (Figure 6B). At moderate permeability κ < 25µm/s, the
signal increased with the diffusion time, while at the largest permeability, it increased at a short
diffusion time before decreasing (Figure 6 blue, purple lines).

3.5 Microstructure model estimates in permeable tissue

Figure 7 shows the substrate cell sizes R (A, E), intracellular volume fractions ICVF (B,
F), extracellular De (C, G) and intracellular Di (D, H) diffusion coefficients estimated by the
impermeable Ball & Sphere and CEXI models, and the CEXI estimate of the permeability (I).
The markers and the bars are the means and variances of the estimates, respectively.

On the one hand, the impermeable Ball & Sphere model (Figure 7A-D) estimated the cell size,
intracellular volume fraction and extracellular diffusion coefficient of all impermeable substrates
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Figure 3. Extracellular ADCex(t) and AKCex(t) time-dependency in impermeable substrates.
Time-dependency of the ADCex(t) (A, B, C) and the AKCex(t) (D, E) of the extracellular compartment
of the substrate S1 (circle), S3 (diamond) and S5 (square) (Table 1) without exchange calculated from
the propagator, for different extracellular diffusion coefficient (color). (A) The ADCex was dependent
on the extracellular diffusion coefficient but independent of the cell size. (D) Conversely, the time-
dependency of the AKCex strongly depended on the extracellular diffusion coefficient and the cell size.

(B, C) and E show the ADCex(t) and AKCex(t) against t−1 as predicted by the structural-disorder
theory (Novikov et al., 2014; Burcaw et al., 2015), respectively. The white symbols show the fit of the

corresponding function to the data. Because t−1 is decaying function of t, we fitted the equation in the
decaying phase of the ADCex(t) and AKCex(t). The black crosses in A and D show the first point of the
fitting.

accurately, except for the largest spheres (purple). At larger permeability, the impermeable Ball
& Sphere model overestimated the cell size and underestimated the intracellular volume fraction
more. Also, the estimated extracellular diffusivity decreased and stabilized at a smaller value.
Finally, the impermeable Ball & Sphere model could not consistently estimate the intracellular
diffusivity.

On the other hand, the CEXI model (Figure 7D-H) estimates of the cell size were consistent for
all permeability values. CEXI slightly underestimated the small cell sizes (Figure 7, red, yellow,
green) and overestimated the largest cell size (purple). Similarly, CEXI provided stable estimates
of the intracellular volume fraction and extracellular diffusion coefficient in the small cell sizes
from low to moderate permeability levels (κ ≤ 25µm/s). CEXI tended to overestimate the true
extracellular diffusion coefficient at increasing permeability, and the results were not accurate for
permeability κ ≥ 25µm/s. Finally, CEXI provided stable estimates of the intracellular diffusivity
Di in the substrates with a cell size R > 3µm.

In addition to these four parameters, CEXI estimated the exchange time τex and, therefore,
the permeability κ between the intracellular and extracellular compartments (Figure 7I). For all
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Figure 4. Extracellular ADCex(t) and intracellular ADCin(t) time-dependency in impermeable
substrates. (A) Time-dependency and (B) derivatives of the extracellular ADCex(t) (diamond) and
intracellular ADCin(t) (circle) of the substrate S1 (red), S3 (green) and S5 (blue) (Table 1) without
exchange calculated from the propagator. The intracellular Di,0 and extracellular De,0 diffusion coefficient

were equal to 1µm2/ms. (A) The ADCex(t) converged faster than the ADCin(t) to its long-time limit.
(B) Consequently, the rate of change ∂ADCex/∂t approached zero at short diffusion time, while the
∂ADCin/∂t might not be negligible in our range of diffusion time.

ground truth permeability values (color), the mean and the variance of the estimated permeability
κ increased with the cell size and the true permeability. At moderate permeability κ ≤ 25µm/s
and in the small cell size R < 4µm, CEXI estimated the permeability accurately. For all
parameters, a lower SNR led to a larger variance but comparable results (See Figures 7 and
Figure 1 of the supplementary materials for the results with an SNR of 80 and 30, respectively).

