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Abstract

Recovering the T, distribution from multi-echo 7> magnetic resonance (MR) signals is challenging but has high po-
tential as it provides biomarkers characterizing the tissue micro-structure, such as the myelin water fraction (MWF).
In this work, we propose to combine machine learning and aspects of parametric (fitting from the MRI signal using
biophysical models) and non-parametric (model-free fitting of the 7, distribution from the signal) approaches to T,
relaxometry in brain tissue by using a multi-layer perceptron (MLP) for the distribution reconstruction. For training
our network, we construct an extensive synthetic dataset derived from biophysical models in order to constrain the
outputs with a priori knowledge of in vivo distributions. The proposed approach, called Model-Informed Machine
Learning (MIML), takes as input the MR signal and directly outputs the associated T, distribution. We evaluate MIML
in comparison to non-parametric and parametric approaches on synthetic data, an ex vivo scan, and high-resolution
scans of healthy subjects and a subject with Multiple Sclerosis. In synthetic data, MIML provides more accurate and
noise-robust distributions. In real data, MWF maps derived from MIML exhibit the greatest conformity to anatomical
scans, have the highest correlation to a histological map of myelin volume, and the best unambiguous lesion visual-
ization and localization, with superior contrast between lesions and normal appearing tissue. In whole-brain analysis,
MIML is 22 to 4980 times faster than non-parametric and parametric methods, respectively.

Keywords: Machine Learning, T2 Relaxometry, Myelin Water Imaging

1. Introduction

The spin-spin relaxation rate 7 is one of the basic tissue-specific, quantitative parameters which can be measured
or used to give image contrast in MRI (Haacke et al.| [1999). However, while commonly presented as a single number
per voxel, tissue heterogeneity and partial volume effects renders it more appropriate to consider distributions of 7s per
voxel rather than a single 7, value (Menon and Allen, |1991). We distinguish single-component 7, relaxometry, where
each voxel is characterized with a single T, from multicomponent 7, relaxometry, where each voxel is characterized
with a T, distribution. In general, T, distributions are reconstructed from multi-echo 7, MRI signals, which can be
acquired, for example, through multi-echo spin echo sequences, where a 90° excitation pulse is followed by a train of
180° refocusing pulses. Given a sequence of n pulses, the signal s is a vector of n measurements at the corresponding
echo times (TE;). Let p(T,) and a denote the distribution of T5s in a voxel and the effective flip angle of the refocusing
pulses, respectively. If @ = 180 and the voxel is assumed to have a single 7, then the decay of the signal is exponential,
as is implied by the Bloch equations (Bloch| [1946). In practice, inhomogeneities in the transmit field (B;+) result in
an effective refocusing pulse that can vary significantly from 180° and can be spatially heterogeneous (Prasloski et al.
2012). This leads the resulting signal to deviate from the ideal exponential behavior, which can be modelled using the
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Figure 1: Here we show an overview of our method for multicomponent 75 relaxometry. On the left are example MR signals, on the right are the
corresponding T distributions: the first distribution is in white matter (WM), where there are assumed to be two lobes: one at a T, of around 10-
40ms corresponding to myelin water and one at a 7> of around 50-120ms corresponding to the intra and extra axonal space. The second distribution
includes WM and cerebrospinal fluid (CSF), whose 75 is commonly assumed to be around 1-2s. Our method consists of training a neural network
on a synthetic dataset derived from biophysical models to learn the mapping from signal to distribution. At the bottom, we show a small subset of
1000 simulated signals and corresponding T distributions from our synthetic training dataset.

extended phase graph (EPG) formalism [1988). The EPG formalism considers as parameters @, TE, T} and
a single 75. In this work, we use the common simplification of fixing 7 = 1000m:s, as the T1 relaxation time cannot
be estimated using the acquisition sequences we examine in this work (Neumann et al., [2014)); hence, it is commonly
fixed to its mean value in brain tissue. Then the normalized signal follows

S(TE)) = fEPG(TE,-, Ty, T, a)p(T>)dT>. 1)

One key application of multi-component 7, relaxometry is in neuroimaging, where the different parts of the 7, distri-
bution are assumed to arise from the different anatomical compartments in brain tissue, particularly in white matter.
This can be used, for instance, to generate a map of the myelin water fraction (MWF) such that areas of demyeli-
nation corresponding to the effects of neurodegenerative disorders can be identified (MacKay and Laule] [2007). In
particular, it is commonly assumed/modelled that the 7, distribution in white matter contains multiple lobes having
well-separated peaks, and that the eventual overlap between the T, lobes of myelin and the intra/extra axonal space

water pools is minimal (Mackay et al 1994} [Whittall et all, 1997} [Vasilescu et al [1978; Menon and Allen| [1991},
Menon et al,[1992).

1.1. Related Work

In order to estimate p(7,) from equation (1), two main approaches are generally used: parametric and non-
parametric approaches. Parametric approaches rely on a priori information on the 7T, distribution in brain tissue,
particularly white matter, in order to fit the parameters of biophysical models to the MRI signal
let al} 2007} [Yu et al.} 2019; [Chatterjee et al |, 2018} [Akhondi-AsI et al.| 2014} [Bjork et all 2016). In these approaches,
the MRI signal is modelled as a linear combination of signals from a fixed number of water pools (around 2-3) such as
myelin water, the water in the intra-/extra-axonal space, and cerebrospinal fluid:

n

p(T>) = Z viFi(m;, T3) (2)
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Here n is the number of water pools assumed, and F;, m;, v; are the probability distribution, parameters of the
probability distribution, and volume fraction of the ith water pool. A wide variety of parametric distributions (Delta,
Gaussian, Truncated Gaussian, Wald, Gamma, Log-Gaussian, Laplacian) are used to model the 7, distributions in
these pools; however, (Raj et al., [2014) shows that using these different distributions have negligible differences on
the corresponding signal when using the same means and variances; they conclude that due to the ill-posedness of the
inverse problem, extracting more than general lobular shapes (characterized by the mean and variance) is extremely
difficult if not impossible, even at extremely high signal to noise ratios(SNR). The parameters estimated are the water
volume fractions and the parameters of the distributions which are done through optimization (Chatterjee et al., 2018}
Bjork et al., |2016) or Monte Carlo methods (Prange and Song} [2009; [Yu et al., 2019). To stabilize the fitting and to
use prior information on the compartments, constraints are enforced on the parameters. For instance, usually bounds
are placed on the parameters such as the mean T of each compartment; e.g. the mean 7, of myelin water is typically
bounded between 10 and 40ms, and the mean T, of CSF is typically assumed to be greater than 1s. Some works, such
as (Chatterjee et al., |2018)), go even further and fix the mean or standard deviations of the probability distributions
of some compartments to predetermined values. While parametric estimations are generally stable and histologically
validated, they are usually computationally expensive and restricted by the biophysical model used; the number of
compartments needs to be fixed for each voxel before fitting. Further, we note that the a priori information used in the
parametric approaches i.e. the assumption of lobular structure, bounds on the parameters of the distribution, etc. comes
from historical evidence, where studies used non-parametric methods to estimate the 7, distributions and assigned
lobes in their reconstructions to different water pools (Alonso-Ortiz et al.,[2015)).

In contrast, non-parametric approaches do not make a priori assumptions on the data, such as the number of
compartments. This is relevant for studying abnormal brain tissue, where compartments not considered in standard
biophysical models might be present (MacKay and Laule, [2007). In addition, they generally require orders of magni-
tude less computation time than parametric methods. Non-parametric methods discretize equation (1) as a product of a
dictionary matrix and a discretized T, distribution and solve directly for the discretized T, distribution (Whittall et al.}
1997; |Prasloski et al., 2012) using non-negative least squares (NNLS) algorithms (Lawson and Hanson, [1995). The
T, distribution, p(T»), is recovered by solving an inverse problem (Whittall et al., |1997; |Prasloski et al., [2012)). First,
given discretized ranges of flip angle (@) values and T values, a dictionary D, of T, decay signals is constructed for
each « value through the EPG formalism. D, is a matrix where the columns are the simulated MRI signals over a range
of T, values. Given a flip angle «, the corresponding dictionary D,, and the MRI signal s, the following optimization
problem is solved

arg min||D,p — s + AD(p) G)
p=0

where @ is a regularization function with parameter A, and p is the discretized, un-normalized 7, distribution to be
estimated. The flip angle corresponding to s is chosen by solving the above problem (with A = 0) for multiple values
of a and taking the value which corresponds to the least fitting error (Prasloski et al2012)). Two common choices for
O(p) are

e ®(p) = ||pll?, called Tikhonov regularization.

e O(p) = ||Lp||§, where L is a finite difference approximation of the Laplacian operator. This is called Laplacian
regularization.

