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Abstract. Deep anomaly detection models using a supervised mode of
learning usually work under a closed set assumption and suffer from
overfitting to previously seen rare anomalies at training, which hinders
their applicability in a real scenario. In addition, obtaining annotations
for X-rays is very time consuming and requires extensive training of
radiologists. Hence, training anomaly detection in a fully unsupervised
or self-supervised fashion would be advantageous, allowing a significant
reduction of time spent on the report by radiologists. In this paper,
we present SALAD, an end-to-end deep self-supervised methodology for
anomaly detection on X-Ray images. The proposed method is based on
an optimization strategy in which a deep neural network is encouraged to
represent prototypical local patterns of the normal data in the embedding
space. During training, we record the prototypical patterns of normal
training samples via a memory bank. Our anomaly score is then derived
by measuring similarity to a weighted combination of normal prototypical
patterns within a memory bank without using any anomalous patterns.
We present extensive experiments on the challenging NIH Chest X-rays
and MURA dataset, which indicate that our algorithm improves state-
of-the-art methods by a wide margin.

Keywords: Anomaly detection · X-rays · Self-supervised learning · Deep
similarity metric.

1 Introduction

Currently, supervised based deep learning approaches are ubiquitous and achieve
promising results for abnormality detection in X-ray images [26]. However, many
real-world datasets of radiographs often have long-tailed label distributions. On
these datasets, deep neural networks have been found to perform poorly on rare
classes of anomalies. This particularly has a pernicious effect on the deployed
model if, at test time, we place more emphasis on minority classes of abnormal
X-ray images. For example, in detecting rare lung opacities, e.g., such as pneu-
monia in chest X-rays (CXR), normal X-rays are much easier to acquire. Besides,
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examining radiographs and reporting work for the signs of abnormalities are very
time consuming and require qualified radiologists.

Anomaly detection based methods [2,1,12,18] can be significantly useful in
large-scale disease screening and spotting candidate regions for anomalies. Clas-
sical anomaly detection (AD) methods such as One-Class SVM (OC-SVM) [24],
Local Outlier Factor [7], or Isolation Forest [17] often fail to be effective on
high-dimensional data or be scaled to large datasets. To alleviate this concern,
state-of-the-art methods like Deep SVDD [21] and Deep SAD [22] consider learn-
ing deep CNN features as an alternative to classical one-class anomaly detec-
tion. However, the former suffers from the well-known problem of mode collapse,
while the latter tends to ignore the underlying structure of the images as the
pre-trained weights from autoencoder are sensitive to biased low-level features.
Unsupervised learning based methods [28,3,4,12] empower us to exploit unla-
beled data, thus can be considered as suitable approach for anomaly detection.
Reconstruction-based methods [28,30,12] use well-established convolutional au-
toencoders to compress and reconstruct single-class normal samples, but autoen-
coders can sometimes reconstruct abnormal samples well, yielding miss detection
of anomalies at test time. New anomaly detection methods [23,9,25] built upon
generative adversarial networks (GANs) [5,6,13] have shown promising anomaly
detection performance by using GANs’ ability to learn a manifold of normal sam-
ples. However, generated samples by GANs do not always lie at the boundary of
real data distribution, which is necessary to distinguish normal images from ab-
normal ones. Recently, self-supervised methods [11,29,8,15] have been proposed
to use unlabeled data in a task-agnostic way for extracting generalizable features,
where the dataset can be labeled by exploiting the relations between different in-
put samples, rather than requiring external labels. For example, self-supervised
deep methods [11,10] proposed to train a classifier for which a self-labeled multi-
class dataset is created by applying a set of geometric transformations to the
images. However, these methods are domain-specific and cannot generalize over
other data types.

Contribution. In this paper, we propose SALAD, short for Self-supervised
Aggregation Learning for Anomaly Detection on X-rays, a new training scheme
that derives an aggregation learning from measuring the similarity between the
estimated features of normal samples, to improve clustering and form prototypi-
cal patterns. We present a principled formulation to bypass tedious annotations
and remove potential bias introduced by training. We show our method’s superi-
ority to existing anomaly detection methods on X-ray datasets. We also highlight
the limitations of the current state-of-the-art methods.