4 DISCUSSION

4.1 Validation of the MCDS’s in permeable tissue

This work investigated through realistic MCDS’s the effect of membrane permeability κ on the
estimation of microstructure model parameters in a model of permeable spheres. To perform
simulations in permeable substrates, we extended the open-source MCDC diffusion simulator
(Rafael-Patino et al., 2020) following previous studies (Szafer et al., 1995; Lee et al., 2021).

4.1.1 Repeatability of the signal generation

The permeability κ was identified as the first important substrate parameter that determined the
choice of simulation parameters, to guarantee the repeatability of the simulation and a small
NMSE, especially at a high b-value. The increase in the NMSE with κ was faster at high b,
and the NMSE range for different diffusion times ∆ broadened as b increased. This suggests
that the particle density required for the simulations was more dependent on b and κ than ∆.
In parallel, the extracellular diffusion coefficient De,0 was shown to play a major role in signal
generation, which confirmed that both intracellular and extracellular signals must be simulated

simultaneously. Despite the increase in the NMSE with κ and b, the small error (
√

NMSE < 1%)
of the signals validated the choice of the simulation parameters (Table 1) of the experiments.
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A B

Figure 5. ADC(t) and ADK(t) time-dependency in permeable substrates. Time-dependency of the
ADC(t) (A) and AKC(t) (B) in the three substrates S1 (circle), S3(diamond) and S5 (square) (Table 1)
for an increasing permeability (color). The intracellular Di,0 and extracellular De,0 diffusion coefficient

were equal to 1µm2/ms. (A) As the permeability increased, the ADC(t) converged faster to its long-time
limit. (B) Simultaneously, the AKC(t) reached its maximum value and, therefore, its decaying regime for
a shorter diffusion time, except for the impermeable substrates and the permeable cells with the biggest
radii where AKC(t) always grew.

A B C

Figure 6. Evolution of the DW-MRI signal with the diffusion time at fixed b-value in permeable
substrates. The plots show the evolution of the DW-MRI signal with the diffusion time at fixed b-value
(symbols) for different permeability (color) in the substrates S1 (A), S3 (B) and S5(C) (Table 1). (A) In
substrate S1, the signal decayed with the diffusion time for all b if the membranes were permeable. (C)
Conversely, the signal increased for all b and permeability in the substrate S5. (B) In the substrate S3

having an intermediate cell size, the signal increased at slow permeability (κ ≤ 10µm/s) but reached a
plateau and started decreasing at faster permeability.
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A B C D

E

Figure 7. Model estimates. The plots show the estimates of the impermeable Ball & Sphere (A-D) and
CEXI (E-I) models from 30 DW-MRI signals with an SNR of 80. The estimates of the cell size (A, E), the
intracellular volume fraction (B, F), the extracellular (C, G) and intracellular (D, H) diffusion coefficients
are plotted against the permeability. The CEXI permeability estimate is plotted against the cell size (I).
The color encodes the cell size (A-H) or the permeability (I), and the black lines show the ground truths of
the substrate parameters. The symbols and the bars show the estimates’ mean and variance, respectively.

4.1.2 Is the simulated signal consistent?

Simultaneously, a time-dependency analysis of the apparent diffusivity and kurtosis in
impermeable substrates validated the correct implementation of the simulations by comparing
to theoretically expected trends.

In the intracellular space, the ADCin(t) of the particles confined inside the cells converged
to 0 at a rate dependent on the cell size. In the extracellular space, the diffusion coefficient
ADCex(t) converged quickly to its long-time limit both in small and large spheres. Interestingly,
this long-time limit depended on the packing density of the substrate rather than the cell size.
The convergence rate of the ADCex(t) and the kurtosis ADKex(t) were consistent with the
power-law of t−1 predicted by structural disorder in a 3D environment of spheres (short-range
3D disorder) (Novikov et al., 2014; Burcaw et al., 2015) in the long time limit.

4.1.3 Diffusion regime in tissues of different permeability and cell sizes

In permeable substrates, the physical interpretation of the ADCin(t) and the ADCex(t) became
ambiguous, and we focused our attention on the total ADC(t) and AKC(t). At larger
permeability values, the mixing rate of the compartments increased, and the ADC(t) converged
faster. Similarly, the time dependency of the AKC(t) depended on the permeability. As the
permeability increased, the peaking time of the AKC(t) shifted to shorter diffusion times,
coherently with previous work (Aggarwal et al., 2020; Zhang et al., 2021).