These choices are used in order to promote increased conditioning of the problem and the smoothness of the resulting
distribution (Kroeker and Henkelman, [1986). Without regularization, solutions to Eq. (3) are vulnerable to noise and
usually produce inaccurate solutions that overfit the signal with e.g. false positive peaks, etc. A common heuristic for
selecting A is to accept A such that the signal fitting error is approximately 1.02-1.025 times greater than the error from
NNLS with no regularization (Laule et al., 2006). However, it is known that regularization can introduce undesirable
bias to the reconstructed signals, e.g. over-smoothing. In particular, regularization can contradict the expectation of
disparate lobes in the distribution corresponding to disparate tissues in the same voxel (e.g. myelin and intra/extra
axonal space water), particularly at lower SNRs. For example, at low SNRs, the myelin water lobe can become
completely over-smoothed, for an example see Fig. 1 in the Supplementary Material.

Once the T, distribution is recovered, generating parameters of interest such as volume fractions of the water pools
in the voxel require either a distribution where distinct lobes can be assigned to distinct compartments (such as in the
right side of Fig. [T) or a priori information. After examining distributions reconstructed from experimental scans, the



different lobes of the distributions (if distinct lobes are present) are assigned to different water pools based on theoretical
and experimental grounds (MacKay and Laule, |2007). From the mean and standard deviation of these lobes, bounds
are derived from the T, distributions for each water pool. Then water volume fractions for each pool are calculated
by integrating the probability distribution between the bounds of the T, for each pool. For instance, at 3T the myelin
water fraction (MWF) is usually computed as

T>=40ms
—1oms P(72)dT2

T>=2000ms ’
TZZ:lOms p(TZ)dTZ

MWF = @

where the bounds 10-40ms were obtained from the myelin water lobe in NNLS reconstructions in past papers (Alonso-
Ortiz et al.l [2015).

We note previous studies found that both parametric and non-parametric methods require a high signal-to-noise
ratio (SNR) to detect different components in the 7, distribution (Graham et al., [1996; |/Andrews et al., [2005} |Wigger-
mann et al., [2020). For a clinically achievable SNR=100, more than 5% of the voxels were incorrectly estimated to
have no myelin water component, and the percentage raised to 12% for SNR=50 (Kumar et al.| 2012)). Similar results
were reported in (Raj et al.,|2014), where the myelin water component was not found in human brain regions located
in myelinated areas of the frontal and lateral projections fibers. In addition, Wiggermann et al.| (2020) found that in
synthetic studies, NNLS with Tikhonov Regularization tends to underestimate the true MWF value in the range of 0.3
to 4 percent at SNR 1000, with the problem worsening at lower SNRs; for reference, the MWF is assumed to be in the
range of 0-30 percent in normal appearing white matter.

Recently, (Lee et al. 2019; [Liu et al.l 2020) have both proposed to augment non-parametric approaches with
machine learning in order to speed up the computation time. As training data, they acquired brain scans in several
subjects in vivo using a 3D multiple echo gradient and spin echo sequence with 32 echoes (Prasloski et al., 2012).
They then ran regularized NNLS reconstructions on the data and obtained the probability distributions and MWF for
each voxel. [Liu et al.|(2020) trained a multi-layer perceptron (MLP) to take as input the raw data, and output the MWF,
using the in vivo NNLS reconstructions as ground truth. [Lee et al.| (2019) trained MLPs to reconstruct the MWF as
well as the probability distributions from the raw echo data, using the in vivo NNLS reconstructions as ground truth.
These approaches have the advantage of reconstructing regularized NNLS solutions for the whole brain in under a
minute, a fraction of the time required using the standard NNLS algorithm. However, as their ground truth is the
regularized NNLS solution, their method inherits all the problems of NNLS. Further, by training on data acquired
from specific MRI machines using a specific sequence, there is the problem of generalizing to different machines and
different sequences. Both would require new acquisitions as well as additional training time.

In summary, parametric methods implicitly regularize and stabilize the problem by using biophysical models and
prior knowledge to constrain the space of T, distributions. However, the resulting optimization problems to be solved
are significantly more costly than those of non-parametric methods, with an additional loss of flexibility due to imposi-
tion of the number of compartments and other details of the model. Non-parametric solutions are fast, but also ill-posed
and highly susceptible to noise; hence, regularization is necessary, with the concomitant drawbacks of over-smoothing
and sparsity of the reconstructed distributions, particularly at clinically achievable SNRs for sequences with high spa-
tial resolution. Further, the extraction of parameters of interest such as the MWEF is theoretically based on assuming a
lobular structure of the reconstructed distribution, which is often not the case in middling to high levels of noise.

1.2. Contributions

In this paper, we propose a new method for multi-component 7, relaxometry in brain tissue. In Fig. we
show the overview of our proposed method as well as a prototypical T, distribution in white matter, composed of
the myelin water lobe and the lobe corresponding to the water in the intra/extra axonal space; in addition, we show the
corresponding MRI signal. We propose to combine machine learning and aspects of parametric and non-parametric
approaches to the reconstruction of T, distributions from multi-echo 7, data. We do this by creating a synthetic dataset
derived from biophysical models and training a multi-layer perceptron (MLP) (Rosenblatt, |[1958)) on this dataset to
take as input the MRI signal and directly output the associated T, distribution. We call our method Model-Informed
Machine Learning (MIML). Our main contributions are as follows:

o Construction of an extensive synthetic dataset that we construct purely from simulations guided by biophysical
models, which we use for training the MLP.



o Introduction of a robust loss function for the network to recover the T, distribution consisting of a combination
of the mean squared error and the Wasserstein-1 Distance (Villani, 2009). We show that training with the Wasser-
stein distance significantly increases the accuracy of MWF estimates on a realistic, synthetic case, compared to
training with solely a mean squared error (MSE) loss function.

e Rigorous and extensive evaluation of our method and previous work in non-parametric and parametric ap-
proaches, on synthetic and real datasets (ex vivo, in vivo, healthy, pathological). We show that our method
outperforms other methods in terms of accuracy, plausibility, and robustness of the reconstructed distributions
and MWF maps as well as lesion visualization.

2. Methods

Our method for reconstructing 7 distributions from MRI data is based on a MLP which is trained to learn a map
directly from MRI signals with a 32 echo acquisition scheme to the corresponding 7, distribution, as is the result in
non-parametric methods. To reduce the inherent ill-posedness of this problem, the training is conducted on a synthetic
dataset of pairs of MRI signals and 7 distributions which we constructed using EPG simulations and is informed by
biophysical models and realistic values for the parameters of interest, such as the range of T>s for different water pools,
taken from the literature. This implicitly constrains the space of possible 7', distributions (as in parametric approaches).
We show an overview of our method in Fig.

2.1. Synthetic Dataset Generation

To generate the synthetic T, distributions, we start from standard biophysical models for the brain (Whittall et al.,
1997). Concretely, we model each distribution as a mixture of Gaussians, where each component corresponds to a
different water pool (e.g. myelin water, intra/extra axonal space water).

i —(T> — i)
”(TZ)ZZO-b‘”‘p( ( o Y )
vi €010, vi=1 (6)

Here v; is the volume fraction of the ith water pool, and y;, o; are the mean and standard deviation of the 7’ distribution
of the ith water pool. We justify our choice of modelling using Gaussians by noting that (Raj et al. 2014) found
that modelling the 7, distributions using a variety of different distributions including the Gaussian distribution had
insignificant differences in parametric methods. For the water pools in brain tissue, most models consider white matter
(which in turn contains the myelin and intra/extra axonal water pools) and cerebrospinal fluid (CSF) (Raj et al., 2014}
Du et al., |2007; [Yu et al. 2019; |Chatterjee et al.l |2018; |Akhondi-Asl et al.l 2014). However, brain pathologies can
result in T, distributions different from those of these commonly used compartments. In our dataset, we divide T,
distributions in the brain into seven cases, each with a characteristic mixture of water pools.

e White matter (WM)
o Cerebrospinal fluid (CSF)

Gray matter (GM)
Mixture of WM and CSF

Mixture of WM and GM

Mixture of CSF and GM

Pathology
We further split WM into two constituent components

e Myelin



Range of Mean and Standard Deviation for Simulated Water Pools

| Water Pool | Range of Mean T (1) | Range of Std. of 75 (o) |
Myelin 15-30ms 0.1-5ms
Intra/Extra Axonal Space (IES)  50-120ms 0.1-12ms
GM 60-300ms 0.1-12ms
Pathology 300-1000ms 0.1-5ms
CSF 1000-2000ms 0.1-5ms

Table 1: Here we show the ranges for the possible mean () and the standard deviations (o) used for the Gaussian parameters of the different water
pools.

o Intra/Extra-axonal Space (IES)

As we model each water pool’s T, distribution with a Gaussian distribution, we need to specify the mean (u) and the
standard deviation (o). To generate a large variety of signals, we randomly select the means and standard deviations
within a range characteristic of the water pool. Concretely, in Table [T} we show the range of the means and standard
deviations we use for each water pool. For example, for the case of CSF and GM, the Gaussian mixture would be a
randomly weighted sum of two Gaussian distributions, with parameters drawn from the CSF range and the GM range,
respectively.