2 Method

The merit of our approach is self-supervised representation learning, where the
feature representation of each X-ray image is pushed closer to its similar neigh-
bors, forming well-clustered features (prototypical patterns) in the latent space.



Anomaly Detection on X-Rays Using Self-Supervised Aggregation Learning 3

.. .
.

Normal images

Few anomalous images

Unseen anomalous images

Unseen normal images

Vector in memory bank

Normal vector

Anomalous train vector

Anomalous test vector

Up-to-date memory bank

Adding few 
anomalous samples

Progressive aggregation 

Tr
ai

n
Te

st

The encoded features

Fig. 1: The SALAD pipeline. The training process starts with forming the pro-
totypical normal patterns (top). At test time, we measure the similarity between
the test sample and normal patterns recorded in a memory bank (bottom).

This intuition is illustrated in Fig. 1. To do so, we propose to minimize the
entropy of each sample feature point’s similarity distribution to other nearby
samples. Learning feature similarity would require obtaining image embedding
in the entire dataset. To avoid this, we use a memory bank [27] to record and
use the features. In every iteration, the memory bank is updated with the mini-
batch features. The clustering objective will help us identify abnormal samples
if they have different characteristics compared to normal prototypical patterns.

The backbone of our anomaly detection model is based on deep auto-encoder,
where the encoder fθenc : X → Z is a convolutional neural network that repre-

sents input images {xi ∈ X}Ni=1 in an informative latent domain Z. The encoded
representation performs as a query to compare with the relevant items in the fea-
ture memory bank. The decoder gθdec : Z → X is an up-sampling convolutional
neural network that reconstructs the samples given their latent representations.

Pre-Training. For initialization, we establish an autoencoder pre-training rou-
tine using the image reconstruction loss (mean squared error), i.e. Lmse =

min
θenc,θdec

‖x− gθdec ◦ fθenc (x)‖22. In addition, we impose a constraint on the lower-

dimensional representation of the data in which features of the same X-ray image
under random data augmentations are invariant, while the features of different
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images are scattered. To do so, we jointly optimize the training of network with
reconstruction loss and a sample specific loss Lss [27] to enforce a unique repre-
sentation for each image:

min
θenc

Lss = −
∑
i∈Bspl

log (
∑

j∈AUGi

pi,j) s.t. pi,j =
exp (zTj zi/τ)∑N
k=1 exp (zTk zi/τ)

(1)

where τ ∈ (0, 1] denotes a fixed temperature hyperparameter. Bspl denotes the
set of samples in the mini-batch. zi is the feature representation and AUGi
denotes the set of randomly augmented versions of the image xi.

Training. The learned feature representation at the pre-training stage may not
preserve the similarity of different images. Therefore, we add the aggregation loss
Lagg (Eq. 2) to enforce consistency between samples lying in a neighborhood in
latent space. We define aggregation loss as the (negative) log-likelihood that a
specific sample will be identified as a member of the set of adjacent samples
sharing the same prototypical pattern. This is achieved by the entropy measure-
ment of the probability vector in Eq. 1. The more similar the samples are, the
less relative entropy they have. We progressively increase entropy to consider
larger prototypical neighborhood for the samples and form clusters (see Fig. 2).
Finally, the proposed loss Lsalad (Eq. 3) joins all training losses:

min
θenc

Lagg = −
∑
i∈Bps

log (
∑

j∈Nk(zi)

pi,j) (2)

min
θenc,θdec

Lsalad = min
θenc,θdec

Lmse + λmin
θenc

Llatent︷ ︸︸ ︷
(Lss + Lagg) (3)

where Nk (zi) denotes the top-k neighbours determined by the lowest cosine
distance with respect to the embedding vector zi. λ is a hyperparameter to scale
the losses (Llatent) used in the latent space and Bps denotes the set of prototypical
samples in a mini-batch.

Memory Bank. Similarly to [29,27], we first initialize the memory bank with
random unit vectors and then update its values mi using a weighted moving
average scheme mi ← (1− t)mi + tzi considering the up-to-date features zi,
where t is the fixed hyperparameter.