Permeability added another degree of freedom to the diffusion regime, which modulated the
DW-MRI signal. Following recent work Olesen et al. (2022), we showed that the effects of
exchange and restriction competed in the signal dynamic. For the cell sizes investigated in
this work, the extremes had a clear but distinct diffusion regime. The water exchange dominated
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the diffusion dynamic in small spheres, while the restriction dominated in substrates with large
spheres. Interestingly, the intermediate cell size exhibited a shift of diffusion dynamic at higher
permeability between exchange and structure. The permeability at which this shift occurred
(κ = 25µm/s) corresponds to the minimal permeability value for which the AKC(t) reached
its peak in the range of diffusion time of the PGSE sequence, independently of the b-value. In
other words, the diffusion time at which the diffusion regime shifted from restriction-dominated
to exchange-dominated corresponded to the maximal value of the kurtosis AKC(t). Therefore,
it should be possible to determine the minimal diffusion time to enter the exchange-dominated
diffusion regime from kurtosis measurements at multiple diffusion times. This provides a way to
choose the parameters of the PGSE sequence in experiments, especially the minimal diffusion
time, to become sensitive to the microstructure feature of most interest. However, we noted
that, experimentally, the range of achievable diffusion times might also depend on hardware
limitations.

4.2 Compartmentalized models in permeable substrates of tumors

The last experiment compared the impermeable Ball & Sphere model to our CEXI model, which
included the water exchange. Previous studies demonstrated that estimating the substrate’s
properties with compartmentalized models is a challenging ill-posed problem. The low sensitivity
of these models to the compartment diffusivities was highlighted in white matter (Jelescu et al.,
2016; Li et al., 2017) and, more recently in gray matter (Palombo et al., 2020; Jelescu et al.,
2022; Olesen et al., 2022). Additionally, the size of the axons in white matter (Burcaw et al.,
2015) or the cells in gray matter (Afzali et al., 2021; Palombo et al., 2021; Olesen et al., 2022)
was shown to be overestimated. This experiment showed the impact of permeability on the
estimated model parameters, including the mean cell radius R, extracellular De and intracellular

Di diffusion coefficients and intracellular volume fraction ICVF .

4.2.1 Cell size and intracellular volume fraction estimation

The impermeable Ball & Sphere model accurately estimated the substrates parameters in the
impermeable substrates, except for Di. It overestimated and underestimated the cell size R
and the intracellular volume fraction ICVF as permeability increased, respectively (Afzali et al.,
2021; Olesen et al., 2022). This opposite evolution indicated how the models developed for
impermeable tissues compensated for water exchange. Because the cell size limited the
distance traveled by the particles in impermeable cells, the increase in diffusion distance due
to permeability was compensated by either decreasing the proportion of the intracellular signal

via a smaller ICVF or increasing the maximal distance via a larger R. This deterioration of the
estimates was more significant for smaller cells, which is coherent with the observation that
diffusion enters the exchange-dominated regime at a shorter diffusion time.

On the other hand, this effect was attenuated with the CEXI model, thanks to the exchange time
capturing most of the exchange effect. At moderate permeability (κ < 25µm

s
), CEXI disentangled

the effect of exchange and restriction from the DW-MRI signals, providing more stable estimates

of ICVF and R with the cell size and the permeability than the impermeable Ball & Sphere model
over this range of permeability. When diffusion was dominated by exchange, i.e. in the small cells
R < 5µm, the mean cell size and the intracellular volume fraction were better estimated. When
diffusion was not dominated by the exchange yet (R > 5µm), the ADC(t) was strongly time-
dependent, and the CEXI model assumptions were not valid. Consequently, the intracellular
volume fraction estimates were less stable as a function of permeability.

4.2.2 Sensitivity to the compartment diffusivity variations

The compartment diffusivities were arguably the most difficult parameters to estimate due to the
degeneracy of the solution (Jelescu et al., 2016; Novikov et al., 2018) and the low sensitivity
of the models to the intracellular diffusion coefficient (Li et al., 2017). In white matter, the
intracellular diffusion coefficient was often considered faster than the extracellular diffusion
coefficient (Kunz et al., 2018; Dhital et al., 2019; Olesen et al., 2021). Still, recent studies in gray
matter suggested contradictory conclusions on which compartment had the fastest diffusivity
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(De > Di in ex-vivo (Olesen et al., 2022) or De < Di in in-vivo (Jelescu et al., 2022)). In
our experiments, the impermeable model highlighted this degeneracy of the solution through
unstable or estimates of the diffusivities.