These cases account for partial-volume effects from the mixing of water pools within a compartment. We note
that new cases can easily be incorporated into our approach. We set the mean values in line with those reported in the
literature (Mackay et al.l |[1994; [Laule et al., 2007; Wansapura et al., |1999; |Alonso-Ortiz et al., 2015). We included
an expansive range for the standard deviations, ensuring that our dataset has both sparse, intermediate, and wide T
distributions in order not to bias our dataset towards any extreme. We note that as there is a small quantity of myelin in
gray matter, the gray matter pool is composed primarily of the GM component in Table[T]as well as the myelin water
component which is constrained to have a random v; between 0 and 5 percent.

For each T, distribution, we use the EPG formalism to simulate the corresponding signal from an acquisition based
on acquiring 32 echos with around 10ms spacing between each echo. In the real data we use for our evaluation, three
slightly different echo times are used; the in vivo scans of healthy subjects use an echo train of 10.68ms, 21.26ms,
... 341.76ms, the in vivo scan of the subject with pathology uses an echo train of 10.36 ms, 20.72 ms, ..., 331.52 ms,
and the ex vivo scan uses an echo train of 10ms, 20ms, ... 320ms. In the following, we describe our procedure with a
single, fixed echo train: for the evaluation, we generated three datasets, one for each echo train. We note that alternative
sequences with different numbers of echoes/different spacings can be accommodated by generating a new dataset.

We generate 200,000 T, distribution variations per case by sampling (v;) and (y;, o) randomly from flat Dirichlet
and uniform distributions, for a total of 1.4 million distributions. The corresponding signals are generated using the
EPG formalism, and we randomly vary the flip angle (@) of the acquisition for each signal between 90 and 180 ° so
that our method learns to account for different flip angles automatically, rather than having to first estimate the flip
angle as in non-parametric methods. The ground truth distributions were generated on high-resolution grids for the
signal generation, then downsampled to the T, discretization used in the non-parametric approaches to allow for direct
comparison. We use a discretization of 60 T,’s logarithmically spaced from 10ms to 2000ms for our 7, distributions.

As outlined in the related work, the SNR of the signals is a crucial aspect of the reconstruction and hence the dataset
generation. We define SNR with respect to the first echo of the signal sequence. From previous studies (Wiggermann
et al.| 2020; Mackay et al.l[1994)), it is known that NNLS methods, perform well in the high-SNR regime (on the order
of 1000). However, clinical scans with high spatial resolutions will rarely meet this SNR requirement; in the real scans
of healthy subjects we use in our evaluation, we estimate a mean SNR on the order of 100. In order to make our method
robust to the realistically low SNR regime, in training we randomly vary the SNRs of the signals between 80 and 200
in order to cover the potential SNR range of the voxels. We use a Rician noise model to add noise to the signals. In
our evaluation, we show that training on this SNR range results in robustness to a wide range of SNRs (40-1000) on
synthetic data. The data generation for all cases (1.4 million signal/distribution pairs) took approximately 24 hours on
a cluster using parallelization on 46 threads.

Using the synthetic datasets described, we train a MLP to map the MRI signal to the corresponding T, distribution.



2.2. Mapping the MR Signal to the T, Distribution

2.2.1. Architecture

Our network is composed of 6 hidden layers with 256 neurons per layer and an output layer with 60 units, corre-
sponding to the size of the discretization of the distributions we use. The hidden layers use a ReLu function as the
activation function, while the output layer uses a SoftMax activation function since the output should be the T, distri-
bution. The input to the network is a vector with 32 elements corresponding to the 32 echos of the standard acquisition
sequence. We note that we normalize the input by the magnitude of the first echo before feeding it to the network. To
select the structure of the network, we trained 12 networks where we varied the number of hidden layers (3-6) and the
number of neurons per layer (64,128,256,512). We selected 6 hidden layers and 256 neurons as this configuration had
the lowest validation loss at the end of training; however, we note that the validation loss was not significantly different
between the configurations.

2.2.2. Loss Function

Let (x, px) denote the normalized MRI signal and the corresponding 7 distribution. Let ®(-, §) denote the multi-
layer perceptron function with parameters 6, with ®(x, 6) the predicted distribution. Given a batch of training samples
of size n, the cost function we use to train @ is

1 n
LO) = 3 Allpx = O, O)l + Wi (px. ©(x. ) )

where the first term corresponds to the squared L, norm (MSE loss) and the second term corresponds to the Wasserstein-
1 distance on probability distributions (Villani, [2009). We set A to give approximately equal numerical weight to both
terms in the loss function. Let u, v denote 1-D probability distributions with cumulative distribution functions U, V.
Then the Wasserstein-1 Distance is equivalent to the following formulation (Ramdas et al., [2017)

Wl(u,V)=f U -V )
In this formulation, the Wasserstein distance can be efficiently computed on GPU using the cumulative sum function.
The Wasserstein-1 distance is an appropriate metric to judge reconstruction quality in our application of T, distribution
recovery as it correctly penalizes deviations from the ground truth distribution in relation to the location of the lobes
in contrast to other losses such as MSE or Kullback-Liebler (KL) divergence. In particular, given two non-overlapping
lobes, if the lobes are moved toward each other (but still do not overlap), the Wasserstein Distance will decrease signifi-
cantly while the MSE and the KL Divergence will not change. An example is presented in Fig 2. in the Supplementary
material.

Using the Wasserstein distance helps us to avoid, for example, cases where the location of lobes in the distribution
could be arbitrarily placed with a similar loss if other metrics are used. We note that training with either MSE loss
or Wasserstein-1 distance exclusively leads to suboptimal results, due to increased Wasserstein-1 distance in the first
case and unstable reconstructions in the second case. We find that training with a combination of these results worked
optimally; we further show in our evaluation that adding the Wasserstein-1 distance improves the accuracy of MWF
estimation in realistic cases in comparison to training exclusively with MSE loss.

2.2.3. Implementation Details

We used TensorFlow 2.0 (Abadi et al., [2015) on Python 3.6 (Van Rossum et al.l 2000) with an Nvidia GTX 2070
laptop GPU for constructing and training the network. For each case, we use 80 percent of the generated data for
training, corresponding to a total of 1,120,000 signal/distribution pairs. We reserve 10 percent of the dataset as the
validation set and the remaining 10 percent as the test set in our evaluation on synthetic data. We use the Adam
optimizer (Kingma and Bal 2014)) with a learning rate of 5e-4 and a batch size of 2000. We trained for 30 epochs,
where we stopped the training based on the validation loss no longer decreasing for 5 epochs. This training took
approximately 15 minutes to complete, showing the feasibility, given a large database of signals, to retrain models
specific to given sequences, etc.



3. Evaluation
We perform reconstructions of the 7', distributions from synthetic and real data using the following methods:
o Our proposed method, MIML ,trained on signals with SNR 80-200 and the appropriate sequence of echoes.
e NNLS with Tikhonov regularization (NNLS-T) (Mackay et al.,|1994)
o NNLS with Laplacian regularization (NNLS-L) (Prasloski et al.|[2012)
e Gaussian Mixture Fitting (GMF)

Both NNLS methods were implemented in-house in Python with full parallelization, and we use a standard method of
selecting the regularization parameter (Prasloski et al.|[2012) by keeping the signal fitting error close to 1.025 times the
signal fitting error obtained using NNLS without regularization. GMF is our implementation of a parametric approach,
where we fit a Gaussian mixture model with three compartments (myelin water, IES water, CSF), extracting the volume
fractions, the means/standard deviations of the T, of each compartment, and the overall normalization factor. We model
as follows:

3

p(T2) = > viN (i, o, T). ©)

i=1

We set bounds on the means/standard deviations according to the bounds used for generating the dataset for MIML. As
simultaneously fitting the flip angle resulted in severe instability, we fix the flip angle in the Gaussian mixture fitting
for each voxel to that calculated using a standard method used with NNLS (Prasloski et al., 2012). We used the least
squares optimization function in the Python library Scipy (Virtanen et al.,2020) to fit the signals to the Gaussian model.

3.1. Synthetic Data

3.1.1. Test Split of Synthetic Dataset

We show reconstructions on the test split of the synthetic dataset we generated using the acquisition sequence of
10.68ms, 20.68ms, ... 320.68ms. We show results over an SNR range from 40 to 1000 (40,80,150,200,400,1000). We
compare the methods using the mean MSE and Wasserstein Distances with respect to the ground truth.

3.1.2. Realistic Synthetic Case in WM

MWEF mapping is a crucial application of T, relaxometry. In order to analyze the robustness and performance of
our approach in a realistic case in WM, we show reconstructions on the following model of the distribution in a white
matter voxel, with one lobe for myelin water and one lobe for IES water.

p(T2) = vy * IvGamma(u,y,, ) + vig * InvGamma(ug, o g) (10)

where we fix the values of the parameters to realistic values in line with those reported in the literature (Alonso-Ortiz
et al.,[2015; [MacKay and Laulel 2007): v,,=0.15, v;g=0.85, u,,= 20ms, w;z= 70ms, 0,,,=2.5ms, o;p=6ms. We use the
inverse Gamma distribution to create the ground truth distribution to test the robustness of our method to changes in
the assumed biophysical model. To study robustness to noise, we vary the SNR on the corresponding synthetic MRI
signal from 40 to 1000, as in the test split. We generate 1000 realizations of noisy signals per SNR used. Further, we
also show numerical results using our method without using the Wasserstein Distance in the loss function. We refer
to this variant as MIML’. We compare the methods using the mean MSE, Wasserstein Distance, and estimated MWF
with respect to the ground truth.