Inference. In the testing phase, an X-ray image is passed through the trained
encoder and its representation is compared with the most relevant normal pat-
terns in the memory bank for computing an anomaly score. Motivated by the
weighted k-nearest neighbors (kNN), each vote wi is obtained from the top K
nearest feature vectors in the memory bank. An anomaly score A (·) is calculated
by:
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Fig. 2: An overview of a proposed progressive training strategy. We
gradually increase sample neighborhoods to form prototypical patterns.

A (xi) =
1

K

K∑
k=1

wi,k s.t. wi,k =
arccos (d (zi,mk))∑N
j=1 arccos (d (zi,mj))

(4)

where d (·, ·) denotes a cosine similarity, which computes similarity measurement
between the test query feature zi = fθenc (xi) and the elements stored in the

memory bank {mj}Nj=1. A (xi) is normalized to [0, 1]. Ideally, the anomaly scores
of anomalous images should be significantly larger than the scores from normal
images. We also discard anomalous trained patterns in a memory bank as they
can lead to adverse effects if anomalous prototypical patterns are similar to
learned abnormal patterns.

3 Experimental Results

Datasets and Repartition. We validated our proposed method for classifica-
tion of normal versus abnormal X-ray scans using two challenging public X-ray
datasets, i.e., the NIH clinical center chest X-ray dataset [26] and the MURA
(musculoskeletal radiograph) dataset [19]. In NIH dataset [26], each radiographic
image is assigned with diagnostic labels corresponding to 14 cardiothoracic or
pulmonary diseases. We combine all CXRs with at least one of these 14 diseases
into an aggregate abnormal class. For a fair comparison with [25], we followed
the same train, validation, and test subsets as in [25] so there was no patient ID
overlap among the subsets. The MURA dataset [19] contains upper limb X-rays
images labeled whether they contain anomaly or not. This dataset is composed
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Fig. 3: Examples of segmentation results of the musculoskeletal X-rays.

of seven classes of body parts: finger, hand, wrist, forearm, elbow, humerus, and
shoulder. There are a total of 40’005 X-ray images from 11’967 unique patients.
We present a preprocessing pipeline, including the X-ray image carrier detection
and unsupervised body part segmentation, using hysteresis thresholding by pro-
ducing a binary mask (see Fig. 3). The splitting of the MURA dataset has been
done based on the patient ID and the body part. This implies that all images of
a specific body part from a given patient will be present in the same set. The
patient’s body parts are grouped into normal, abnormal, and mixed (meaning
there are both normal and abnormal X-rays for that body part of a patient).
The train set is composed mainly of normal samples (50% of all the patient’s
body part and 95% of normal samples) with few abnormal samples (5%). The
remaining normal, abnormal, and mixed samples are equally split between the
validation and the test sets (see Fig. 4).
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Fig. 4: A visual summary of the applied data split scheme on the MURA dataset.

Implementation Details and Evaluation Metrics. For the NIH dataset, we
base our network architecture on the U-Net [20], consisting of a 6-layer convolu-
tional encoder network and a 6-layer up-sampling convolutional decoder network
without skip connections (both have batch normalization and leaky ReLU after
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each layer). The last encoder output features are projected to a 200-dimensional
space, and L2 normalized. We use Adam optimizer, (β1 = 0.5, β2 = 0.999) and
with a base learning rate of 0.0001. We pre-train the network for 50 epochs. Then,
we train the network progressively with Lsalad in 10 rounds with 50 epochs per
round. The images were resized to 256 × 256 and we set τ = 0.1, λ = 0.25,
t = 0.5 and K = 100, respectively. The batch size was also set to 16. These
optimum values are determined experimentally. We apply a slightly different
experimental setup on the MURA dataset, and we replace the encoder and de-
coder with a ResNet-18 [16] and a mirrored ResNet-18, respectively. Besides,
the musculoskeletal X-ray images are resized and padded so that their major
axis is 512 pixels long while keeping the aspect ratio. We adopt area under the
ROC curve (AUC) and Area Under Precision-Recall Curve (AUPRC) as our
evaluation metrics.