Conversely, the CEXI model showed sensitivity to De and Di changes with a limited impact on

the estimates R and ICVF , supporting that the contribution of each compartment to the total
signal could be disentangled by including an exchange parameter in the model. At moderate
permeability (κ ≤ 25µm/s) and in the larger spheres (R > 3µm), CEXI was sensitive to the
variations of the intracellular diffusion coefficient. In the small spheres (R < 3µm), however,
the cells were too small for CEXI to be sensitive to Di. Indeed, diffusion inside the intracellular
compartment reached the Gaussian diffusion limit before the shortest diffusion time, irrespective
of the true Di.

4.2.3 Permeability estimate

In the previous section, we identified exchange-dominated and restriction-dominated regimes.
We determined that the transition between those regimes occurred for the substrates of cell
size around 4 − 5µm. In smaller cells, the exchange dominates; therefore, we should be
sensitive to membrane permeability. The accurate estimation of the permeability with CEXI in
this range of cell sizes confirmed this observation. At moderate permeability (κ ≤ 25µm/s), CEXI
estimated the permeability accurately with a small variance. The best estimates were obtained
for substrates in the transition regime, i.e. cells of size 4 − 5µm. In larger cells, the estimates’
variance was too large to be reliable.

4.3 Recommendations

In Sections 4.1 and 4.2, we showed the importance of probing tissue in the correct diffusion time
frame. In permeable tissue, diffusion translates from a restriction-dominated to an exchange-
dominated regime at a long enough diffusion time. To find a good range of diffusion times for the
tissue under consideration, a preliminary time-dependency analysis of the apparent diffusion
coefficient ADC(t) and kurtosis AKC(t) might be insightful. Indeed, we showed that diffusion
moves from the restriction-dominated to the exchange-dominated regime at the peak value
of the AKC(t). Our CEXI model provided more robust estimates in this exchange-dominated
regime than the impermeable Ball & Sphere model in permeable substrates. In the largest
cells or at high permeability values, estimation remained challenging even with CEXI. In the
first case, diffusion was dominated by structure and not exchange. In the second case, the
exchange was too fast. This finding suggested that future models should be developed by
generalising the assumptions behind the Kärger model to accurately estimate the microstructure
parameters in highly permeable tissue. These observations show that the PGSE sequence is
suitable for a specific exchange time. Alternative sequences, such as double-diffusion encoding
(Shemesh et al., 2012; Hen, 2021) or stimulated echo sequence (Karunanithy et al., 2019),
might be better adapted for tissue with a longer exchange time. On the other hand, oscillatory
gradient spin echo sequence (OGSE) (Reynaud et al., 2016a) showed promising results in
tissue with shorter exchange time.

4.4 Towards lymph nodes imaging

Based on previous conclusions and histology data, we could design a protocol for real DW-MRI
data acquisitions on lymph nodes. The lymphocyte radius is around 3 − 5µm, so the molecular
diffusion in the lymphocytes should already be in the exchange regime at a diffusion time of
about 30ms. We could determine the lymphocyte permeability by comparing acquisitions to the
simulations. In the example of malignant lymph nodes shown in Figure 1, the cells are bigger
with a radius around 6 − 10µm. Hence, diffusion will be in the restriction-dominated regime
for a diffusion time under 30ms. We plan to acquire data with a longer diffusion time until we
reach the exchange-dominated regime. We expect this threshold diffusion time to be correlated
with cancerous tissue. Future work will combine membrane permeability and anisotropic
diffusion to capture better the complexity of lymph node microstructure (Ianuş et al., 2020) and,
consequently, determine if a model with more compartments is needed (Stanisz et al., 1997).
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5 CONCLUSION