3.2. Real Data

As there is no ground truth for the T, distributions in real data, we evaluate the methods as in the literature by exam-
ining the MWF maps/comparing to anatomical scans or correlation to histology, the plausibility of the T, distributions,
maps of the mean 7, in the 50-200ms range, etc. We also report the mean SNR for each dataset, calculated in the same
manner as in Wiggermann et al.| (2020), where the first echo of the signals is divided by the standard deviations of the
residuals from the NNLS-T reconstruction.



3.2.1. Ex Vivo Data

We show reconstructions from a Multi Echo Spin Echo (MESE) scan from the White Matter Microscopy Database
Cohen-Adad et al.|(2020) with 32 echoes (starting from 10ms with 10ms spacing), with a TR of 3s and 8-fold averaging,
of a single, cervical slice of a dog’s spinal cord acquired ex vivo with an Agilent 7T animal scanner (Vuong et al.,[2017).
Five days before scanning, the spinal cord (perfused and post-fixed with paraformaldehyde 4) was extracted and washed
in Phosphate-buffered saline (PBS) solution. After scanning, the spinal cord was osmified for two hours, embedded in
EMbed 812 Resin, cut using a microtome, and polished. A scanning electron microscope (Low-angle backscattered
electron mode) (JEOL 7600F) was used to image an entire slice of the spinal cord at a resolution of 0.26 micrometers
per pixel. Using this histology image, we construct a histological map of the fraction of myelin in each voxel using a
deep learning segmentation tool called Axon Deepseg (Zaimi et al., [2018)). We then register this histological map to
the MRI space. We note that this histological map is the area fraction of the myelin segmented, not a map of the MWF.
However, assuming that the area fraction of myelin in a voxel scales with the amount of myelin water, the two maps
should be linearly correlated. We conduct a correlation analysis between the histological map and the MWF maps
produced from the different methods. The estimated SNR on this slice is 784.

3.2.2. Healthy Subjects

We show reconstructions from high-resolution human brain scans acquired from 4 healthy controls using a 3T
MRI scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) located at CHUV Hospital (Lausanne,
Switzerland), with a standard 64-channel head/neck coil. The dataset was collected using a 3D multi-echo gradient
and spin-echo (GRASE) sequence accelerated with CAIPIRINHA (Piredda et al.l [2020) with the following parame-
ters: matrix-size=144x126; voxel-size = 1.6x1.6x1.6mm3; ATE/N-echoes/TR = 10.68ms/32/1s; prescribed FA =180°;
number-of-slices = 84; CAIPIRINHA acceleration factor = 3x2; number of averages = 1; acquisition time=10:30min.
Each subject was also scanned using an MPRAGE sequence for whole-brain 7';-weighted imaging (Brant-Zawadzki
et al.l [1992). To test the repeatability of the reconstructions, the healthy controls were scanned twice over two consec-
utive scanning sessions (scan-rescan scenario). We compare the MWF maps and the 7 distributions produced from
each method, show the coefficient of variability of the MWF in regions of interest (ROI) in WM, and conduct a study
of the reproducibility of each method. The data for these subjects have an estimated mean SNR of 128.

3.2.3. MS Subject

We show reconstructions on a high-resolution human brain scan of a patient with relapsing-remitting multiple
sclerosis, scanned using a 3T MRI scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) located
at the University Hospital of Basel (Basel, Switzerland) with a standard 32-channel head coil. In this case, MET2
data was collected using the previously described GRASE sequence for the healthy subjects, albeit with a starting
echo time of 10.36ms and lower spatial resolution (voxel-size=1.8x1.8x1.8mm3) to accelerate the scan. In addition,
a FLAIR (De Coene et all [1992) scan was acquired. A probabilistic lesion mask was generated by first using a
convolutional neural network (CNN) trained to segment WM lesions (La Rosa et al., [2020) on FLAIR images with
subsequent manual correction by an expert. The FLAIR image/lesion mask were then registered to the multi-echo T,
space. We use a threshold of 0.5 to denote a voxel as lesional. We analyze maps of the geometric mean 7’ in the range
50-200ms and MWF maps to study the MS lesions as in (Levesque et al.,[2010). We also compare the correspondence
of these maps to the lesion masks. In addition, we compare the T, distributions produced from each method in both
normal-appearing tissue and the lesions. The estimated SNR of this scan is 112.

4. Results

4.1. Synthetic Data
4.1.1. Test Split of Synthetic Dataset

In order to visualize the average performance over the test split, in Fig. [2| we plot the mean distribution over all the
ground truth distributions in the test split. In addition, we show the mean reconstructed distributions over the test split
from the methods we compare. We also show plots zooming in on the different T, regions for better visualization, as the
logarithmic set of T, values used for the reconstruction makes resolving the lower T,s somewhat difficult. We can see
that our method performs robustly and consistently across the whole SNR range, providing the best conformity to the
ground truth distributions over the entire range of T,s. In contrast, NNLS with Tikhonov and Laplacian regularization
both require SNR 1000 in order to generate a plausible distribution in the 7, range 10 — 50ms, with SNRs below this
resulting in highly over-smoothed distributions. Further, even at high SNRs, both methods have over-smoothing in the



T, range 50 —2000ms. For the Gaussian mixture fitting, we note that only the cases of WM and WM + CSF correspond
to the model used, as it is necessary to fix the number of compartments beforehand. Therefore, the relevant T, ranges
to examine are 10— 120, 1000 —2000ms. We can see that high SNRs (200-1000) are required for plausible distributions
with respect to the ground truth, with remaining distortions at low T, values. In addition, in Tables 2] and [3] we show
the mean and standard deviations of the MSE and the Wasserstein Distance between the ground truth distributions and
the reconstructed distributions from the different methods over the SNR range. As the model used in GMF only applies
to WM and WM+CSF, we show the results over the whole test set as well as over just the WM and WM+CSF cases in
the test set.
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Figure 2: For better visualization, we show plots of the mean distribution over all of the ground truth distributions in the test split, as well as the mean
reconstructed distribution over the test split from each method. We zoom in on the 7> ranges 10-50ms, 50-400ms, 400-2000ms to show the average
performance in the different cases (WM, CSF, etc.). Our method produces the most robust and accurate reconstructions with respect to changing
SNR and the ground truth distributions respectively. All other methods require high SNRs (400-1000) for plausible distributions which still retain
distortions, particularly in the 75 range 10-50ms, which is that of the myelin water. We note that the poor performance of GMF outside the T, range
10-120ms, and 1000-2000ms is due to model mismatch; GMF is valid only for the WM and WM+CSF cases.

For both MSE and Wasserstein Distance, MIML performs the best in terms of the mean value, with comparable
or lower standard deviations, across the whole SNR range. As expected, all methods improve with increasing SNR.
In addition, we can see that limitations of the GMF model, as it provides competitive results with the other methods
only when restricted to the signals from the WM and WM+CSF cases, due to the need to fix the model/number of
compartments beforehand. Overall, we can see that MIML, which is trained on signals with SNR 80 to SNR 200,
generalizes well to the test set as well as to SNRs outside the range on which it was trained. From the plots of the mean
distributions and the tables of the mean metrics, MIML performs better in distribution reconstruction than the other
methods, parametric and non-parametric, across a wide range of SNRs. However, the test set is generated according to
the Gaussian mixture model; further, as we randomly generate the ground truth distributions, not all of the ground truth
distributions are realistic, though we note that unrealistic distributions in the training can improve the generalizability
of MIML.