Comparison with SOTA Unsupervised Methods. Fig. 5 shows that our
method significantly outperforms all recent anomaly detection methods, whether
trained in an unsupervised mode, including OCGAN [25], Deep SVDD [21] and
Deep Autoencoder (DAE) or with a self-supervised fashion (Geometric [11]).
Although we use a few labeled anomalous data, the label information is not in-
corporated into our training, and we discard anomalous prototypical vectors for
anomaly score calculation. Our method also achieves better performance com-
pared to (GAN-GP) [14], where we replace GAN objective in [25] with gradient
penalty (Fig. 6a).

Comparison to Methods that Use a Small Pool of Labeled Anomalies.
To establish competing methods, we compare our method with the state-of-
the-art semi-supervised method, Deep SAD [22], with the same data splitting
and network bottleneck as outlined above. In addition, we train the supervised
classifier, ResNet-18 [16] on the binary cross-entropy loss. We observed that our
method surpasses other competing methods on two test sets (see Fig. 5). Semi-
supervised and supervised approaches suffer from overfitting to previously seen
anomalies at training while our self-supervised method generalizes well to unseen
imbalanced anomalies (Fig. 6b).

Ablations. We conduct a series of ablation studies to justify the effectiveness of
our contributions by comparing our full model with the following alternatives,
using: 1. A Memory-based Deep Autoencoder (MemDAE) by turning off the
proposed loss terms (Lagg, Lss) and without using anomalous samples (Table
1 and Fig. 6a); 2. Our method without the loss term Lagg; 3. Our method
without the loss term Lmse. We observed that our method trained with each
of the proposed loss terms, resulting in a notable performance gain over all
the metrics, e.g., a gain of about 5.8% in AUC, compared to MemDAE on
the MURA dataset (Table 1). Nevertheless, our baseline method (MemDAE)
without anomalous samples, which is trained solely with MSE loss, outperforms
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Fig. 5: AUC and AUPRC. Comparison of different anomaly detection methods.
The bar height represents the mean (AUC or AUPRC) over four replicates of
training, while the error bar is a 95% confidence interval computed as 1.96 std.

all previous anomaly detection methods. We also conduct sensitivity analysis
to investigate the effect of included labeled anomalies during training on final
performance. To do so, we increased the ratio of known anomalous samples up
to 15% and observed that our method is not very sensitive to an anomalous ratio
(Table 1). This can be explained by the fact that SALAD does not require label
information. Instead, it uses anomalous samples to have a better separation of
prototypical patterns.
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Fig. 6: (a) ROC curves comparison performances on the NIH dataset. (b) The
NIH dataset statistics used in our experiments.

4 Conclusion and Future Work

In this work, we proposed SALAD, a self-supervised aggregation based learning
framework for X-ray anomaly detection. This paper’s novelty lies in jointly deep
representation learning of X-ray images as well as aggregation criterion to distill
out anomalous data. We use progressive training to enforce consistency between
similar data samples in the embedding space to facilitate the formation of pro-
totypical normal patterns. Hence, abnormal X-ray samples appear less likely to
be represented by the normal learned patterns. SALAD achieves state-of-the-art
anomaly detection results across all tested learning regimes, including unsuper-
vised methods and those trained with small amounts of labeled data. As future
work, we envision the broad application of our approach across different image
modalities and beyond anomaly detection where the annotation is very costly,
e.g., unsupervised domain adaptation.
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5 Appendix

5.1 Data Repartition
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Fig. 7: Data repartition. The two bar plots present the repartition of anomalies
by body parts at two levels on the MURA dataset. (A) Repartition at the level
of the patient’s body part (each unit is a set of x-rays of a body part from one
patient). Those patient’s body parts are categorized into three groups: normal,
abnormal, mixed (the patient has both normal and abnormal X-rays for the body
part). (B) Repartition at the level of the x-ray images categorized as normal or
abnormal.
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Fig. 8: Data splitting of the MURA dataset used for our unsupervised
baseline (MemDAE ). The unsupervised splitting at the level of the patient’s
body part is visually presented. The train set represents 50% of all the patient’s
body part and is composed only of normal samples. On the left, the repartition
of X-ray images by body part is shown.
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