This work showed, using simulations in numerical substrates of packed spheres, that the water
exchange between the intracellular and extracellular spaces cannot be neglected in permeable
tissues when diffusion is in the exchange-dominated regime. The time-dependency of the
kurtosis and the signal could be used to identify the dominating diffusion regime and, ultimately,
the most relevant biophysical model and the experimental parameters of the imaging protocol
best suited to estimate its parameters. Additionally, the inherent bias in the estimates of the
compartmentalized models for impermeable tissue was amplified in permeable tissue, even
for very low permeability values. As an alternative, a two-compartment model of permeable
tumors considering the water exchange between spherical cells and the extracellular space was
evaluated, allowing us to simultaneously estimate the exchange time and cell size. Despite the
improved performance compared to the impermeable model in the regime from low to moderate
permeability levels, some limitations were found in highly permeable substrates, suggesting the
need for a more general model of permeable tissue that accounts for the non-Gaussian diffusion
in the compartments and the time-dependency of the diffusion coefficients.
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SUPPORTING FIGURES

Figure S1: BALL&Sphere impermeable - Signal fitting.

The plots show the fitting of the BALL&Sphere model to the simulated signals with the diffusion
time for different b (symbols), permeability (color) and cell size (columns).
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Table 1. Parameters of the Monte-Carlo diffusion simulations. The experiments are detailed in
Section 2. The voxel side length and the intracellular volume fraction (ICVF) are the same for all
substrates. Rs is the desired mean cell radius of the sphere populations, Rmean is the effective mean

cell radius, Rsmall =
(

<R7>
<R3>

)
1

4

and RNP =
(

<R5>
<R3>

)
1

2

.

Substrate parameters

S1 S2 S3 S4 S5

Voxel side length (µm) 100
ICVF 0.65
Rs (µm) 2 3 4 5 8
Rmean (µm) 1.9 3.0 4.0 5.0 8.1
Rsmall (µm) 2.2 3.1 4.1 5.1 8.3
RNP (µm) 2.1 3.1 4.0 5.1 8.2

Simulation parameters

De,0(
µm2

ms ) Di,0(
µm2

ms ) κ(µms ) ρ( part
µm3 ) δt(µs)

1 ,2 1, 2 0, 10, 25, 50 0.5 5

PGSE sequence parameters

∆(ms) δ(ms) TE(ms) b( ms
µm2 ) N

12, 20, 30, 40 4.5 50 1, 2.5, 4, 5.5, 7 24

Table 2. Results of the mesoscopic disorder fit. Parameters of the curves shown in Fig.3. The cell size

R is in µm, the extracellular diffusion coefficient De,0 and the parameters ADC∞, MSED are in µm2/ms,

the parameter AD is in µm2 and the parameter AK is in ms.

Simulations ADCex = ADC∞ + AD/t AKCex = AKC∞ + AK/t
R De,0 AD ADC∞ MSED AK AKC∞ MSEK

2 1 0.00012 0.67 0.0002 1.25 0.003 0.0012
2 2 0.00012 1.33 0.0004 0.49 0.008 0.0001
4 1 0.00027 0.67 0.0005 3.84 0.013 0.0002
4 2 0.00011 1.34 0.0007 0.72 0.005 0.0020
8 1 0.00107 0.68 0.0003 5.21 0.113 0.0040
8 2 0.00144 1.35 0.0004 6.17 0.029 0.0027

Figure S2: CEXI - Signal fitting.

The plots show the fitting of the CEXI model to the simulated signals with the diffusion time for
different b (symbols), permeability (color) and cell size (columns).

Figure S3: Model estimates.

The plots show the estimates of the Ball & Sphere (A-D) and CEXI (E-H) models from 30 DW-
MRI signals with a SNR of 30.

Figure S4: BIC of model estimates.

BIC of the impermeable Ball & Sphere model and CEXI for with increasing permeability, at
different SNR.
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Figure S5:Ball & Sphere estimates - Low ICVF - Noiseless.

The plots show the estimates of the Ball & Sphere model in substrates with an ICVF of 0.2 from
on noiseless signals.

Figure S6: Ball & Sphere estimates - Low ICVF - Noisy.

The plots show the estimates of the Ball & Sphere model in substrates with an ICVF of 0.2 from
30 DW-MRI signals with a SNR of 30.

Figure S7: CEXI estimates - Low ICVF - Noiseless.

The plots show the estimates of the CEXI model in substrates with an ICVF of 0.2 from on
noiseless signals.

Figure S8: CEXI estimates - Low ICVF - Noisy.

The plots show the estimates of the CEXI model in substrates with an ICVF of 0.2 from 30
DW-MRI signals with a SNR of 30.
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