4.1.2. Realistic Synthetic Case in WM
In Fig. [3] we plot the ground truth distribution and the mean reconstructed distributions from each method. We
can see that MIML performs robustly and consistently, on average, across the whole SNR range. However, the re-
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SNR
40

Mean and Standard Deviation of MSE (Whole Dataset/WM,WM+CSF)

MIML
(0.098,0.115,)/(0.056,0.045)

NNLS-T
(0.134,0.085)/(0.074,0.038)

NNLS-L
(0.223,0.229)/(0.091,0.077)

GMF
(0.277,0.2)/(0.133,0.085)

80  (0.056,0.076)/(0.038,0.031)  (0.117,0.083)/(0.062,0.038)  (0.201,0.218)/(0.082,0.074)  (0.26,0.207)/(0.105,0.075)

150 (0.039,0.055)/(0.032,0.027)  (0.102,0.083)/(0.052,0.035)  (0.173,0.199)/(0.072,0.072)  (0.248,0.214)/(0.087,0.071)
200 (0.036,0.053)/(0.031,0.026)  (0.097,0.081)/(0.049,0.034)  (0.157,0.182)/(0.067,0.07)  (0.244.0.215)/(0.075,0.064)
400 (0.034,0.049)/(0.029,0.026)  (0.088,0.081)/(0.045,0.036)  (0.124,0.149)/(0.055,0.063)  (0.238,0.219)/(0.067,0.066)
1000 (0.033,0.048)/(0.029,0.026)  (0.085,0.085)/(0.042,0.037)  (0.091,0.106)/(0.041,0.051)  (0.233,0.223)/(0.056,0.061)

Table 2: Here we show the mean and the standard deviation of the MSE over the whole test set and just the WM,WM+CSF cases between the ground
truth distributions and the reconstructions for each method over a range of SNR values. We see that MIML produces significantly lower values for
the mean and the standard deviation of the MSE than those of the other methods over the majority of the SNR range over both the whole dataset and
just the WM,WM+CSF cases. The performance of GMF significantly improves on the WM,WM+CSF cases as these fit the assumed model in this

method.
Mean and Standard Deviation of Wasserstein Distance (Whole/WM,WM+CSF)
MIML NNLS-T NNLS-L GMF
SNR 40 (92.2,132.4)/(58.3,70.4) (139.9,131.2)/(76.8,78.3)  (188.1,190.5)/(88.4,98.5) (261.1,261.0)/(76.4,84.1)
SNR 80 (58.5,92.5)/(43.9,56.8) (116.6,119.2)/(63.0,74.4)  (163.7,174.9)/(77.3,97.6)  (251.0,265.7)/(64.9,83.9)
SNR 150  (44.4,72.2)/(40.1,53.1) (98.2,107.8)/(55.2,68.8) (139.9,156.3)/(69.7,91.9)  (245.7,268.7)/(59.1,81.0)
SNR 200  (42.7,70.1)/(39.4,52.5) (92.0,103.1)/(53.8,68.9) (128.7,145.2)/(67.6,92.1)  (244.1,269.6)/(55.8,79.7)
SNR 400  (40.7,67.6)/(38.7,51.9) (76.2,90.5)/(49.5,66.1) (102.6,120.7)/(60.1,84.2)  (240.1,270.6)/(50.1,74.5)
SNR 1000 (40.2,66.5)/(38.5,51.7) (58.0,73.3)/(42.8,58.6) (72.1,91.7)/(48.5,69.8) (237.6,272.5)/(45.0,68.8)

Table 3: Here we show the mean and the standard deviation of the Wasserstein Distance over the whole test set and just the WM,WM+CSF cases
between the ground truth distributions and the reconstructions for each method over a range of SNR values. We see that MIML produces significantly
lower values for the mean and the standard deviation than those of the other methods over the majority of the SNR range. The performance of GMF
significantly improves on the WM,WM+CSF cases as these fit the assumed model in this method.

11



constructed distributions resolve a more spread out myelin water lobe than in the ground truth, even at SNR 1000;
this could be due to training on significantly lower SNRs or the model mismatch. At SNRs below 400, NNLS-T and
NNLS-L are unable to resolve a myelin water lobe due to over-smoothing as well as a displaced IES lobe; GMF re-
solves the myelin water lobe, but with a significantly displaced mean. At SNR 1000, NNLS-T and NNLS-L are able
to resolve the myelin water lobe accurately, albeit still with a small distortion at 7, = 10; GMF is able to accurately
capture the myelin water lobe at SNR 1000, albeit with a displaced IE lobe. In Tables [4] [3 [6] we show the mean
and standard deviations of the MSE and the Wasserstein Distance between the ground truth distribution and the recon-
structed distributions from the different methods over the SNR range, as well as the mean and standard deviation of the
recovered MWF. With regard to MSE and Wasserstein Distance, MIML performs the best in terms of the mean value,
with comparable or lower standard deviations, across the whole SNR range. As expected, MIML’ performs similarly
to MIML with respect to MSE and significantly worse with respect to Wasserstein Distance, as it is only trained with
the MSE loss. With regard to the recovered MWF (obtained by summing from 7, bounds of 10-40ms), we see that
MIML performs the best in terms of the mean value, with comparable or lower standard deviations, in the SNR range
80-400. At SNR 40, NNLS-L performs slightly better than MIML in terms of the mean MWF (0.167 vs. 0.132). At
SNR 1000, NNLS-T provides a slightly better mean estimate for the MWF than MIML (0.15 vs. 0.146). However,
we note that NNLS-T has a significantly higher standard deviation than MIML at SNR 1000 (0.014 vs 0.004). Fur-
ther, the table is consistent with results in (Wiggermann et al.l |2020) that the NNLS methods tend to underestimate
the MWEFE. MIML’ provides mediocre performance, with low standard deviation values but also with inaccurate mean
values. GMF provides the second best performance after MIML in terms of the mean value. Overall, MIML performs
accurately and robustly across the whole range of SNRs with respect to the MSE, Wasserstein Distance, and the MWF
value, showing the robustness to changing the assumed model as well as the applicability in a realistic case. Other
methods perform comparably at high SNR values (SNR 1000), as expected. Finally, comparing the performance of
MIML and MIML’, we can see that using the Wasserstein Distance in the loss function during training significantly
improves the performance of our method in terms of MWF estimation in a realistic case.

From the results on the synthetic data, we conclude that MIML, even trained on a limited range of SNRs, is able
to robustly and accurately reconstruct 7, distributions over a wide range of SNR values. Overall, MIML outperforms
all other methods in terms of MSE and Wasserstein Distance with respect to the ground truth, both in terms of the
mean and standard deviation of these metrics. Furthermore, from the realistic case, MIML is the most accurate overall
method for MWF estimation, showing the applicability to MWF estimation. In addition, we can see the robustness to
changes in the assumed model for the T, distributions, and the importance of including the Wasserstein Distance in the
loss function of MIML. In the next section, we show results on real data from in vivo and ex vivo scans, considering
both healthy and pathological cases.

Mean and Standard Deviation of MSE (Realistic Case)

MIML MIML’ NNLS-T NNLS-L GMF
SNR40  (0.058,0.033) (0.052,0.029) (0.088,0.028) (0.087,0.017) (0.19,0.11)
SNR 8O  (0.024,0.016) (0.026,0.016) (0.064,0.022) (0.07,0.016)  (0.101,0.067)
SNR 150  (0.012,0.007) (0.014,0.007) (0.045,0.021) (0.052,0.016) (0.066,0.038)
SNR 200  (0.01,0.004) (0.011,0.005) (0.039,0.02)  (0.044,0.016) (0.06,0.029)
SNR 400  (0.008,0.002) (0.009,0.002) (0.032,0.02)  (0.03,0.013)  (0.052,0.011)
SNR 1000  (0.007,0.001) (0.008,0.001) (0.042,0.035) (0.023,0.014) (0.046,0.013)

Table 4: Here we show the mean and the standard deviation of the MSE between the ground truth distribution of the realistic case and the reconstruc-
tions for each method over a range of SNR values. We see that MIML produces significantly lower values for the mean and the standard deviation of
the MSE than those of the other methods over the majority of the SNR range. As expected, MIML’ performs almost identically to MIML, as MIML’
is trained just with MSE loss.

4.2. Real Data

4.2.1. Exvivo Data

We note that in Equation (4), the MWF is obtained by summing from 7, = 10ms to 7, = 40ms. This formula,
commonly used for acquisitions at 3T, in theory should be adjusted for higher field strengths due to the shortening
of T»s (Kolind et al., 2009; Laule et al., 2008). We note that these limits historically derive from assignment of the
different lobes in T, distributions to different water pools e.g. myelin, IE space, etc.(Alonso-Ortiz et al.| [2015)). For
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Figure 3: We show plots of the realistic, ground truth distribution, as well as the mean reconstructed distribution from each method. MIML produces
the most robust reconstructions with respect to changing SNR, albeit with a consistently over-smoothed myelin water lobe. However, the other
methods require high SNRs (1000) to resolve a myelin water lobe (still with distortions) close to the ground truth lobe as well as correct placement
of the IE lobe.

Mean and Standard Deviation of Wasserstein Distance (Realistic Case)

MIML MIML’ NNLS-T  NNLS-L  GMF
SNR40  (16.7,11.5) (43.1,18.1) (37.2,13.9) (32.3,132) (34.8,11.4)
SNR80  (5.122)  (168,7.9) (152,79 (137,65  (14.9,7.1)
SNR 150  (3.3,1.0)  (9.432) (8245  (8234)  (8.43.9)
SNR200 (2.8,0.7)  (8.12.1)  (6533)  (6626)  (7.02.8)
SNR400 (24,0.3)  (7.2,1.00 46,17  @4715  (54,12)
SNR 1000 (2.3,0.1)  (7.003) (39,08  (3.60.7)  (4.8,0.5)

Table 5: Here we show the mean and the standard deviation of the Wasserstein Distance between the ground truth distribution of the realistic case
and the reconstructions for each method over a range of SNR values. We see that MIML produces significantly lower values for the mean and the
standard deviation of the Wasserstein Distance than those of the other methods over the majority of the SNR range. Further, MIML’ is overall the
worst performing method in this metric, with high values for both the mean and standard deviation of the Wasserstein Distance.

instance, in (Mackay et al., |1994)), the authors use NNLS-T on their data (acquired at 1.5T) and found two large T,
lobes, one in the range of 10-50ms and the other in the range of 70-100ms; they then assigned these to myelin water
and the IES water respectively. In the following, we restrict our analysis to the white matter, and we will show two
versions of MWF maps, with accompanying correlations to histology obtained as follows:

o Fixed Limits: Following (Mackay et al.l |1994)), we fix the limits of summation for each method by taking the
limits of the myelin water lobe in the mean T, distribution from using NNLS-T. This corresponds to bounds of
10-35ms.

e Tailored Limits: For each method, we set the limits of summation from the limits of the low T lobe in the mean
T, distribution from that method. For MIML and NNLS-L this corresponds to bounds of 10-38ms and 10-32ms
respectively.

In Table[7} we show the Pearson correlations (with accompanying p-values) between the MWF maps for each method
and the histology map. We can see that in both cases, the MWF map from MIML has the highest correlation to the
histology map. Only the correlation of NNLS-L changes between the two cases, increasing when using the fixed
bounds. In Fig[d] we show the MWF maps corresponding to each case for the bounds, the histology map, and the
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Mean and Standard Deviation of MWF (Realistic Case)

Ground Truth  MIML MIML’ NNLS-T NNLS-L GMF
SNR40  0.15 (0.132,0.095) (0.119,0.083) (0.129,0.094) (0.167,0.091) (0.101,0.096)
SNR80  0.15 (0.153,0.052)  (0.135,0.045) (0.13,0.056)  (0.139,0.051) (0.156,0.073)
SNR 150  0.15 (0.149,0.028)  (0.132,0.025) (0.13,0.034)  (0.123,0.028) (0.166,0.05)
SNR200  0.15 (0.148,0.021) (0.131,0.019) (0.132,0.03)  (0.122,0.023) (0.162,0.041)
SNR400  0.15 (0.146,0.01)  (0.131,0.01)  (0.14,0.021)  (0.128,0.017) (0.158,0.023)
SNR 1000 0.15 (0.146,0.004)  (0.131,0.004) (0.15,0.014)  (0.142,0.012) (0.157,0.014)

Table 6: Here we show the mean and the standard deviation of the MWF calculated from the reconstructions for each method over a range of SNR
values. We show the ground truth value (0.15) in the leftmost column. We see that MIML, overall, produces the most accurate estimation of the
MWEF in addition to standard deviations on par with or lower than those of other methods over the majority of the SNR range. MIML’ performs
much worse than MIML in terms of the mean MWF with very similar values for the standard deviation. This highlights the downstream impact of
using the Wasserstein Distance in the loss function in our method.

Pearson Correlation of MWF Maps to Histology

MIML
(0.54,5.63E-81)
(0.54,2.04E-81)

NNLS-T
(0.44,8.58E-53)
(0.44,8.58E-53)

NNLS-L
(0.45,5.51E-55)
(0.49,1.13E-64)

GMF
(0.39,1.43E-39)
(0.39,1.43E-39)

Tailored Bounds
Fixed Bounds

Table 7: Here we show a table of the Pearson correlations (with p-values) between the MWF maps and the histology map in a white matter mask.
We note that the histology map is not a map of the myelin water fraction, but a map of the fraction of pixels in the histology which correspond to the
myelin. In either case of fixed or tailored bounds, the MWF map from MIML has the highest correlation to the histology.

mean distributions over the white matter for each method. MIML predicts higher values for the MWF than the other
methods, particularly the NNLS methods. The MIML MWF map from is smoother/less noisy than the other methods
and corresponds better to the histology map. We can see from the mean distributions that all methods are able to
recover the myelin water and IES water lobe in similar locations; however, the NNLS methods produce implausible,
over-smoothed lobes in comparison to MIML and GMF.

We note that for all methods, the MWF values are significantly higher than those of the in vivo 3T scans we show
later. However, this can be attributed to the differences resulting from the fact that ex vivo scan is of chemically treated
spinal cord at 7T while the in vivo scans are of human brain at 3T.

4.2.2. Healthy Subjects

In Fig. [5|we show the MWF maps in axial, coronal, and sagittal slices for two healthy subjects with corresponding,
registered MPRAGE images for comparison. In MPRAGE images, WM is hyperintense; hence, we treat the MPRAGE
as a very rough proxy for the MWF map since MWF values are highest in the WM. Although the MWF maps are
fairly similar, we see that MWF map of MIML most accurately and smoothly conforms to the MPRAGE image. The
NNLS methods exhibit higher distortions, e.g. in the ventricles of subject 1, and difficulty in recovering the MWF in
the frontal region of the brain. GMF produces maps comparable to the NNLS methods, albeit, looking noisier. We note
that all methods exhibit lower MWFs in the frontal part of the brain as compared to other regions, which may stem
from effects due to the gradient echo acquisition (Alonso-Ortiz et al., 2017)). In Fig. @, we show the mean distributions
over the WM voxels in the axial slices; for better visualization, we truncate the plots to a range encompassing WM T5s
(10-150ms). Only MIML produces WM distributions with two distinct, well-separated lobes corresponding to myelin
water and the IES water as is expected from previous studies. Further, the peaks of the myelin water lobe and the
IES water lobe correspond to the range expected at 3T. The NNLS methods recover the IES water lobe in line with
expectations, but over-smooth the distribution in the region corresponding to myelin water, as was seen in the results
on the synthetic data, with an implausible myelin water peak at 10ms. GMF also recovers the IE lobe in line with
expectations, but produces a irregular lobe in the myelin region.

In order to compare the MWF maps on regions of interest, and to conduct the scan-rescan analysis we did the
following: in a first step, all the estimated MWF images for the 4 subjects were registered to the 'YICBM-DTI-81’
white-matter tract labels atlas (Oishi et al., 2008} Mori et al. 2008)) using the non-linear registration *"BSplineSyN’
algorithm included in the ANTs software (https://github.com/ANTsX/ANTs). After visually inspecting the images,
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Figure 4: Here we show the MWF maps corresponding to each case for the bounds, the histology map, and the mean distributions over the white
matter for each method. We can see that the MIML MWF map from is smoother and corresponds better to the histology map. We can see from
the mean distributions that all methods can recover the myelin water and IES water lobe in similar locations; however, the NNLS methods produce
over-smoothed lobes in comparison to MIML and GMF. We emphasize that the histology map is a map of the area fraction of the myelin in the
voxel, not the MWE.
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Mean and Standard Deviation of the Coefficient of Variation in WM ROIs

MIML NNLS-T  NNLS-L  GMF
Subject 1 (0.4,0.12)  (0.56,021) (0.51,0.19) (0.51,0.17)
Subject2 (0.44,0.15) (0.58,0.24) (0.55,0.23) (0.53,0.22)
Subject3  (0.42,0.15) (0.5,0.18)  (0.48,0.18) (0.48,0.16)
Subject4  (0.41,0.14) (0.55,0.24) (0.51,0.21) (0.5,0.2)

Table 8: Here we show a table of the mean and standard deviation of the coefficient of variation of the MWF values in the specified WM ROIs of
the healthy subjects. Overall, MIML produces the smallest mean and standard deviation of the coefficient of variation in all subjects, indicating that
the MWF map is smoother in the ROIs. The NNLS methods and GMF have comparable statistics for the coefficient of variation.

Mean and Standard Deviation of MWF Differences between Scan and Rescan WM ROIs

MIML NNLS-T NNLS-L GMF

Subject I (0.0067,0.0388)  (0.0093,0.0353)  (0.0094,0.0305)  (0.0055,0.03565)
Subject2  (0.0004,0.0448)  (0.0012,0.0473)  (0.001,0.04175) (0.0044,0.0454)
Subject 3 (0.0191,0.07255) (0.0134,0.0755)  (0.0176,0.0723) (0.0108,0.0712)
Subject4  (0.0104,0.05725) (0.0107,0.05425)  (0.0103,0.0504)  (0.0065,0.0561)

Table 9: Here we show a table of the mean and standard deviation of the absolute difference between the mean MWF values of the scan and rescan
in specified ROIs for the healthy subjects. Overall, GMF has the smallest mean differences for 3/4 subjects with standard deviations comparable to
those of other methods. The performance of MIML and the NNLS methods are overall quite similar; while MIML has the smallest mean difference
on Subject 2, NNLS methods have smaller mean differences in Subjects 3 and 4.

we removed small ROIs affected by registration errors and kept 44 tract labels showing a good anatomical agreement
between the atlas and subject native spaces. Finally, the mean MWF value and the coefficient of variation of the MWF
for each region of interest (ROI) was calculated for the scan and rescan maps from each method. A list of the ROIs
can be found in Table 1 of the Supplementary material. In Table[8] we show the mean and standard deviation of the
coefficient of variation of the MWF values in the ROIs. MIML produces significantly lower values for the mean and
standard deviation of the coefficient of variation compared to those of the other methods, indicating that the MIML
MWEF map is smoother in the ROIs. The NNLS methods and GMF perform similarly.

In Tables[9]and [I0] we show the results of our scan-rescan analysis over all four healthy subjects; we show a table
of the mean and standard deviation of the absolute difference between the mean MWF values of the scan and rescan
in the specified ROIs as well as a table of the Pearson correlation and linear regression coefficients between the mean
MWEF values of the scan and rescan in the specified ROIs. We can see that in general, GMF provides the smallest
mean differences and highest Pearson correlations. In particular, it is difficult to rank MIML and the NNLS methods
as they perform better/worse on different subjects. We note that GMF’s superior reproducibility may stem from the
lower flexibility in the fitting of the MWF, as compared to MIML and the NNLS methods. However, overall, the
reproducibility of the methods is quite similar.

Pearson Correlation and Linear Regression Coefficients between Scan and Rescan ROIs

MIML NNLS-T NNLS-L GMF

Subject 1 (0.92, 0.895,0.0069)  (0.91,0.887,0.0016)  (0.93,0.901,0.00039)  (0.93,0.85,0.013)
Subject2  (0.9,1.0039,0.00016)  (0.87,0.98,0.00084)  (0.89,1.022,-0.0034)  (0.91,0.99,0.00454)
Subject 3 (0.77,0.74,0.0546)  (0.7,0.649,0.0527)  (0.72,0.685,0.052)  (0.77,0.76,0.0433)
Subject4  (0.87,0.87,0.0087)  (0.87,0.965,-0.0064) (0.89,0.97,-0.0076)  (0.89,0.955,0.00014)

Table 10: Here we show a table of the Pearson correlation and the linear regression coefficients (slope and intercept) between the mean MWF
values of the scan and rescan in specified ROIs for the healthy subjects. All Pearson correlations have p values less than 0.01. Overall, all methods
perform quite similarly. However, GMF has the best correlations between scans (by a small margin), with MIML and the NNLS methods performing
similarly.
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MPRAGE MIML NNLS-T NNLS-L GMF

Subject 1

Axial

Coronal

Sagittal
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Axial
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Figure 5: We show the MWF maps produced from each method, in the axial, coronal, and sagittal planes of two healthy subjects. On the left, we
show the corresponding MPRAGE slice. Compared to the MPRAGE (where WM is hyper-intense), we can see that MIML most accurately and
smoothly reproduces the extent of white matter, which is consistent with WM having relatively high MWF values. Particularly, the NNLS methods
struggle in MWF recovery in the frontal part of the brain. GMF produces comparable to better MWF recovery than the NNLS methods, but with a
noisier map. In addition, MIML has the least distortion in the ventricles.
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Figure 6: We show the mean distributions in the WM voxels of the axial slices of two healthy subjects for each method. We note that only MIML
produces WM distributions with two distinct, well-separated lobes, and the myelin water peak in line with expectations at 3T. The NNLS methods
and GMF recover the IE lobe well, but the myelin lobe is either irregular or appears at an extremely low 7.

4.2.3. MS Subject

In Fig. [/} we show the maps of the geometric mean 7 in the IE range of 50-200ms as well as the MWF maps
of two consecutive, axial slices in a single subject. In addition, in Fig. [8] we zoom in on the lesions in slice 2 for
better visualization. We can see that for the mean 7, maps, in all methods, almost all of the lesions in both slices
can be clearly seen as hyperintensities i.e. with increased mean IE T,. Further, we see the maps are similar across
the methods, with the main differences residing in the ventricles. Visualizing the lesions is far more difficult with
MWF maps than with the mean 7, maps, as the MWF maps are much noisier independent of the applied method.
However, as with the healthy subjects, the MIML MWF map in both slices most smoothly and accurately conforms
to the WM and the cortices, with the other methods exhibiting more variability and missing patches in the WM and
worse delineation of the cortices; this occurs particularly in the frontal region. In Slice 1, in all methods, only Lesion
1.2 can be seen unambiguously. All methods show a dark spot near where Lesion 1.3 is expected, but not at the correct
location; this may stem from small registration errors between the FLAIR and the multi-echo T, space. In Slice 2, all
three lesions can be seen on the MIML MWF map with minimal ambiguity; in particular, in lesions 2.1 and 2.3, we
can clearly delineate the lesions from very close, adjacent structures. Concerning the NNLS methods, it appears that
Lesion 2.1 is exaggerated in size and mixed with the adjacent structure, making it difficult to delineate the lesion as the
dark region is extended far beyond the lesion region on the FLAIR image. In addition, due to poor contrast between
the normal-appearing tissue and lesion tissue/noise, it is difficult to identify Lesion 2.2 unambiguously with the NNLS
methods. As with Lesion 2.1, Lesion 2.3 can be seen but is connected to the adjacent grey matter, making localization
problematic. Further, we can see that the MWF in the lesion is comparable to the MWF of the normal-appearing,
contralateral brain region, due to the poor MWF reconstruction. The GMF MWF map resembles the MIML MWF map
albeit noisier/ with greater variability, making identification of the lesions more difficult.

In addition to the mean 7, and MWF maps, in Fig @], we compare, for Slice 2, the mean T, distributions in the
lesion masks to the 7, distributions in the normal appearing, contralateral regions. As in the healthy subjects, we
can see that MIML consistently produces two distinct, well-separated lobes corresponding to myelin water and the
IES water as is expected from previous studies. Further, the peaks of the myelin water lobe and the IES water lobe
correspond to the range expected at 3T. The NNLS methods produce over-smoothed myelin water lobes with peaks
occurring at implausibly low T, values. The IES water lobes are generally plausible, albeit with increased noise. GMF
produces more plausible myelin water lobes than those of the NNLS methods, but the lobes are largely irregular. MIML
reconstructs a diminished myelin water lobe in the lesions as compared to the normal-appearing tissue, reflecting lower
MWEF; this is in line with expectations of MS as a demyelinating disorder. In contrast, the NNLS methods in Lesions
2.2/2.3 exhibit larger myelin water lobes in lesion tissue as compared to normal-appearing tissue, indicative of the
poor MWF reconstruction in the normal-appearing tissue. GMF performs similarly to MIML with regard to the myelin
water lobes, albeit with more irregular distributions.

In conclusion, all methods perform similarly in detecting lesions from the mean 7,. However, MIML improves
upon the NNLS methods and GMF in detecting lesions from MWF maps, by providing better contrast between lesions
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Average Computation for Whole Brain

MIML NNLS-T NNLS-L GMF
Time 34s 752s 701.2s 159382.4s

Table 11: Here we show a table of the average computation time for whole brain reconstructions on the healthy subjects using a single computer.
We see that MIML is orders of magnitude faster than the other methods.

and normal appearing tissues, clearer delineation of lesions from adjacent structures, and smoother, more plausible
reconstructions overall in the WM. From Fig. [0 we confirm that the distributions of MIML are also more plausible
and match the model upon which MIML was trained; in particular, the comparison of myelin water lobes of lesion
and normal appearing tissue from MIML is consistent with the demyelinating nature of MS in contrast to that from the
NNLS methods. Therefore, the performance of MIML meets or exceeds the performance of the other methods when
used on a pathological case.

From our results on real data, we see that MIML generalizes to different machines, different magnetic field
strengths, and different sequences since it is trained on a model of the signal decay which is agnostic to these dif-
ferences; MIML’s performance on the real data shows its potential for multi-component T, relaxometry at clinically
achievable SNRs in high resolution scans.

4.3. Computation Time

Here we provide a brief overview of the computational cost of the different methods. For consistent comparison,
we used one computer using Ubuntu 18.04 with an Intel Xeon CPU E5-1650v4 running at 3.6 GHz with 12 available
threads to run parallelized whole-brain reconstructions on four of the healthy subjects (matrix size 144x126x84) using
MIML, NNLS-T, NNLS-L, and GMF; we recorded the time to completion and show the average computation time for
each method in Table|11] We can see that MIML is 1 to 4 orders of magnitude faster than the other methods.

5. Discussion

Overall, from our evaluation on synthetic data, an ex vivo scan and in vivo scans (healthy and pathological), we
conclude that MIML provides fast, noise-robust, and plausible reconstructions of T, distributions, with potential for
use in myelin water fraction mapping. We attribute the performance of our method to the blending of the advantages
of machine learning, parametric, and non-parametric methods. We note that our approach is essentially using machine
learning to solve the inverse problem of parametric approaches, albeit expressing the solution non-parametrically. We
view our approach as an extension of the recent progress in using machine learning to solve inverse problems in many
domains (Adler and Oktem), [2017). By using machine learning, our method is much faster than standard parametric
or non-parametric approaches. By training on solely simulated data, our approach does not require expensive, in vivo
acquisitions for training data, nor the need for multiple scans to adapt to different machines or sequences. Further,
this allows for noise-robust reconstruction by training the network on simulated signals with an SNR range and noise
model corresponding to those from clinical scans. By generating the simulations guided by biophysical models, we
can simultaneously retain stability in the reconstruction by constraining the space of T, distributions while not being
restricted to a specific number of water pools at inference time. Further, the produced distributions are implicitly
constrained to have a plausible, lobular structure (as in parametric approaches), which makes the interpretation of
parameters of interest such as the MWF consistent with past studies, in contrast to potential irregular distributions from
non-parametric methods. The trained MIML model and code for generating the synthetic data and training the model
will be available at the following website: https://github.com/thomas-yu-epfl/Model_Informed_Machine_Learning.

However, our current approach has several limitations. First, while we attempted to be as comprehensive as possible
in the simulated dataset, advances in biophysical modelling make it possible that there are additional relevant water
pools to be estimated. Second, while we fixed the Rician noise model for the training signals, with a fixed SNR
range of 80-200, we note that in some sequences, more complex noise models such as the non-central chi distribution
(Aja-Fernandez and Vegas-Sanchez-Ferrero} 2016)) with different SNR ranges may also be appropriate. Third, we only
consider 32-echo sequences in this work. Fourth, we use a fixed, logarithmic 7, discretization consisting of 60 points
from 10ms to 2000ms for both our method and the NNLS methods. However, finer or coarser discretizations could
also have been used. Finally, there may be relevant physical effects such as magnetization transfer (Sled, 2018} [Malik
et al.|[2018) which, if modelled in the dataset, could improve the reconstructions. However, we highlight the flexibility
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Figure 7: We show maps of the mean T in each voxel within the range corresponding to the IE space (50-200ms) (1st and 3rd row), and MWF
maps (2nd and 4th row) for two consectutive axial slices in the subject with MS. In addition, we show the corresponding slices on the FLAIR image
with the MS lesions marked in red and labeled numerically. Regarding the mean 7, maps, we can see that the all lesions but Lesion 2.2 can be
seen as hyperintensities, with the maps very similar across all methods. Regarding the MWF maps, as in the healthy subjects, MIML most smoothly
and accurately reconstructs the WM, with the other methods exhibiting more noisy maps with missing patches. In contrast to the mean 7> maps,
we can see that, for all methods, only lesion 1.2 can be distinctly seen from the MWF maps in Slice 1. In Slice 2, MIML provides the best lesion
visualization due to better contrast between normal appearing tissue and lesions and a more smooth MWF map; in particular, lesions can clearly be
delineated from close, adjacent structures in contrast to the NNLs methods (see Lesion 2.1,2.3). See Fig. for a closer look/analysis of the MWF
maps compared to the lesions.
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Figure 8: Here we zoom in on the lesions in slice 2 as well as the corresponding patches in the MWF map. We are able to see distinctly see all
the lesions using the MIML MWF map; in particular, lesions 2.1 and 2.3 can be clearly distinguished from close, adjacent structures. Due to the
lower contrast between normal appearing tissue and lesion tissue and noisier appearance in comparison to the MIML MWF map, lesions 2.1 and 2.2
are somewhat ambiguous on the NNLS maps; in particular, it appears the lesion 2.1 is exaggerated in size and mixed with the structure next to it.
Similarly Lesion 2.3 is mixed with the structure next to it with the NNLS maps. The GMF MWF maps are similar to those of MIML, albeit noisier.
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Figure 9: Here we compare the mean 7, distributions for slice 2 within the lesion mask and the same mask translated to the normal appearing
region contralateral to the lesion for each lesion and method. We can see that MIML consistently produces two distinct, well-separated lobes, and
the myelin water peak in line with expectations at 3T. In general, the NNLS methods and GMF recover the IE lobe well, with occasional noise, but
the myelin water lobes are over-smoothed with peaks at implausibly low values or irregular. We note that MIML finds a diminished myelin water
lobe in the lesion as compared to the normal appearing tissue, in line with expectations of MS as a demyelinating disorder; in contrast, the NNLS
methods in Lesions 2.2/2.3 exhibit larger myelin water lobes in lesion tissue as compared to normal appearing tissue. GMF performs similarly to
MIML in this regard, albeit with more irregular distributions.
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and modularity of our approach for accounting for these limitations. Additional water pools can be easily added to
the training dataset. The noise model and SNR range used in training can be swapped out for different noise models
and SNRs. A sequence with a different number of echoes can be accommodated by reconstructing the dataset with the
required number of echos and retraining the network. Different T, discretizations would simply require downsampling
of the high resolution 7’ distributions in our dataset to match the new discretization, with subsequent retraining of the
network. More advanced physical modelling can be added to the generation of new datasets. As the training of the
network is quite fast (15 min on a laptop GPU), the bottleneck for addressing these limitations is the dataset generation
(24 hours on 46 CPU threads). However, while we generated our dataset on CPU, GPU acceleration of the EPG
formalism can potentially speedup dataset generation significantly (Wang et al., [2020).

As for future work: in this paper, we did not study the impact of denoising the data on the reconstruction perfor-
mance of the methods compared. This is first because in our overview of the literature, we found that presenting results
on denoised data is not typical unless the subject of the paper is denoising. Second, the type of denoising, setting of
denoising parameters, and accounting for potential biases due to denoising all require careful justification and study,
which we felt was out of the scope of this paper, which introduces a proof of concept. However, we note that in the MS
data, particularly for the NNLS methods, ostensibly normal appearing regions of the brain had unusually low MWF
values, sometimes less than that predicted for the lesion. These areas of unusually low MWF values could also be
seen in the scans of healthy subjects. These may be due to, in part, instability/ill-posedness in the estimation due to
comparatively low SNRs in the in vivo scans; the in vivo scans we used have fairly high resolution (1.6-1.8mm) and
are isotropic, while typical scans in the literature generally use much thicker slices ( > 2mm) along the axial direction
(Alonso-Ortiz et al., |2015} [Prasloski et al., |2012). We note that both distributions and MWF maps from the NNLS
methods were more plausible in the ex vivo scan, where the SNR was much higher. This is consistent with the ob-
servations in (Wiggermann et al., 2020) concerning the noise dependence of NNLS methods. Future studies will be
conducted to study the impact of denoising algorithms such as PCA denoising (Does et al., 2019), or the NESMA filter
(Bouhrara et al., 2018)) on MIML as well as other methods, and any effect this has on their comparison.

Our method, as well as the other methods compared to in this work, reconstruct the 7, distribution in each voxel
separately. However, there are parametric and non-parametric approaches to T, relaxometry which use spatial regular-
ization (EI-Hajj et al.| | 2020; Hwang and Du, |2009; [Kumar et al.,2018)). These approaches assume that voxels spatially
close to each other should also have similar reconstructions; hence, they perform reconstructions on groups of adjacent
voxels simultaneously, with constraints that limit the variation of the reconstructions over the group. In addition, an-
other approach estimates over groups of voxels by assuming the joint sparsity of the distributions in a region of interest
(Nagtegaal et al.,[2020). In future work, we will study how regularization/simultaneous fitting over regions of interest
can be incorporated into our machine-learning framework as well as its effects on distribution reconstruction.

In this paper, we tested our method on two types of sequences: a multi-echo spin echo sequence and a 3D gradient
and spin echo sequence. While in principle our approach is agnostic to the sequence used, in the future we will further
validate our method on data from other sequences such as the T, prepared gradient echo sequences (Nguyen et al.,
2012).

We note that our approach is most similar to multi-component 7, mapping with Magnetic Resonance Fingerprinting
(MRF) (Tang et al., 2018 McGivney et al., 2018]), where a pre-computed dictionary of signals is generated according
to a pseudo-random sequence, and the voxel signal is matched to the 7,7}, and proton density parameters from
the dictionary which generates the most similar signal. However, these approaches estimate a single 7, for each
compartment. As with NNLS, these methods require relatively high SNR. Furthermore, at this time, we are not aware
of any works which accelerate multi-component 7, mapping with MRF through machine learning, though this has been
done with standard MRF (Hoppe et al.,[2017). Finally, our approach uses spin-echo sequences targeted for solely 75
estimation while MRF uses pseudo-random sequences to estimate multiple parameters simultaneously. In the future, it
would be interesting to compare results from multi-component 7, mapping with MRF and our approach.

Finally, we note that using more advanced neural networks such as Long short term memory (LSTM) networks
(Hochreiter and Schmidhuber, |1997), which are suitable for time series data, may offer improved reconstructions.

6. Conclusion

In this work, we presented Model-Informed Machine Learning (MIML), an approach for estimating 7', distributions
from MRI signals using a neural network trained on synthetic data derived from biophysical models. Through our
evaluations on synthetic data, an ex vivo scan, as well as healthy and pathological in vivo data, we show that MIML
provides more robust, accurate, and plausible T, distributions than standard parametric and non-parametric methods
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across a wide range of SNRs. We show that MWF maps derived from MIML show the highest conformity to anatomical
scans, have the greatest correlation to a histological map of myelin volume, and improve upon the lesion visualization
capabilities of other methods, with better contrast between lesions and normal-appearing tissue as well as clearer
delineation between lesions and close adjacent structures. The code for generating the datasets and training the network
will be made available at https://github.com/thomas-yu-epfl/Model_Informed_Machine_Learning.
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